Feedback Refinement Relations for the Synthesis of Symbolic Controllers

Gunther Reissig1, Alexander Weber1 and Matthias Rungger2

1: Chair of Control Engineering
Universität der Bundeswehr, München

2: Hybrid Control Systems Group
Technische Universität München (TUM)
Controller Synthesis

A conceptual synthesis problem

Given a system S and a desired behavior Σ, find a controller, i.e., a system C so that the behavior of the closed loop satisfies $B(C \times S) \subseteq \Sigma$.

Σ, $B(C \times S)$ are subsets of $(U \times Y)^\infty := (U \times Y)^* \cup (U \times Y)^\omega$

- U are the inputs
- Y are the outputs

Examples

- Reference tracking

 $$(u, y) \in \Sigma \iff \lim_{t \to \infty} |y(t) - y_{\text{reference}}(t)| = 0$$

- Optimal control

 $$(u, y) \in \Sigma \iff |(u, y) - \inf J(u, y)| \leq \varepsilon$$

- Linear temporal logic specifications

 $$(u, y) \in \Sigma \iff (u, y) \text{ satisfies } \varphi$$
Abstraction and Refinement for Controller Synthesis

Usually, “direct” synthesis of C from (S, Σ) is impossible and a finite substitute $(\hat{S}, \hat{\Sigma})$ is used to determine C:

1. Compute a finite substitute $(\hat{S}, \hat{\Sigma})$ of (S, Σ)
 \- \hat{S} is an “abstraction” or a “symbolic model” of S
2. Synthesize controller \hat{C} to enforce $\hat{\Sigma}$ on \hat{S}
3. Refine solution \hat{C} to C

\[
\begin{align*}
(S, \Sigma) & \quad \rightarrow \quad \hat{S} \quad \hat{\Sigma} \\
\hat{S} \quad \hat{\Sigma} & \quad \rightarrow \quad \hat{C} \\
\hat{C} & \quad \rightarrow \quad C
\end{align*}
\]

finite \quad 2.
abstract \quad \text{concrete}
finite \quad 1.
abstract \quad \text{concrete}
infinite \quad 3.
Correctness Reasoning

Given that \(\hat{C} \) enforces \(\hat{\Sigma} \) on \(\hat{S} \). How to ensure that \(C \) enforces \(\Sigma \) on \(S \)?

- For verification **simulation relations** are used:
 \[
 S \preceq_S \hat{S} \text{ and } B(\hat{S}) \subseteq \hat{\Sigma} \implies B(S) \subseteq \Sigma
 \]

 Recall: \(Q \subseteq X \times \hat{X} \) is a simulation relation from \(S \) to \(\hat{S} \) if
 - \((x, \hat{x}) \in Q \) implies
 - \(\forall x \overset{u}{\longrightarrow} x' \)
 - \(\exists \hat{x} \overset{u}{\longrightarrow} \hat{x}' \)
 - \((x', \hat{x}') \in Q \)

- For synthesis **alternating simulation relations** are used:
 \[
 \hat{S} \preceq_{AS} S \text{ and } B(\hat{C} \times \hat{S}) \subseteq \hat{\Sigma} \implies \exists C : B(C \times S) \subseteq \Sigma
 \]

 Recall: \(Q \subseteq X \times \hat{X} \) is an alternating simulation relation from \(\hat{S} \) to \(S \) if
 - \((x, \hat{x}) \in Q \) implies
 - \(\forall \hat{u} \text{ “admissible”} \)
 - \(\exists u \text{ “admissible”} \)
 - \(\forall x \overset{u}{\longrightarrow} x' \)
 - \(\exists \hat{x} \overset{\hat{u}}{\longrightarrow} \hat{x}' \)
 - \((x', \hat{x}') \in Q \)
The Refinement Procedure (\(\equiv\) Controller Transfer)

ASR conditions

1. \((x, \hat{x}) \in Q\) implies
2. \(\forall \hat{u} \text{ “admissible”}\)
3. \(\exists u \text{ “admissible”}\)
4. \(\forall x \xrightarrow{u} x'\)
5. \(\exists \hat{x} \xrightarrow{\hat{u}} \hat{x}'\)
6. \((x', \hat{x}') \in Q\)

