Outline

1 Introduction

2 Preliminaries
 - Some useful definitions
 - Van Glabbeek’s logical characterizations

3 Our new logical characterizations of the semantics
 - Main ideas
 - The layer of RS provides some illustrative examples
 - Uniform logical characterizations of the semantics at the layer of RS
 - Uniform logical characterizations of all the semantics

4 The complete structure of the extended spectrum
 - Partial offers trace and partial offers semantics
 - Meet and join semantics

5 Conclusions and future work
1 Introduction

2 Preliminaries
 - Some useful definitions
 - Van Glabbeek’s logical characterizations

3 Our new logical characterizations of the semantics
 - Main ideas
 - The layer of RS provides some illustrative examples
 - Uniform logical characterizations of the semantics at the layer of RS
 - Uniform logical characterizations of all the semantics

4 The complete structure of the extended spectrum
 - Partial offers trace and partial offers semantics
 - Meet and join semantics

5 Conclusions and future work

Index
Introduction

- At the abstract level a semantics is just defined by a preorder or an equivalence relation between processes.
- These can be defined by using different frameworks.
- A unified presentation of both, the observational and the equational semantics, has been discussed here previously.
Introduction

- At the abstract level a semantics is just defined by a preorder or an equivalence relation between processes.

- These can be defined by using different frameworks.

- A unified presentation of both, the observational and the equational semantics, has been discussed here previously.
Introduction

- At the abstract level a semantics is just defined by a preorder or an equivalence relation between processes.
- These can be defined by using different frameworks.
- A unified presentation of both, the observational and the equational semantics, has been discussed here previously.
Introduction

The classical ltbt-spectrum
Next we present a unified view of the logical semantics.

Each language $\mathcal{L} \subseteq \text{HML}$ defines a preorder $<_{\mathcal{L}}$, given by

$$(p <_{\mathcal{L}} q \leftrightarrow (p \models \varphi \Rightarrow q \models \varphi)).$$

(A bit surprisingly!) We look for sets of formulas, characterizing each semantics, as large as possible.
Next we present a unified view of the logical semantics.

Each language $\mathcal{L} \subseteq \text{HML}$ defines a preorder $<\mathcal{L}$, given by

$$ (p <\mathcal{L} q \iff (p \models \varphi \Rightarrow q \models \varphi)). $$

(A bit surprisingly!) We look for sets of formulas, characterizing each semantics, as large as possible.
Next we present a unified view of the logical semantics.

Each language $\mathcal{L} \subseteq \text{HML}$ defines a preorder $<_\mathcal{L}$, given by

$$(p <_\mathcal{L} q \iff (p \models \varphi \Rightarrow q \models \varphi)).$$

(A bit surprisingly!) We look for sets of formulas, characterizing each semantics, as large as possible.
Introduction

(A part of) the enlarged spectrum
1 Introduction

2 Preliminaries
 - Some useful definitions
 - Van Glabbeek’s logical characterizations

3 Our new logical characterizations of the semantics
 - Main ideas
 - The layer of RS provides some illustrative examples
 - Uniform logical characterizations of the semantics at the layer of RS
 - Uniform logical characterizations of all the semantics

4 The complete structure of the extended spectrum
 - Partial offers trace and partial offers semantics
 - Meet and join semantics

5 Conclusions and future work
Some useful definitions

All the semantics that we consider can be defined over arbitrary (possibly infinite) processes whose operational semantics is defined by a lts

\[\mathcal{P} = (\text{Proc}, \text{Act}, \rightarrow) \]

We will use \(p \xrightarrow{a} p' \) to represent the transitions between processes.

Definition (BCCSP)

Given a set of actions Act, the set BCCSP(Act) of processes is defined by the BNF-grammar:

\[
p ::= 0 \mid a \ p \mid p + q
\]
Some useful definitions

Definition (N-Constrained simulation)

Given a relation N over BCCSP processes, an N-constrained simulation is a relation S_N such that $S_N \subseteq N$, and whenever $p S_N q$ and $p \xrightarrow{a} p'$, there exists q' with $q \xrightarrow{a} q'$ and $p' S_N q'$. We say that p is N-simulated by q, or that q N-simulates p, written $p \sqsubseteq_{NS} q$, when there exists an N-constrained simulation S_N such that $p S_N q$.

