
Modernising Strix
Philipp J. Meyer
meyerphi@in.tum.de

Technical University of Munich
Munich, Germany

Salomon Sickert
salomon.sickert@mail.huji.ac.il

The Hebrew University of Jerusalem
Jerusalem, Israel

Abstract
We describe the architectural changes applied to Strix, a
tool for LTL reactive synthesis, that were made in prepara-
tion for SYNTCOMP 2021. We replace the specialised trans-
lation from linear temporal logic (LTL) to deterministic par-
ity automata (DPW) (as described in [8]) by a simpler and
more general translation based on the recent ∆2-normal-
isation for LTL by [13] and Zielonka split trees. Further,
we make use of a new parity game solving algorithm by
[14]. These changes simplify overall design, put the tool on
a cleaner theoretical foundation, and improve the perfor-
mance.

Keywords: Linear Temporal Logic, Reactive Synthesis, Par-
ity Game, Deterministic Automaton

Design Principles
Strix is a tool for synthesis of reactive systems from lin-
ear temporal logic (LTL) specifications. At its core it trans-
lates specifications to deterministic parity automata (DPW),
transforms them into parity games (PG), and solves them.
Strix uses since its inception in [9] the following assump-
tions on LTL specifications occurring in practice and bases
all design decisions on it:

1. Specifications are Boolean combinations of small LTL
formulaswhich often belong to “simple” syntactic frag-
ments.

2. Constructing the complete and explicitly represented
deterministic automaton for an LTL specification is
often infeasible.

From this Strix derives the following constraints: The
core synthesis algorithm must use a LTL translation that is
compositional for Boolean operations and that is on-the-fly.
Thus all states of the constructed deterministic automaton
and the extracted game are computed on-the-fly and in par-
allel to the parity game solver. Thus whenever a winner of
the parity game can already be determined on the partial
arena the construction is stopped.
Since an on-the-fly construction cannot incorporate any

techniques that require an exploration of a complete SCC,
which a priori requires the exploration of the complete au-
tomaton, techniques such as simulation-basedminimisation
are left aside. In practice, direct LTL to deterministic au-
tomata translations [3, 4] construct small automata with-
out using additional minimisation techniques, can be im-
plemented on-the-fly and are (partly) compositional.

Changes
We organise the detailed description of the changes using
the four phases1 implemented in Strix, which are: 1) For-
mula Rewriting, 2) Automaton Construction, 3) Winning
Strategy Computation (runs in parallel with 2.), and 4) Con-
troller Extraction (if the specification is realizable.).
The fundamental change that effects every phase is that

we replace the specialised deterministic parity automaton
construction from [8] that relies on [3, 4] by a construction
based on the [13] and Zielonka trees.

Phase 1: Formula Rewriting
Strix as described in [8] applies a set of “folklore” LTL
rewriting rules, e.g., F Fa → Fa, Fa∧a → a, orG(aUb) →
G(a ∨ b) ∧ GFb, and furthermore replaces atomic proposi-
tions that have only a single polarity, i.e., appear only posi-
tive or negative (assuming the formula is in negation normal-
form), by an appropriate constant, e.g., ai ∨ψ → ψ if ai is
an input and does not occur inψ and ao ∨ψ → tt if ao is an
output, respectively.
In addition to these two steps we now always rewrite the

formula into an equivalent formula in ∆2-normal-form us-
ing the procedures from [13, Theorem 23 and 27]. The class
∆2 is part of the syntactic future hierarchy ([13, Figure 1b])
that classifies each LTL formula into Σi , Πi , or ∆i for some
i ≥ 1 according to the number of alternations of least-fixed-
(F, U,M) and greatest-fixed-point (G,W, R) operators. Fur-
thermore, note that ∆i is the Boolean closure of Σi and Πi .
The class Σ1 is commonly known as syntactic co-safe for-
mulas, and the class Π1 as syntactic safe formulas. More-
over, common formulas such as GFψ with ψ ∈ Σ1 belong
to Π2 and FGψ withψ ∈ Π1 belong to Σ2.
An important point for our implementation is that we we

do not apply the ∆2-normalisation from [13] on the whole
formula, but only substitute temporal operators that do not
belong to ∆2.

Phase 2: Automaton Construction
Strix as described in [8] transforms the input formula φ
into a tree where nodes are labelled by Boolean operations
and leaves are labelled by LTL formulas. This done accord-
ing a set of rules that ensures that there exists an “easy”
product construction yielding a deterministic parity automa-
ton (DPW). Each leaf is then translated to a deterministic

1We refer the reader to [8] for a detailed description of each phase.