The closed loop \(C \times S\) follows to

Construction of refined controller \(C\)

1. Given \(x, Q\) acts as quantizer and picks \(\hat{x} \in Q(x)\)
2. In the abstract closed loop and admissible \(\hat{u}\) is proposed
3. In the concrete closed loop \(\hat{u}\) is matched by an admissible \(u\)
4. The concrete closed loop proceeds with \(x \xrightarrow{u} x'\)
5. The next \(\hat{x}'\) is determined by \(\hat{x}' \in Q(x')\) and \(\hat{x} \xrightarrow{\hat{u}} \hat{x}'\)
A Closer Look at the Refinement

The closed loop $C \times S$ follows to

Properties:
- Abstraction is contained in the refined controller
- The refined controller requires exact state information

Both properties are critical!
- Typically abstractions consists of 10^6 states and 10^9 transitions
- Usually only perturbed/quantized state information is available
- A static controller is not refined to a static controller!
In this Talk

1. A new notion of system relation, termed Feedback Refinement Relation, for controller refinement, so that the closed loop is given by

\[
\dot{\xi} \in f(\xi, u) + W
\]

where \(W \) is a bounded set of disturbances

Feedback refinement relations are necessary and sufficient for the illustrated refinement procedure

2. We show how feedback refinement relations can be used to
 - solve general control problems and
 - synthesize robust controllers

3. We show how to compute abstractions for control systems of the form

\[
\dot{\xi} \in f(\xi, u) + W
\]
Feedback Refinement Relations

- Systems, Solutions, Behavior
- Serial Composition, Feedback Composition
- Main Theorem
Systems: Informal Introduction

- We consider dynamical systems of the form
 \[x(t + 1) \in F(x(t), u(t)) \]
 \[y(t) \in H(x(t), u(t)) \]

- where
 - \(x \) is the state
 - \(u \) is the input
 - \(y \) is the output
 - \(F \) is the transition function
 - \(H \) is the output function

In order to define a meaningful serial/feedback composition of this general type of systems we need **internal variables**

In the first and second line, we need to pick the same \(u_2 \)!
Systems

\[x(t + 1) \in F(x(t), v(t)) \]
\[(y(t), v(t)) \in H(x(t), u(t)) \]
\[x(0) \in X_0 \]

A system \(S \) is a tuple \(S = (X, X_0, U, V, Y, F, H) \) where

- \(X, U, V \) and \(Y \) are nonempty sets
 - \(X \) is the state alphabet
 - \(X_0 \subseteq X \) is the initial state alphabet
 - \(U \) is the input alphabet
 - \(V \) is the internal input alphabet
 - \(Y \) is the output alphabet
- \(F : X \times V \Rightarrow X \) is the transition function
- \(H : X \times U \Rightarrow Y \times V \) is the output function and is assumed to be strict, i.e.,
 \[\forall (x, u) \in X \times U : H(x, u) \neq \emptyset \]

Notation

- We use \(F : X \Rightarrow Y \) to denote set-valued function from \(X \) to \(Y \)
Systems

We call a system $S = (X, X_0, U, V, Y, F, H)$

1. **static** if X is a singleton

2. **Moore** if the output does not depend on the input, i.e.,
 \[(y, v) \in H(x, u) \land u' \in U \implies \exists v' (y, v') \in H(x, u');\]

3. **basic** if $U = V$ and
 \[(y, v) \in H(x, u) \implies v = u;\]

4. **Moore with state output** if $X = Y$ and
 \[(y, v) \in H(x, u) \implies y = x.\]

For a basic Moore system with state output and $X_0 = X$ we simply use

\[S = (X, U, F)\]

We define the set $U_S(x)$ of admissible inputs at the state $x \in X$ by

\[U_S(x) = \{ u \in U \mid F(x, u) \neq \emptyset \}\]
Solutions and Behavior

Let \(S = (X, X_0, U, V, Y, F, H) \) be given. A quadruple

\[
(u, v, x, y) \in (U \times V \times X \times Y)^{[0; T]}
\]

with \(T \in \mathbb{N} \cup \{\infty\} \) is a solution of the system \(S \) on \([0; T]\) if