Definition (Hennessy-Milner logic, HML)

The set \mathcal{L}_{HM} of Hennessy-Milner logical formulas is defined by:

- If $\varphi_i \in \mathcal{L}_{HM}$ and $i \in I$ then $\bigwedge_{i \in I} \varphi_i \in \mathcal{L}_{HM}$.
- If $a \in \text{Act}$ and $\varphi \in \mathcal{L}_{HM}$ then $a \varphi \in \mathcal{L}_{HM}$.
- If $\varphi \in \mathcal{L}_{HM}$ then $\neg \varphi \in \mathcal{L}_{HM}$.
Some useful definitions

Definition (Satisfaction relation)

For each lts P, the satisfaction relation $\models \subseteq P \times \mathcal{L}_{HM}$ is defined by:

- $p \models a\varphi$ if there exists $q \in P : p \xrightarrow{a} q$ and $q \models \varphi$;
- $p \models \bigwedge_{i \in I} \varphi_i$ if for all $i \in I : p \models \varphi_i$.
- $p \models \lnot \varphi$ if $p \not\models \varphi$.

Definition

Any subset \mathcal{L} of \mathcal{L}_{HM} induces a logical semantics for processes, given by the preorder $\sqsubseteq_{\mathcal{L}}$: We have $p \sqsubseteq_{\mathcal{L}} q$ if, and only if, for all $\varphi \in \mathcal{L}$ ($p \models \varphi \Rightarrow q \models \varphi$). We say that \mathcal{L} and \mathcal{L}' are equivalent, and we write $\mathcal{L} \sim \mathcal{L}'$, if they induce the same semantics, that is $\sqsubseteq_{\mathcal{L}} = \sqsubseteq_{\mathcal{L}'}$.
Van Glabbeek’s logical characterizations

<table>
<thead>
<tr>
<th>Formulas</th>
<th>Semantics (\mathcal{Z})</th>
<th>T</th>
<th>S</th>
<th>CT</th>
<th>CS</th>
<th>F</th>
<th>FT</th>
<th>R</th>
<th>RT</th>
<th>PW</th>
<th>RS</th>
<th>PF</th>
<th>2S</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\top \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$0 \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\varphi \in \mathcal{L}_\mathcal{Z}$, $a \in \text{Act} \Rightarrow$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$a\varphi \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$X \subseteq \text{Act} \Rightarrow$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\bar{X} \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$X \subseteq \text{Act} \Rightarrow$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$X \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\varphi \in \mathcal{L}_\mathcal{Z}$, $X \subseteq \text{Act} \Rightarrow$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$X\varphi \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\varphi \in \mathcal{L}_\mathcal{Z}$, $X \subseteq \text{Act} \Rightarrow$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$X\varphi \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\varphi_i \in \mathcal{L}_\mathcal{Z}$, $\forall i \in \mathcal{I} \Rightarrow$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\bigwedge_{i \in \mathcal{I}} \varphi_i \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$X \subseteq \text{Act}$, $\varphi_a \in \mathcal{L}_\mathcal{Z}$, $\forall a \in X \Rightarrow$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\bigwedge_{a \in X} a\varphi_a \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\varphi_i, \varphi_j \in \mathcal{L}_\mathcal{T}$, $\forall i \in \mathcal{I}$, $j \in \mathcal{J} \Rightarrow$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\bigwedge_{i \in \mathcal{I}} \varphi_i \land \bigwedge_{j \in \mathcal{J}} \neg \varphi_j \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\varphi \in \mathcal{L}_\mathcal{S}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\neg \varphi \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\varphi \in \mathcal{L}_\mathcal{S}$</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>$\neg \varphi \in \mathcal{L}_\mathcal{Z}$</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>
Van Glabbeek’s logical characterizations

Some syntactic sugar for Van Glabbeek’s logics...

\[\tilde{X} := \bigwedge_{a \in X} \neg a \top \quad \tilde{X} \varphi' := \tilde{X} \land \varphi' \quad 0 := \tilde{\text{Act}} \]

\[\varphi_1 \land \varphi_2 := \bigwedge_{i \in \{1,2\}} \varphi_i \quad X := \bigwedge_{a \in X} a \top \land \bigwedge_{a \notin X} \neg a \top \]

\[X \varphi' := X \land \varphi' \quad \tilde{a} := \neg a \top \]
Van Glabbeek’s logical characterizations

THEOREM (Disjunction theorem)