Philipp J. Meyer and Salomon Sickert

automaton using a portfolio of different LTL translations
([3, 4]) from which a suitable one is picked depending on
syntactic criteria. This tree is then used to obtain a single
DPW using Boolean operations.
We replace this by a two-step procedure: First, we trans-

late φ into a deterministic Emerson-Lei automaton (DELW)
A, and second, convert the automatonA to a deterministic
parity automaton (DPW) using Zielonka trees.
Due to phase 1 the formula φ is in ∆2 and thus a Boolean

combination of formulasψ1,ψ2, . . . ,ψn fromΠ2 and Σ2. Each
subformula ψi is now separately and directly translated to
either a deterministic Büchi (DBW) or co-Büchi automaton
(DCW) using the break-point construction specifically tai-
lored for Π2 and Σ2 from [13]. We then use a (modified)
product-construction2 inheriting ideas of the product con-
struction appearing in [8, 11], e.g., state-formulaswith short-
circuiting in order to remove components from the product
automaton. We then obtain a deterministic Emerson-Lei au-
tomaton (DELW) whose states are propositional formulas
over states of DBWs.
In the second step, we implement the alternating-cycle-

decomposition construction (ACD) [2] and a yet unpublished
adaption of Zielonka trees, called conditional Zielonka trees
(ZLK)3. While ACD has strong optimality guarantees, it re-
quires the complete exploration of a strongly-connected-
component (SCC) and thus requires a full exploration of the
DELW,whichwewant to avoid at all costs. Thuswe use sev-
eral syntactic checks derived from the state-labels that over-
approximate SCCs and add a lookahead parameter limiting
the number of states that are explored for ACD. If we cannot
identify an SCC within the given state-budget we fallback
to ZLK, but extract from the state-formula and state-labels
information in order to simplify the acceptance condition
to reduce the size of the Zielonka tree. Thus the user can
choose how much effort should be into obtaining an opti-
mal DPW for the constructed DELW. The second step bears
some inspiration from the LTL synthesis tool ltlsynt [10]
that uses [12] to translate DELWs to DPWs.
In summary, we simplified the fine-grained classification

and intricate construction present in [8] by a uniform LTL→
DELW-translation in combinationwith a Zielonka-tree based
transformation to DPW. Further, these new translations are
implemented as part of Owl [5] and use a semi-symbolic
representation of the transition relation where each edge is
stored as a leaf in a multi-terminal binary decision diagram
(MTBDD), speeding up computation on large alphabets.

Phase 3: Winning Strategy Computation
We replace the strategy iteration (SI) [7] with the distrac-
tion fixpoint iteration algorithm (DFI) [14] and modify it
such that yields non-deterministic strategies similarly as in

2A paper describing the construction will be published soon.
3A paper describing the construction will be published soon.

[6]. Further, we update the scoring-based exploration mech-
anism from [8] that guides the on-the-fly construction to
support the new construction.

Phase 4: Controller Extraction
For the controller extraction we enhance the minimisation
of the intermediate Mealy machines and improve the circuit
encoding compared to the implementation described by [8].
The SAT-based minimisation consists now of two phases:

First, we refine the non-deterministic winning strategy to
a deterministic winning strategy that minimises the num-
ber of reachable states and that still has “don’t cares” for
outputs. Second, we pass this deterministic strategy repre-
sented as a Mealy machine to MeMin [1] to further compress
it.
While “unstructured” encoding assigns each state of the

Mealy machine a non-negative integer and uses the binary
representation to encode a state into circuit, the “structured”
[8] encoding uses knowledge about the state structure to
obtain a more succinct encoding. As the states of the con-
structed DPW (and thus parity game and Mealy machine)
are obtained by composing several smaller automata (DBW,
DCW) and adding path information for the Zielonka trees,
we can encode each component into a separate range of
variables. Furthermore, each state of the underlying DBW
is labelled by an LTL formula for the language recognised
by the state. We map each formula to the set of tempo-
ral operators occurring in the formula, which we call “pro-
file”, and use a this to encode states into vector of variables.
In the case that this yields an ambiguous mapping we add
extra bits to distinguish the states that are mapped to the
same profile. Using this technique, we can obtain for some
of the SYNTCOMP benchmarks significant size reductions,
e.g., the circuit realising ltl2dba_Q_8.tlsfwe obtain with
the “unstructured” encoding has around 34000 latches and
gates4, while using “structured” encoding we obtain a cir-
cuit with around 300 latches and gates.

Acknowledgments
The authors want to thank Michael Luttenberger for his
support in development of Strix. Salomon Sickert is sup-
ported by the Deutsche Forschungsgemeinschaft (DFG) un-
der project number (436811179) and partly funded by the
European ResearchCouncil (ERC) under the EuropeanUnion’s
Horizon 2020 research and innovation programme under
grant agreement PaVeS (No 787367).

References
[1] Andreas Abel and Jan Reineke. 2015. MeMin: SAT-based Exact Min-

imization of Incompletely Specified Mealy Machines. In Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design,

4The exact value depends on the numbering of states, which is
nondeterministic.



