Branching Immediate Observation
Petri Nets

Chana Weil-Kennedy
joint work with Javier Esparza and Mikhail Raskin
Reachability Problem

Reachability problem: Given a Petri net \mathcal{N}, and markings M_0 and M, can marking M_0 reach marking M in \mathcal{N}?
Reachability Problem

Reachability problem: Given a Petri net \mathcal{N}, and markings M_0 and M can marking M_0 reach marking M in \mathcal{N}?

[non-elementary complexity][Czerwinzki, Lasota, Lazic, Leroux, Mazowiecki, '19]
Reachability Problem

Reachability problem: Given a Petri net \mathcal{N}, and markings M_0 and M, can marking M_0 reach marking M in \mathcal{N}?

non-elementary complexity

[Czerwinksi, Lasota, Lazic, Leroux, Mazowiecki, '19]

Study subclasses of Petri nets
Reachability Problem

Reachability problem: Given a Petri net \mathcal{N}, and markings M_0 and M, can marking M_0 reach marking M in \mathcal{N}?

non-elementary complexity

Study subclasses of Petri nets

Study Branching Immediate Observation (BIO) nets!
Branching Immediate Observation (BIO) nets

\[\text{Card}(t - t^*) \leq 1 \]

\(\equiv \) at most one “pure input” place
Branching Immediate Observation (BIO) nets

\[\text{Card}(\cdot t - \cdot t^*) \leq 1 \]

\(\equiv\) at most one "pure input" place

Extend
- BPP nets:
- IO nets:
Flatness

[Leroux, Sutre, ’05]

\[\text{flat} \ \exists \ \text{sequence} \ \ t_1^* t_2^* \ldots t_l^* \ \text{such that} \]

\[M_0 \to M \iff M_0 t_1^{k_1} t_2^{k_2} \ldots t_l^{k_l} \to M \]
Flatness

[Leroux, Sutre, ’05]

\[\exists \text{ sequence } t_1^* t_2^* \ldots t_l^* \text{ such that } \]

\[M_0 \xrightarrow{k_1 t_1 k_2 t_2 \ldots k_l t_l} M \]

BPP, IO nets
Flatness

[Leroux, Sutre, ’05]

flat \(\exists \) sequence \(t_1^* t_2^* \ldots t_l^* \) such that

\[
M_0 \overset{*}{\rightarrow} M \text{ iff } M_0 \xrightarrow{t_1^* t_2^* \ldots t_l^*} M
\]

\[\downarrow \]

BPP, IO nets

pre\^* flat \(\forall M, \exists \) sequence \(t_1^* t_2^* \ldots t_l^* \) such that

\[
M_0 \overset{*}{\rightarrow} M \text{ iff } M_0 \xrightarrow{t_1^* t_2^* \ldots t_l^*} M
\]

\[\downarrow \]

BIO nets
Flatness

[Leroux, Sutre, '05]

flat \(\exists \) sequence \(t_1^* t_2^* \ldots t_l^* \) such that

\[
M_0 \rightarrow M \iff M_0 \xrightarrow{t_1^* t_2^* \ldots t_l^*} M
\]

BPP, IO nets

pre*-flat \(\forall M, \exists \) sequence \(t_1^* t_2^* \ldots t_l^* \) such that

\[
M_0 \rightarrow M \iff M_0 \xrightarrow{t_1^* t_2^* \ldots t_l^*} M
\]

BIO nets

check **reachability properties** with model checking **tools** that use acceleration techniques

e.g. FAST [Bardin, Finkel, Leroux, Petrucci, '03]
A strong class with simple reachability

- General Petri nets
 - Branching Immediate Observation (BIO)
 - Branching Parallel Processes (BPP)
 - Immediate Observation (IO)
 - Conservative
 - Non-elementary
 - PSPACE-complete
 - PSPACE-complete
 - NP-complete

[Czerwinski, Lasota, Lazic, Leroux, Mazowiecki, ’19]
[Esparza, Raskin, W.-K., ’19]
[Esparza, ’97]
A strong class with simple reachability

BIO nets can have **non-semilinear** reachability set

[Hopcroft, Pansiot, ’79] example of a 3-dimensional VASS

\[c_2 + c_3 \leq 2^{c_1} \]
Branching Immediate Observation (BIO)

- unbounded (token creation and destruction)
- \(\textit{pre}^*\)-flat reachability relation \(\rightarrow\) use of model-checking tools like FAST
- \textbf{PSPACE-complete} reachability problem
- \textbf{non-semilinear} reachability
Branching Immediate Observation (BIO)

- unbounded (token creation and destruction)
- pre^\ast-flat reachability relation \rightarrow use of model-checking tools like FAST
- **PSPACE-complete** reachability problem
- non-semilinear reachability

Open Problems:
- Applications for BIO nets (e.g. chemical reaction networks)
- Consequences of this result in other domains (data nets, process calculi, formal languages…)

Article: https://drops.dagstuhl.de/opus/volltexte/2020/12857/

Contact: chana.weilkennedy@in.tum.de, raskin@in.tum.de, esparza@in.tum.de