If we define \mathcal{L}_Z^\vee with $Z \in \{\text{T, CT, F, FT, R, RT, PF, S, CS, RS, 2S, PW, B}\}$, by adding to the definition of \mathcal{L}_Z the clause

$$\sigma_i \in \mathcal{L}_Z^\vee \ \forall i \in I \Rightarrow \bigvee_{i \in I} \sigma_i \in \mathcal{L}_Z^\vee$$

and replacing \mathcal{L}_Z by \mathcal{L}_Z^\vee in each of the other clauses, and we take

$$p \models \bigvee \sigma_i ::= \exists i \in I: p \models \sigma_i$$

then we have $\mathcal{L}_Z^\vee \sim \mathcal{L}_Z$ for any such Z.
Index

1 Introduction

2 Preliminaries
 - Some useful definitions
 - Van Glabbeek’s logical characterizations

3 Our new logical characterizations of the semantics
 - Main ideas
 - The layer of RS provides some illustrative examples
 - Uniform logical characterizations of the semantics at the layer of RS
 - Uniform logical characterizations of all the semantics

4 The complete structure of the extended spectrum
 - Partial offers trace and partial offers semantics
 - Meet and join semantics

5 Conclusions and future work
Main ideas

- In order to obtain a uniform presentation of the logics characterizing each of the semantics we look for (simple) sets of formulas, but as large as possible.
- As for other previously studied frameworks, we divide the semantics in two classes: the branching and the linear ones.
- The key point to get the different logics is to use in the proper way in each case, negations and conjunctions.
- Whenever a semantics is finer than other, the logic characterizing the first will contain that for the latter, thus making trivial that relationship.
Main ideas

- In order to obtain a uniform presentation of the logics characterizing each of the semantics we look for (simple) sets of formulas, but as large as possible.

- As for other previously studied frameworks, we divide the semantics in two classes: the branching and the linear ones.

- The key point to get the different logics is to use in the proper way in each case, negations and conjunctions.

- Whenever a semantics is finer than other, the logic characterizing the first will contain that for the latter, thus making trivial that relationship.
Main ideas

- In order to obtain a uniform presentation of the logics characterizing each of the semantics we look for (simple) sets of formulas, but as large as possible.

- As for other previously studied frameworks, we divide the semantics in two classes: the branching and the linear ones.

- The key point to get the different logics is to use in the proper way in each case, negations and conjunctions.

- Whenever a semantics is finer than other, the logic characterizing the first will contain that for the latter, thus making trivial that relationship.
Main ideas

- In order to obtain a uniform presentation of the logics characterizing each of the semantics we look for (simple) sets of formulas, but as large as possible.

- As for other previously studied frameworks, we divide the semantics in two classes: the branching and the linear ones.

- The key point to get the different logics is to use in the proper way in each case, negations and conjunctions.

- Whenever a semantics is finer than other, the logic characterizing the first will contain that for the latter, thus making trivial that relationship.
The layer of RS provides some illustrative examples

- The most important layer in the extended spectrum is that corresponding to ready simulation.

- The logical language characterizing the set of initial actions of a process: \(L_I = \{ aT \mid a \in \text{Act} \} \).
The layer of RS provides some illustrative examples

- Simulation Game.
- Set of Initial actions

\[P_1 \sim_{\text{RS}} P_2 \]
The layer of RS provides some illustrative examples

\[P_2 \not\models_{RS} P_3 \]

\[P_2 \models (bc \land bd), \text{ but } P_3 \text{ does not.} \]

- Branching semantics.
- Unrestricted use of conjunctions.
The layer of RS provides some illustrative examples

- Linear semantics (prefix operator).
- Positive information about initial actions.

\[P_4 \not
\subseteq_{\{RT,R\}} P_3 \]
\[P_4 \models ab(c \land d), \text{ but } P_3 \not\models ab(c \land d) \]
The layer of RS provides some illustrative examples

- Linear semantics (prefix operator).
- Negative information about initial actions.
The layer of RS provides some illustrative examples

- Linear semantics (prefix operator).
- Positive (resp. negative) information about initial actions for the case or R (resp. FT).

\[P_7 \not\equiv_{R,FT} P_6 \]
\[P_7 \models a(\neg e \land c) \]
The layer of RS provides some illustrative examples

