BRTDP for Stochastic Games

Maxi Weininger

TIII
Technische Universität München
06.04.2019

The talk in one slide

- Reachability in stochastic games
- Bounded value iteration
- BRTDP (bounded real-time dynamic programming)
- Sometimes a lot faster
- Considers subset of states
- Guided by bounds

Reachability in stochastic games

Reachability in stochastic games

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{I})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1				
2				
3				

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{I})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1			1	
2			1	
3			1	

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{I})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1			1	0
2			1	0
3			1	0

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{I})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1	0		1	0
2			1	0
3			1	0

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{\perp})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1	0	$1 / 3$	1	0
2			1	0
3			1	0

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{l})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1	0	$1 / 3$	1	0
2	$1 / 3$		1	0
3			1	0

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{\perp})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1	0	$1 / 3$	1	0
2	$1 / 3$	$4 / 9$	1	0
3			1	0

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{\perp})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1	0	$1 / 3$	1	0
2	$1 / 3$	$4 / 9$	1	0
3	$4 / 9$		1	0

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{1})$	$\mathrm{L}(\mathrm{o})$
0	0	0	1	0
1	0	$1 / 3$	1	0
2	$1 / 3$	$4 / 9$	1	0
3	$4 / 9$	$13 / 27$	1	0

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{1})$	$\mathrm{L}(\mathrm{o})$	$\mathrm{U}(\mathrm{p})$	$\mathrm{U}(\mathrm{q})$
0	0	0	1	0	1	1
1	0	$1 / 3$	1	0		
2	$1 / 3$	$4 / 9$	1	0		
3	$4 / 9$	$13 / 27$	1	0		

Bounded value iteration

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{I})$	$\mathrm{L}(\mathrm{o})$	$\mathrm{U}(\mathrm{p})$	$\mathrm{U}(\mathrm{q})$
0	0	0	1	0	1	1
1	0	$1 / 3$	1	0	1	1
2	$1 / 3$	$4 / 9$	1	0	1	1
3	$4 / 9$	$13 / 27$	1	0	1	1

The problem of end components

The problem of end components

Deflating
For all states in EC:
Decrease U to U(best- \square-exit)

Deflating end components

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{\perp})$	$\mathrm{L}(\mathrm{o})$	$\mathrm{U}(\mathrm{p})$	$\mathrm{U}(\mathrm{q})$
0	0	0	1	0	1	1
1	0	$1 / 3$	1	0		
2	$1 / 3$	$4 / 9$	1	0		
3	$4 / 9$	$13 / 27$	1	0		

Deflating end components

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{\perp})$	$\mathrm{L}(\mathrm{o})$	$\mathrm{U}(\mathrm{p})$	$\mathrm{U}(\mathrm{q})$
0	0	0	1	0	1	1
1	0	$1 / 3$	1	0	$2 / 3$	$2 / 3$
2	$1 / 3$	$4 / 9$	1	0		
3	$4 / 9$	$13 / 27$	1	0		

Deflating end components

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{\perp})$	$\mathrm{L}(\mathrm{o})$	$\mathrm{U}(\mathrm{p})$	$\mathrm{U}(\mathrm{q})$
0	0	0	1	0	1	1
1	0	$1 / 3$	1	0	$2 / 3$	$2 / 3$
2	$1 / 3$	$4 / 9$	1	0	$5 / 9$	$5 / 9$
3	$4 / 9$	$13 / 27$	1	0		

Deflating end components

Iteration	$\mathrm{L}(\mathrm{p})$	$\mathrm{L}(\mathrm{q})$	$\mathrm{L}(\mathrm{\perp})$	$\mathrm{L}(\mathrm{o})$	$\mathrm{U}(\mathrm{p})$	$\mathrm{U}(\mathrm{q})$
0	0	0	1	0	1	1
1	0	$1 / 3$	1	0	$2 / 3$	$2 / 3$
2	$1 / 3$	$4 / 9$	1	0	$5 / 9$	$5 / 9$
3	$4 / 9$	$13 / 27$	1	0	$14 / 27$	$14 / 27$

The final problem: Simple end components

How do we know the minimal value?