Modernising Strix

ICCAD 2015, Austin, TX, USA, November 2-6, 2015. 94–101. https:
//doi.org/10.1109/ICCAD.2015.7372555

[2] Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. 2020.
Optimal transformations of Muller conditions. CoRR abs/2011.13041
(2020). arXiv:2011.13041 https://arxiv.org/abs/2011.13041

[3] Javier Esparza, Jan Kretínský, Jean-François Raskin, and Salomon
Sickert. 2017. From LTL and Limit-Deterministic Büchi Automata
to Deterministic Parity Automata. In Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10205),
Axel Legay and Tiziana Margaria (Eds.). 426–442. https://doi.org/10.
1007/978-3-662-54577-5_25

[4] Javier Esparza, Jan Kretínský, and Salomon Sickert. 2020. A Unified
Translation of Linear Temporal Logic to ω-Automata. J. ACM 67, 6
(2020), 33:1–33:61. https://doi.org/10.1145/3417995

[5] Jan Kretínský, Tobias Meggendorfer, and Salomon Sickert. 2018. Owl:
A Library for ω-Words, Automata, and LTL. In ATVA 2018. Springer,
543–550. https://doi.org/10.1007/978-3-030-01090-4_34

[6] Oebele Lijzenga and Tom van Dijk. 2020. Symbolic Parity Game
Solvers that Yield Winning Strategies. In Proceedings 11th Interna-
tional Symposium on Games, Automata, Logics, and Formal Verifica-
tion, GandALF 2020, Brussels, Belgium, September 21-22, 2020 (EPTCS,
Vol. 326), Jean-François Raskin and Davide Bresolin (Eds.). 18–32.
https://doi.org/10.4204/EPTCS.326.2

[7] Michael Luttenberger. 2008. Strategy Iteration using Non-
Deterministic Strategies for Solving Parity Games. CoRR
abs/0806.2923 (2008). arXiv:0806.2923 http://arxiv.org/abs/0806.2923

[8] Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. 2020.
Practical synthesis of reactive systems from LTL specifications via
parity games. Acta Informatica 57, 1-2 (2020), 3–36. https://doi.org/
10.1007/s00236-019-00349-3

[9] Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. 2018.
Strix: Explicit Reactive Synthesis Strikes Back!. In Computer Aided

Verification - 30th International Conference, CAV 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10981), Hana
Chockler and Georg Weissenbacher (Eds.). Springer, 578–586. https:
//doi.org/10.1007/978-3-319-96145-3_31

[10] Thibaud Michaud and Maximilien Colange. 2018. Reactive Synthesis
from LTL Specification with Spot. In Proceedings of the 7th Workshop
on Synthesis, SYNT@CAV 2018 (Electronic Proceedings in Theoretical
Computer Science).

[11] David Müller and Salomon Sickert. 2017. LTL to Deterministic
Emerson-Lei Automata. In Proceedings Eighth International Sympo-
sium on Games, Automata, Logics and Formal Verification, GandALF
2017, Roma, Italy, 20-22 September 2017 (EPTCS, Vol. 256), Patricia
Bouyer, Andrea Orlandini, and Pierluigi San Pietro (Eds.). 180–194.
https://doi.org/10.4204/EPTCS.256.13

[12] Florian Renkin, Alexandre Duret-Lutz, and Adrien Pommellet. 2020.
Practical "Paritizing" of Emerson-Lei Automata. In Automated Tech-
nology for Verification and Analysis - 18th International Symposium,
ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings (Lecture
Notes in Computer Science, Vol. 12302), Dang Van Hung and Oleg
Sokolsky (Eds.). Springer, 127–143. https://doi.org/10.1007/978-3-
030-59152-6_7

[13] Salomon Sickert and Javier Esparza. 2020. An Efficient Normalisation
Procedure for Linear Temporal Logic and Very Weak Alternating Au-
tomata. In LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, Saarbrücken, Germany, July 8-11, 2020, Holger Her-
manns, Lijun Zhang, Naoki Kobayashi, and Dale Miller (Eds.). ACM,
831–844. https://doi.org/10.1145/3373718.3394743

[14] Tom van Dijk and Bob Rubbens. 2019. Simple Fixpoint Iteration To
Solve Parity Games. In Proceedings Tenth International Symposium on
Games, Automata, Logics, and Formal Verification, GandALF 2019, Bor-
deaux, France, 2-3rd September 2019 (EPTCS, Vol. 305), Jérôme Leroux
and Jean-François Raskin (Eds.). 123–139. https://doi.org/10.4204/
EPTCS.305.9

https://doi.org/10.1109/ICCAD.2015.7372555
https://arxiv.org/abs/2011.13041
https://arxiv.org/abs/2011.13041
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1145/3417995
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.4204/EPTCS.326.2
https://arxiv.org/abs/0806.2923
http://arxiv.org/abs/0806.2923
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.1007/978-3-030-59152-6_7
https://doi.org/10.1145/3373718.3394743
https://doi.org/10.4204/EPTCS.305.9