- Linear semantics (prefix operator).
- Negative information about initial actions.
Uniform logical characterizations of the semantics at the layer of RS

Definition (Negative closure \mathcal{L}_N^-)

Given a set of formulas \mathcal{L}_N', we define \mathcal{L}_N^- by:

- $\sigma \in \mathcal{L}_N' \Rightarrow \neg \sigma \in \mathcal{L}_N^-$
- $\sigma_i \in \mathcal{L}_N^- \forall i \in I \Rightarrow \bigwedge_{i \in I} \sigma_i \in \mathcal{L}_N^-$

Definition (Failure semantics)

Inspired by the order \leq_{I}^{lf}, we define the set of formulas \mathcal{L}_F' by:

- $\top \in \mathcal{L}_F'$
- $\sigma \in \mathcal{L}_I^- \Rightarrow \sigma \in \mathcal{L}_F'$
- $\varphi \in \mathcal{L}_F', \ a \in \text{Act} \Rightarrow a\varphi \in \mathcal{L}_F'$
Uniform logical characterizations of the semantics at the layer of RS

Definition (Negative closure \(\mathcal{L}_N^- \))

Given a set of formulas \(\mathcal{L}_N' \), we define \(\mathcal{L}_N^- \) by:

- \(\sigma \in \mathcal{L}_N' \Rightarrow -\sigma \in \mathcal{L}_N^- \)
- \(\sigma_i \in \mathcal{L}_N^- \forall i \in I \Rightarrow \bigwedge_{i \in I} \sigma_i \in \mathcal{L}_N^- \)

Definition (Failure trace semantics)

Inspired by the order \(\leq_{I}^{12} \), we define the set of formulas \(\mathcal{L}_{FT}' \) by:

- \(\top \in \mathcal{L}_{FT}' \)
- \(\varphi \in \mathcal{L}_{FT}', \sigma \in \mathcal{L}_I^- \Rightarrow \sigma \land \varphi \in \mathcal{L}_{FT}' \)
- \(\varphi \in \mathcal{L}_{FT}', a \in \text{Act} \Rightarrow a\varphi \in \mathcal{L}_{FT}' \)
Uniform logical characterizations of the semantics at the layer of RS

Definition (Symmetric closure \mathcal{L}_N^\equiv)

Given a set of formulas \mathcal{L}_N', we define \mathcal{L}_N^\equiv by:

- $\sigma \in \mathcal{L}_N' \Rightarrow \sigma \in \mathcal{L}_N^\equiv$
- $\sigma \in \mathcal{L}_N' \Rightarrow \neg \sigma \in \mathcal{L}_N^\equiv$
- $\sigma_i \in \mathcal{L}_N^\equiv \forall i \in I \Rightarrow \bigwedge_{i \in I} \sigma_i \in \mathcal{L}_N^\equiv$

Definition (Readiness semantics)

Inspired by the order \leq_I^{lf}, we define the set of formulas \mathcal{L}_R' by:

- $\top \in \mathcal{L}_R'$
- $\sigma \in \mathcal{L}_I^\equiv \Rightarrow \sigma \in \mathcal{L}_R'$
- $\varphi \in \mathcal{L}_R'$, $a \in \text{Act} \Rightarrow a\varphi \in \mathcal{L}_R'$
Uniform logical characterizations of the semantics at the layer of RS

Definition (Symmetric closure \(\mathcal{L}_{N}^{=} \))

Given a set of formulas \(\mathcal{L}_{N}' \), we define \(\mathcal{L}_{N}^{=} \) by:

- \(\sigma \in \mathcal{L}_{N}' \Rightarrow \sigma \in \mathcal{L}_{N}^{=} \)
- \(\sigma \in \mathcal{L}_{N}' \Rightarrow \neg \sigma \in \mathcal{L}_{N}^{=} \)
- \(\sigma_{i} \in \mathcal{L}_{N}^{=} \forall i \in I \Rightarrow \bigwedge_{i \in I} \sigma_{i} \in \mathcal{L}_{N}^{=} \)

Definition (Ready trace semantics)

Inspired by the order \(\leq_{I}^{1} \), we define the set of formulas \(\mathcal{L}_{RT}' \) by:

- \(\top \in \mathcal{L}_{RT}' \)
- \(\varphi \in \mathcal{L}_{RT}', \sigma \in \mathcal{L}_{I}^{=} \Rightarrow \sigma \land \varphi \in \mathcal{L}_{RT}' \)
- \(\varphi \in \mathcal{L}_{RT}', a \in \text{Act} \Rightarrow a\varphi \in \mathcal{L}_{RT}' \)
Uniform logical characterizations of the semantics at the layer of RS

Definition (Ready simulation semantics)

We define the set of formulas \mathcal{L}_{IS}', which is also denoted by \mathcal{L}_{RS}', that defines the I-constrained simulation semantics by:

- $\sigma \in \mathcal{L}'_I \Rightarrow \sigma \in \mathcal{L}'_{RS}$
- $\sigma \in \mathcal{L}'_I \Rightarrow \neg \sigma \in \mathcal{L}'_{RS}$
- For any set I, $\varphi_i \in \mathcal{L}'_{RS} \forall i \in I \Rightarrow \bigwedge_{i \in I} \varphi_i \in \mathcal{L}'_{RS}$
- $\phi \in \mathcal{L}'_{RS}, \ a \in \text{Act} \Rightarrow a\phi \in \mathcal{L}'_{RS}$

Theorem

We have (1) $\mathcal{L}_{RS} \sim \mathcal{L}'_{RS}$; (2) $\mathcal{L}_{RT} \sim \mathcal{L}'_{RT}$; (3) $\mathcal{L}_{FT} \sim \mathcal{L}'_{FT}$; (4) $\mathcal{L}_R \sim \mathcal{L}'_R$ and (5) $\mathcal{L}_F \sim \mathcal{L}'_F$.
Uniform logical characterizations of the semantics at the layer of RS

Definition (Ready simulation semantics)

We define the set of formulas \mathcal{L}'_{IS}, which is also denoted by \mathcal{L}'_{RS}, that defines the I-constrained simulation semantics by:

- $\sigma \in \mathcal{L}'_I \Rightarrow \sigma \in \mathcal{L}'_{RS}$
- $\sigma \in \mathcal{L}'_I \Rightarrow \neg \sigma \in \mathcal{L}'_{RS}$
- For any set I, $\varphi_i \in \mathcal{L}'_{RS} \forall i \in I \Rightarrow \bigwedge_{i \in I} \varphi_i \in \mathcal{L}'_{RS}$
- $\varphi \in \mathcal{L}'_{RS}, a \in \text{Act} \Rightarrow a\varphi \in \mathcal{L}'_{RS}$

Theorem

We have (1) $\mathcal{L}_{RS} \sim \mathcal{L}'_{RS}$; (2) $\mathcal{L}_{RT} \sim \mathcal{L}'_{RT}$; (3) $\mathcal{L}_{FT} \sim \mathcal{L}'_{FT}$; (4) $\mathcal{L}_{R} \sim \mathcal{L}'_{R}$ and (5) $\mathcal{L}_{F} \sim \mathcal{L}'_{F}$.
Uniform logical characterizations of the semantics at the layer of RS

Definition (Possible Worlds semantics)

We define the formulas of \mathcal{L}'_{D_1}, which is also denoted $b\mathcal{L}'_{PW}$, by:

- $\top \in \mathcal{L}'_{PW}$
- $\phi \in \mathcal{L}'_{PW}, \; \sigma \in \mathcal{L}^{=I} \Rightarrow \sigma \land \phi \in \mathcal{L}'_{PW}$
- $X \subseteq \text{Act}, \; \phi_a \in \mathcal{L}'_{PW} \; \forall a \in X \Rightarrow \land_{a \in X} a\phi_a \in \mathcal{L}'_{PW}$

In this case \mathcal{L}_{PW} and \mathcal{L}'_{PW} are not equivalent, but this is caused by the fact that the original logical characterization \mathcal{L}_{PW} was wrong!
Our new logical characterizations of the semantics

Uniform logical characterizations of the semantics at the layer of RS

Definition (Possible Worlds semantics)

We define the formulas of \(\mathcal{L}'_{D_1} \), which is also denoted \(b\mathcal{L}'_{PW} \), by:

- \(\top \in \mathcal{L}'_{PW} \)
- \(\varphi \in \mathcal{L}'_{PW}, \ \sigma \in \mathcal{L}^=_{I} \Rightarrow \sigma \land \varphi \in \mathcal{L}'_{PW} \)
- \(X \subseteq Act, \ \varphi_a \in \mathcal{L}'_{PW} \forall a \in X \Rightarrow \bigwedge_{a \in X} a\varphi_a \in \mathcal{L}'_{PW} \)