The final problem: Simple end components

$$
\begin{array}{c|ccc}
\min (\alpha, \beta) & \alpha & \beta & \alpha, \beta \\
\hline \operatorname{SEC} & \{\mathrm{p}, \mathrm{q}\} & \{\mathrm{p}, \mathrm{r}\} & \{\mathrm{p}, \mathrm{q}, \mathrm{r}\}
\end{array}
$$

How do we know the minimal value? Guess it according to L.

Bounded value iteration - full picture

- Compute probability to reach target in SG
- How:
- Lower and upper bound
- Start at 0/1
- Iterative backpropagation
- Deflate SECs on the fly

Bounded value iteration - full picture

- Compute probability to reach target in SG
- How:
- Lower and upper bound
- Start at 0/1
- Iterative backpropagation
- Deflate SECs on the fly

Convergent anytime algorithm with guarantees

Anytime algorithm with guarantees?

Iteration	p	q	1	0
0	$[0,1]$	$[0,1]$	$[1,1]$	$[0,0]$
1	$\left[0, \frac{2}{3}\right]$	$\left[\frac{1}{3}, \frac{2}{3}\right]$	$[1,1]$	$[0,0]$
2	$\left[\frac{1}{3}, \frac{5}{9}\right]$	$\left[\frac{4}{9}, \frac{5}{9}\right]$	$[1,1]$	$[0,0]$

Anytime algorithm with guarantees?

Iteration	p	q	1	0
0	$[0,1]$	$[0,1]$	$[1,1]$	$[0,0]$
1	$\left[0, \frac{2}{3}\right]$	$\left[\frac{1}{3}, \frac{2}{3}\right]$	$[1,1]$	$[0,0]$
2	$\left[\frac{1}{3}, \frac{5}{9}\right]$	$\left[\frac{4}{9}, \frac{5}{9}\right]$	$[1,1]$	$[0,0]$

Selectively update bounds, guided by estimates and precision

BRTDP by example

BRTDP by example

$\mathrm{L}(\mathrm{p}, \mathrm{a})=\frac{3}{4}$

BRTDP by example

$$
\mathrm{L}(\mathrm{p}, \mathrm{a})=\frac{3}{4} \quad \mathrm{U}(\mathrm{p}, \mathrm{~b})=\frac{2}{3}
$$

BRTDP by example

$$
\mathrm{L}(\mathrm{p}, \mathrm{a})=\frac{3}{4} \quad \mathrm{U}(\mathrm{p}, \mathrm{~b})=\frac{2}{3}
$$

\longrightarrow No need to explore cloud

BRTDP by example

No need to explore cloud for ϵ-optimality

BRTDP algorithm

Simulate path:

- Pick "best" actions
- Pick "interesting" successors

Update bounds:

- When reaching target/sink, backpropagate
- When stuck in EC, deflate

BRTDP strengths and weaknesses

Works well, if

- actions can be pruned.
- reachability probabilities become smaller than ϵ.

BRTDP strengths and weaknesses

Works well, if

- actions can be pruned.
- reachability probabilities become smaller than ϵ.
- stuck-detection does not have many false positives.

Experimental results

Model	PRISM	BVI	BRTDP
cloud	6 s	59 s	4 s
mdsm	8 s	8 s	17 s
zeroconf	7 s	24 s	3 s
csma	2 s	4 s	86 s

Experimental results

Model	PRISM	BVI	BRTDP
cloud	$\mathbf{6 s}$	59 s	$\mathbf{4 s}$
mdsm	$\mathbf{8 s}$	$\mathbf{8 s}$	17 s
zeroconf	$\mathbf{7 s}$	24 s	$\mathbf{3 s}$
csma	$\mathbf{2 s}$	$\mathbf{4 s}$	86 s

Experimental results

Model	PRISM	BVI	BRTDP
cloud	6 s	59 s	4 s
mdsm	8 s	8 s	17 s
zeroconf	7 s	24 s	3 s
csma	2 s	4 s	86 s

Conclusion

- Convergent guaranteed anytime algorithm for stochastic games
- Exploiting bounds for BRTDP
- Great speedup on some models

Conclusion

- Convergent guaranteed anytime algorithm for stochastic games
- Exploiting bounds for BRTDP
- Great speedup on some models

Future work:

- Other objectives
- Limited information setting
- Other learning algorithms

