Word transducers: from 2-way to 1-way

Anca Muscholl

joint work with F. Baschenis, O. Gauwin, G. Puppis (Bordeaux),
to appear at FSTTCS’15
Transductions

transform objects - here: words

transduction: mapping (or relation) from words to words

dagstuhl → dgsthl erase vowels

dagstuhl → lhutsgad reverse

dagstuhl → dagstuhldagstuhl duplicate

dagstuhl → stuhldag permute circularly
Transducers

FST: finite state transducers, one-way

\[\text{dagstuhl} \rightarrow \text{dgsth1} \text{ erase vowels} \]

2GSM: two-way transducers (generalized sequential mappings)

\[\text{dagstuhl} \rightarrow \text{lhutsgad} \text{ reverse} \]

\[\text{dagstuhl} \rightarrow \text{dagstuhldagstuhl} \text{ duplicate} \]
Transducers

SST: streaming transducers (AlurCerny 2010)

- one-way
- use a finite number of (copyless) registers, where output can be appended left or right
Transductions

MSOT: monadic second-order transductions (Courcelle)

maps structures into structures (bounded copy)

- **domain** formula: unary MSO formula “c-th copy of input position belongs to the output and is labeled by a”
- **order** formula: binary MSO formula “c-th copy of position x precedes the d-th copy of position y in the output”
Transductions

MSOT: *monadic second-order* transductions (Courcelle)

Ex: reverse transformation

- **domain** formula: \(\text{dom}_a(x) \equiv a(x) \)
- **order** formula: \(\text{Less}(x, y) \equiv (x > y) \)
Automata = logic

- [Engelfriet, Hoogeboom 2001]

 \[2DGSM = MSOT\]

- [Alur, Cerny 2010]

 \[DSST = MSOT\]

- Non-determinism

 \[NSST = NMSOT, \text{incomparable with} \; 2NGSM\]

 \[\text{but: } NSST = DSST \text{ for functional transducers}\]
First-order transductions (FOT)

- [McKenzie, Schwentick, Thérien, Vollmer 2006]

 aperiodic NFT = FO translations

- [Filiot, Shankara Narayanan, Trivedi 2014]

 SST with aperiodic transition monoid = FOT

- [Carton, Dartois 2014]

 aperiodic 2DGSM = FOT
Transducers and resources

Resources for 2GSM and SST:

❖ 2GSM: maximal number of visits on a position

❖ SST: number of registers

[Ledent, M., Salvati 2013]

DSST with \(k \) registers = 2DGSM with visit number \((2k+1)\)

(DSST with regular look-ahead, 2DGSM with regular look-around)
Resources: passes over input

problem: given a 2NGSM, is it equivalent to some NFT?

The above problem is decidable for functional 2NGSM, with non-elementary complexity.

[Filiot, Gauwin, Reynier, Servais 2013]
2-way vs. 1-way

We show: given a sweeping\star 2NGSM

\begin{itemize}
 \item 2EXPSPACE algorithm deciding if an equivalent NFT exists
 \item if “yes”, produce an equivalent NFT of 2-exp. size
\end{itemize}

\[\text{[Baschenis, Gauwin, M., Puppis 2015]}\]

\starsweeping: U-turns only at borders
Example: 2-way

Fix a regular language R.

$$F(u \, v \, w) = \text{mirror}(v), \quad v = \text{the rightmost maximal factor in } R$$

2DGSM

[Hopcroft, Ullman ’67]
Example: 1-way

Fix a regular language R.

$F(u \, v \, w) = \text{mirror}(v), \quad v = \text{the rightmost maximal factor in } R$

There is an NFT for F if $R = (ab)^*$:

• guess the beginning of v
• output $(ba)^*$ until the end of v
• check w
2-way vs. 1-way

A 2NGSM is equivalent to some NFT if every accepting run has a decomposition into left-to-right passes and blocks with periodic output.
Inversions

\[u \neq \epsilon \]

\[v \neq \epsilon \]

\[u \neq \epsilon \]

sweeping transducer

1-way transducer
Inversions

If a very long word has periods p and q, then also the period $\gcd(p,q)$.

Some applications of Fine&Wilf show that the output uyv of an inversion is periodic (with period bounded by the sweeping transducer). Two overlapping inversions will have an overall periodic output, which leads to the decomposition into blocks.
Example

Regular language \(R \subseteq (ab)^* \)

\[F(x \ y \ z) = \text{mirror}(v), \quad y = \text{the rightmost maximal factor in } R \]
Characterization

Thm. It can be checked in EXPSPACE if a sweeping 2NGSM A is equivalent to some NFT. An equivalent, 2-exp. size NFT B can be constructed.

Algorithm: construct B and check if $\text{dom}(A) = \text{dom}(B)$.

Optimal:

$$F(a_0 \text{ bin}(0) \ a_1 \text{ bin}(1) \ldots \ a_{2^N - 1} \text{ bin}(2^N - 1)) = a_0 \ldots a_{2^n - 1} a_0 \ldots a_{2^n - 1}$$
Sweeping vs. streaming

SST: streaming transducers

Example:

\[F(u) = \text{mirror}(v) \ w \]

\[u \in \{a, b, 0, 1\}^* \]
\[v = \pi_{a,b}(u) \quad w = \pi_{0,1}(u) \]

\[c \in \{a, b\}, i \in \{0, 1\} \]

This SST is **non-mixing**: no variable concatenation in the updates.
Sweeping and streaming

For any word-to-word function F tfae:

1. F can be computed by a non-mixing, unambiguous streaming transducer

2. F can be computed by an unambiguous sweeping transducer

1. k registers $\rightarrow 2k+1$ passes

2. k passes $\rightarrow k$ registers
Thm. It can be checked in EXPSPACE if a non-mixing, unambiguous SST A is equivalent to some NFT. An equivalent, 2-exp. size NFT B can be constructed.

Algorithm: construct an equivalent sweeping transducer A' (size of A' is polynomial in size of A). Apply the algorithm for sweeping transducers.
Ongoing work

- Problem 1: given a sweeping transducer, compute the minimal number of passes.
- Problem 2: given an SST, compute the minimal number of variables.

1: decide the existence of j-block decompositions
2: Transform the SST into a sweeping transducer and apply 1. Result is at most twice the minimal number.
Conclusion

• We showed an elementary construction from 2-way to 1-way.
• Conjecture: similar decision procedure for arbitrary 2NGSM (non-sweeping). But the combinatorics gets very complicated (pumping!).
• In the “origin semantics” (Bojanczyk) the problem is easier: PSPACE.
• Open: characterizing first-order definable transductions. Some partial results (Lhote 2015) for NFT.

Thank you.