In this case \(\mathcal{L}_{PW} \) and \(\mathcal{L}'_{PW} \) are not equivalent, but this is caused by the fact that the original logical characterization \(\mathcal{L}_{PW} \) was wrong!
Uniform logical characterizations of the semantics at the layer of RS

\[\varphi \equiv a(\neg d \land bc) \in \mathcal{L}_{PW}' \]

\[P \models \varphi \quad \text{Q} \not\models \varphi \]

- \(T \in \mathcal{L}_{PW}' \)
- \(\varphi \in \mathcal{L}_{PW}' \), \(\sigma \in \mathcal{L}_{I}^{\equiv} \Rightarrow \sigma \land \varphi \in \mathcal{L}_{PW}' \)
- \(X \subseteq \text{Act}, \ \varphi_a \in \mathcal{L}_{PW}' \ \forall a \in X \Rightarrow \bigwedge_{a \in X} a\varphi_a \in \mathcal{L}_{PW}' \)
Uniform logical characterizations of the semantics at the layer of RS

\[\varphi \equiv a(\neg d \land bc) \notin \mathcal{L}_{PW} \]

- \(X \subseteq \text{Act} \Rightarrow X \in \mathcal{L}_{PW} \)
- \(X \subseteq \text{Act}, \ \varphi_a \in \mathcal{L}_{PW} \ \forall a \in X \Rightarrow \bigwedge_{a \in X} a \varphi_a \in \mathcal{L}_{PW} \)
Uniform logical characterizations of all the semantics

Logical characterizations of the semantics used as constraints in the N-constrained semantics

<table>
<thead>
<tr>
<th>Constraints ((\mathcal{N}))</th>
<th>U</th>
<th>C</th>
<th>I</th>
<th>T</th>
<th>S</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\top \in \mathcal{L}'_N)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>ν</td>
<td>ν</td>
</tr>
<tr>
<td>(\neg \top = \bot \in \mathcal{L}'_N)</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
</tr>
<tr>
<td>(\neg 0 \in \mathcal{L}'_N)</td>
<td>●</td>
<td>●</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
</tr>
<tr>
<td>(a \in \text{Act} \Rightarrow a\top \in \mathcal{L}'_N)</td>
<td>●</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varphi \in \mathcal{L}'_N, a \in \text{Act} \Rightarrow a\varphi \in \mathcal{L}'_N)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varphi_i \in \mathcal{L}'N \forall i \in I \Rightarrow \bigwedge{i \in I} \varphi_i \in \mathcal{L}'_N)</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varphi \in \mathcal{L}'_N \Rightarrow \neg \varphi \in \mathcal{L}'_N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>
Uniform logical characterizations of all the semantics

<table>
<thead>
<tr>
<th>Formulas</th>
<th>\leq_{F}^{1}</th>
<th>\leq_{R}^{1}</th>
<th>\leq_{T}^{1}</th>
<th>\leq_{N}^{1}</th>
<th>D_{N}</th>
<th>NS</th>
<th>$N \in {U,C,I,T,S}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\top \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>ν</td>
<td>when $N = I$</td>
</tr>
<tr>
<td>$\phi \in L_{y_{N}}'$, $a \in Act \Rightarrow$</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$a \phi \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi \in L_{N} \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\varphi \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi \in L_{N} \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi \in L_{N} \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi \in L_{y_{N}}'$, $\sigma \in L_{N} \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\sigma \land \phi \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi \in L_{y_{N}}'$, $\sigma \in L_{y_{N}} \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\sigma \land \phi \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$X \subseteq Act$, $\phi_{a} \in L_{y_{N}}'$, $\forall a \in X \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\land_{a \in X} a \phi_{a} \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi_{i} \in L_{y_{N}}'$, $\forall i \in I \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\land_{i \in I} \phi_{i} \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi \in L_{N} \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\phi \in L_{N} \Rightarrow$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>$\neg \phi \in L_{y_{N}}'$</td>
<td>\bullet</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td></td>
</tr>
</tbody>
</table>
Index

1 Introduction

2 Preliminaries
 - Some useful definitions
 - Van Glabbeek’s logical characterizations

3 Our new logical characterizations of the semantics
 - Main ideas
 - The layer of RS provides some illustrative examples
 - Uniform logical characterizations of the semantics at the layer of RS
 - Uniform logical characterizations of all the semantics

4 The complete structure of the extended spectrum
 - Partial offers trace and partial offers semantics
 - Meet and join semantics

5 Conclusions and future work
Partial offers trace and partial offers semantics

- Using a new closure we can define two more semantics at each layer of the spectrum.

