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Abstract. Simple stochastic games can be solved by value iteration
(VI), which yields a sequence of under-approximations of the value of
the game. This sequence is guaranteed to converge to the value only in
the limit. Since no stopping criterion is known, this technique does not
provide any guarantees on its results. We provide the first stopping cri-
terion for VI on simple stochastic games. It is achieved by additionally
computing a convergent sequence of over-approzimations of the value,
relying on an analysis of the game graph. Consequently, VI becomes an
anytime algorithm returning the approximation of the value and the cur-
rent error bound. As another consequence, we can provide a simulation-
based asynchronous VI algorithm, which yields the same guarantees, but
without necessarily exploring the whole game graph.

Simple stochastic games (SG) can be solved by multiple algorithms [Con93].
Value iteration (VI) is usually preferred, as it typically is the fastest method
[ACD™17]. However, VI may converge only in the limit, and prior to our work
there was no known stopping criterion for VI applied to SG. Consequently, there
were no guarantees on the results returned in finite time, and they could be
arbitrarily imprecise [HM18].

The solution for the special case of Markov decision processes (MDP) was
to employ a bounded variant of VI [MLG05,BCC*14] (also called interval iter-
ation [HM18]). Here one computes not only an under-approximation, but also
an over-approximation of the actual value by iterative computation of the least
and greatest fixpoints of the Bellman equations. Since the fixpoints may not
coincide (and in fact the greatest fixpoint often results in the trivial bound of
1), additional steps have to be taken. The solution for MDP, namely to modify
the underlying graph by collapsing end components, is not applicable for general
SG, since there states in an end component can have different values.

Instead, in [KKKW18] we introduced a modified value iteration procedure,
where the greatest fixpoint coincides with the value. The key idea is to analyze
the game graph and identify special end components, where all states have the
same value. By removing a circular dependency in the computation of the over-
approximation, the modified value iteration converges. Since the special end
components can only be safely identified in the limit, we cannot handle them a
priori, but only on-the-fly.

Additionally, we showed how to use simulations and reinforcement learn-
ing similar to [MLG05,BCCT14,ACD"17], which sometimes gives speedups of
several orders of magnitude. For a more detailed view, we refer the reader
to the original paper and the appendix of the technical report available at
https://arxiv.org/abs/1804.04901.

* This paper reports on the work published in [KKKW18].
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