Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm

E. Kelmedi J. Krämer-Eisentraut J. Křetínský M. Weininger

Fakultät für Informatik, Technische Universität München

Our Contributions⁽³⁾

- First convergent anytime algorithm with guaranteed precision.
- Learning-based variant often needs only fraction of state space.

Reachability in Simple Stochastic Games (SG)

- States S, actions A and transition probabilities δ .
- States belong to one of two players: Maximizer □ or Minimizer ○
- Value = Probability to reach goal state 1 if both play optimally, i.e. $V(s) = \sup_{\sigma} \inf_{\tau} \mathbb{P}_{s}^{\sigma,\tau}(\diamond \mathbf{1}) = \inf_{\tau} \sup_{\sigma} \mathbb{P}_{s}^{\sigma,\tau}(\diamond \mathbf{1}).$
- Compute $V(s_0)$ as well as optimal strategies σ, τ .

Value Iteration (VI)

Bellman update

$$f_{i+1}(s) = \begin{cases} \max_{a \in A} f_i(s, a) & \text{if } s \text{ belongs to } \square \\ \min_{a \in A} f_i(s, a) & \text{if } s \text{ belongs to } \Omega \end{cases}$$

where
$$f_i(s, a) = \sum_{s' \in S} \delta(s, a, s') \cdot f_i(s')$$

- ullet The value V is the least fixpoint of the Bellman equations.
- Applying Bellman updates to under-approximation

$$L_0(s) = egin{cases} 1 & ext{if } s = \mathbf{1} \ 0 & ext{otherwise} \end{cases}$$
 yields $\lim_{i o \infty} L_i = V$

BUT we do not know how close any L_i is to V, i.e. when to stop.

• By applying Bellman updates to an over-approximation $U_0(s)=1$ we get a guaranteed interval,

BUT U need not converge to V, but some greater fixpoint.

	Normal			+ Deflating	
Iteration i	$L(s_0)$	$L(s_1)$	$U(s_1)$	$U(s_1)$	$U(s_2)$
0	0	0	1	1	1
1	0	1/3	1	1	0
2	9/30	4/9	1	2/3	0
3	43/100	13/27	1	5/9	0

End Components (EC)

- An EC is a set of states $T\subseteq S$, where under some pair of strategies a play reaching T remains there forever.
- E.g. $T = \{s_0, s_1\}$ in Figure 1 (if s_1 chooses b).

The Cause of Non-Convergence: Simple End Components (SEC)

- An EC is a SEC, if it only uses optimal actions of Minimizer.
- Assigning any $m \in \mathbb{R}$ with $V(\text{bestExit}_{\square}) \leq m \leq V(\text{bestExit}_{\square})$ to all states in a SEC locally solves the Bellman equations.
- E.g. $\{s_0, s_1\}$ also is a SEC, with $m \in [0.5, 1]$.
- The figure below is parametrized, to show that depending on the values there can be different SECs in an EC.

Deflating SECs

- We "deflate" a SEC by reducing all upper bounds to $U({\sf bestExit}_\square).$
- Soundness: Deflating is sound for any set of states.
- ullet We guess the SECs according to the current L.
- Correctness: Since L converges to V, we eventually find and deflate the true SECs.

Relation to MDP algorithms

- In MDP, every EC is a SEC.
- The approach for $MDPs^{(1)}$ works on SECs. As we might only find them in the limit, it does not generalize to SG.
- The learning-based algorithm for $MDP^{(1)}$ is extended by replacing the former EC treatment with deflating.

Implementation

- Implemented both algorithms as an extension of PRISM-games⁽²⁾.
- The computational overhead for the additional over-approximation often is negligible.

Future Work

Give convergent algorithm with stopping criterion for SG

- with other objectives, e.g. total reward, mean payoff, omega-regular.
- with multi-objective queries.
- in limited information settings.
- based on other learning algorithms.