- These semantics are defined by observing partial offers along a computation or just at its end.

- Duality between failures and partial offers, causes the picture of the complete layer of linear semantics for each N to become two diamonds, sharing the side corresponding to the readies-based semantics.
Definition (Positive closure \(L_N^\vee \))

Given a logical set \(L'_N \) with \(N \in \{U, C, I, T, S\} \), we define:

1. \(\sigma \in L'_N \Rightarrow \sigma \in L_N^\vee \)
2. \(\sigma_i \in L_N^\vee \forall i \in I \Rightarrow \bigwedge_{i \in I} \sigma_i \in L_N^\vee \)

Definition (Partial offers trace semantics)

For the constraint \(N \), is that defined by the logic \(L'_\text{POT} \), with

1. \(\top \in L'_\text{POT} \)
2. \(\varphi \in L'_\text{POT}, \sigma \in L_N^\vee \Rightarrow \sigma \land \varphi \in L'_\text{POT} \)
3. \(\varphi \in L'_\text{POT}, a \in \text{Act} \Rightarrow a\varphi \in L'_\text{POT} \)
Partial offer traces and partial offers semantics

Definition (Positive closure L'_N^\vee)

Given a logical set L'_N with $N \in \{U, C, I, T, S\}$, we define:

- $\sigma \in L'_N \implies \sigma \in L'_N^\vee$
- $\sigma_i \in L'_N^\vee \forall i \in I \implies \bigwedge_{i \in I} \sigma_i \in L'_N^\vee$

Definition (Partial offer semantics)

For the constraint N is that defined by the logic L'_PO with

- $\top \in L'_PO$
- $\sigma \in L'_N \implies \sigma \in L'_PO$
- $\varphi \in L'_PO, \ a \in \text{Act} \implies a\varphi \in L'_PO$
Meet and join semantics

- There are another two semantics in each layer of the extended spectrum.

- For the particular case $N = I$, the meet semantics $R \lor FT$ has been previously studied by Roscoe.

The double diamond below ready simulation

- These semantics are in the linear side of the spectrum, therefore they have a similar structure to those linear semantics studied before.
Meet and join semantics

Definition (Join semantics)

We define the set of formulas $\mathcal{L}'_{\leq I}^{1_{\exists f}}$, by

- $\top \in \mathcal{L}'_{\leq I}^{1_{\exists f}}$; $\sigma \in \mathcal{L}_{\leq I}^{=}$ $\Rightarrow \sigma \in \mathcal{L}'_{\leq I}^{1_{\exists f}}$
- $\phi \in \mathcal{L}'_{\leq I}^{1_{\exists f}}$, $\sigma \in \mathcal{L}_{\leq I}^{-}$ $\Rightarrow \sigma \land \phi \in \mathcal{L}'_{\leq I}^{1_{\exists f}}$
- $\phi \in \mathcal{L}'_{\leq I}^{1_{\exists f}}$, $a \in \text{Act}$ $\Rightarrow a\phi \in \mathcal{L}'_{\leq I}^{1_{\exists f}}$

Definition (Meet semantics)

We define the set of formulas $\mathcal{L}'_{\leq I}^{1_{\exists !}}$ by

- $\top \in \mathcal{L}'_{\leq I}^{1_{\exists !}}$
- $\sigma, \sigma_j \in \mathcal{L}'_{I}$ $\forall j \in J$ $\Rightarrow (\sigma \land \bigwedge_{j \in J} \neg \sigma_j \top) \in \mathcal{L}_{\leq I}^{1_{\exists !}}$
- $\phi \in \mathcal{L}'_{\leq I}^{1_{\exists !}}$, $a \in \text{Act}$ $\Rightarrow a\phi \in \mathcal{L}'_{\leq I}^{1_{\exists !}}$
Meet and join semantics

Definition (Join semantics)

We define the set of formulas $\mathcal{L}' \leq_{N}^{12\text{af}}$, by

- $\top \in \mathcal{L}' \leq_{N}^{12\text{af}}$; $\sigma \in \mathcal{L}^{=}_{N} \Rightarrow \sigma \in \mathcal{L}' \leq_{N}^{12\text{af}}$
- $\varphi \in \mathcal{L}' \leq_{N}^{12\text{af}}$, $\sigma \in \mathcal{L}^{\leq}_{N} \Rightarrow \sigma \wedge \varphi \in \mathcal{L}' \leq_{N}^{12\text{af}}$
- $\varphi \in \mathcal{L}' \leq_{N}^{12\text{af}}$, $a \in \text{Act} \Rightarrow a\varphi \in \mathcal{L}' \leq_{N}^{12\text{af}}$

Definition (Meet semantics)

We define the set of formulas $\mathcal{L}' \leq_{N}^{12\text{vf}}$ by

- $\top \in \mathcal{L}' \leq_{N}^{12\text{vf}}$
- $\sigma, \sigma_j \in \mathcal{L}'_{N}$ $\forall j \in J \Rightarrow (\sigma \wedge \bigwedge_{j \in J} \neg \sigma_j \top) \in \mathcal{L} \leq_{N}^{12\text{vf}}$
- $\varphi \in \mathcal{L}' \leq_{N}^{12\text{vf}}$, $a \in \text{Act} \Rightarrow a\varphi \in \mathcal{L}' \leq_{N}^{12\text{vf}}$
Index

1 Introduction

2 Preliminaries
 - Some useful definitions
 - Van Glabbeek’s logical characterizations

3 Our new logical characterizations of the semantics
 - Main ideas
 - The layer of RS provides some illustrative examples
 - Uniform logical characterizations of the semantics at the layer of RS
 - Uniform logical characterizations of all the semantics

4 The complete structure of the extended spectrum
 - Partial offers trace and partial offers semantics
 - Meet and join semantics

5 Conclusions and future work
Conclusions

- With this presentation we conclude the work on unification of all the concrete process semantics.

- Our main objective here was to develop a unified approach to the characterisation of the underlying semantics using sublogics of HML with a simple structure.

- The key point was to properly identify the rules for managing the use of negation and conjunction. As a result, we clarify the difference between branching-time and linear-time semantics.

- We have found out two more linear semantics in each layer and we have discovered that the classic logical characterizations of PW was wrong.
Conclusions

- With this presentation we conclude the work on unification of all the concrete process semantics.

- Our main objective here was to develop a unified approach to the characterisation of the underlying semantics using sublogics of HML with a simple structure.

- The key point was to properly identify the rules for managing the use of negation and conjunction. As a result, we clarify the difference between branching-time and linear-time semantics.

- We have found out two more linear semantics in each layer and we have discovered that the classic logical characterizations of PW was wrong.
Conclusions

- With this presentation we conclude the work on unification of all the concrete process semantics.

- Our main objective here was to develop a unified approach to the characterisation of the underlying semantics using sublogics of HML with a simple structure.

- The key point was to properly identify the rules for managing the use of negation and conjunction. As a result, we clarify the difference between branching-time and linear-time semantics.

- We have found out two more linear semantics in each layer and we have discovered that the classic logical characterizations of PW was wrong.
Conclusions

- With this presentation we conclude the work on unification of all the concrete process semantics.

- Our main objective here was to develop a unified approach to the characterisation of the underlying semantics using sublogics of HML with a simple structure.

- The key point was to properly identify the rules for managing the use of negation and conjunction. As a result, we clarify the difference between branching-time and linear-time semantics.

- We have found out two more linear semantics in each layer and we have discovered that the classic logical characterizations of PW was wrong.
Future work

- We got some partial results in the unified logical characterization of the weak semantics.

- We obtain some interesting results on the characterization of modal semantics.

- The combination of logic and algebra, as recently done by G. Luttgen and W. Vogler, is another interesting direction.
Future work

- We got some partial results in the unified logical characterization of the weak semantics.

- We obtain some interesting results on the characterization of modal semantics.

- The combination of logic and algebra, as recently done by G. Luttgen and W. Vogler, is another interesting direction.
Future work

- We got some partial results in the unified logical characterization of the weak semantics.

- We obtain some interesting results on the characterization of modal semantics.

- The combination of logic and algebra, as recently done by G. Luttgen and W. Vogler, is another interesting direction.
THANKS!