- \(x(0) \in X_0 \)
- \(x(t + 1) \in F(x(t), v(t)) \) holds for all \(t \in [0; T - 1] \)
- \((y(t), v(t)) \in H(x(t), u(t)) \) holds for all \(t \in [0; T] \)

Behavior \(\mathcal{B}(S) \) of \(S \)

- An element of the behavior \((u, y) \in \mathcal{B}(S) \) is an input/output sequence which is “generated” by a solution of the system \(S \)
- The generating solution either is infinite or ends in a blocking input/state pair

\((u, y) \in \mathcal{B}(S) \) iff

- \(\exists v, x, T(u, v, x, y) \) is a solution of \(S \) on \([0; T]\)
- \(T < \infty \) implies that \(F(x(T - 1), u(T - 1)) = \emptyset \)
Serial Composition

Let $S_i = (X_i, X_{i,0}, U_i, V_i, Y_i, F_i, H_i), \ i \in \{1, 2\}$ be two systems.

- S_1 is serial composable with S_2
 - if $Y_1 \subseteq U_2$
- The serial composition of S_1 and S_2 is denoted by $S_2 \circ S_1$
Serial Composition: Example

Sample-and-hold system $S = (\mathbb{R}^n, \mathbb{R}^m, F)$ with

$$F(x, u) = \left\{ e^{A\tau}x + \left(\int_0^{\tau} e^{A(\tau-s)}ds \right) u \right\}$$

Quantizer

- $Q : \mathbb{R}^n \Rightarrow \mathbb{Z}^n$
- $Q(x) = \{ \hat{x} \in \mathbb{Z}^n \mid |x - \hat{x}|_\infty \leq 1 \}$

is identified with the static system $Q = (\{q\}, \{q\}, \mathbb{R}^n, \mathbb{R}^n, \mathbb{Z}^n, F_q, H_q)$

- $F_q(q, x) = \{q\}$ for all $x \in \mathbb{R}^n$
- $H_q(q, x) = Q(x) \times \{x\}$

S is serial composable with Q and $Q \circ S = (\mathbb{R}^n, \mathbb{R}^n, \mathbb{R}^m, \mathbb{R}^m, \mathbb{Z}^n, F, H)$ is basic with

$$H(x, u) = Q(x) \times \{u\}$$
Feedback Composition

Let $S_i = (X_i, X_{i,0}, U_i, V_i, Y_i, F_i, H_i), \ i \in \{1, 2\}$ be two systems.

- S_1 is feedback composable with S_2 if $Y_2 \subseteq U_1$ and $Y_1 \subseteq U_2$.
- S_2 is Moore if $y_2 \rightarrow H_1 \rightarrow y_1 \rightarrow H_2 \rightarrow y_2$.
- $S_1 \times S_2$ is nonempty-valued.
- $S_1 \times S_2$ is a system.
- S_1: controller, S_2: plant.
Feedback Refinement Relations

Let $S_i = (X_i, U_i, F_i), \ i \in \{1, 2\}$ be two systems and assume $U_2 \subseteq U_1$
A strict relation

$$Q \subseteq X_1 \times X_2$$

is a feedback refinement relation from S_1 to S_2, denoted by

$$S_1 \preceq_Q S_2$$

if the following holds for all $(x_1, x_2) \in Q$:

1. $U_{S_2}(x_2) \subseteq U_{S_1}(x_1)$
2. $u \in U_{S_2}(x_2) \implies Q(F_1(x_1, u)) \subseteq F_2(x_2, u)$

In words

1. every admissible input of S_2 at x_2 is an admissible input of S_1 at x_1
2. every successor $x_1' \in F_1(x_1, u)$ when mapped to X_2 via Q is contained in $F_2(x_2, u)$
Comparison with Alternating Simulation Relations

<table>
<thead>
<tr>
<th>ASR</th>
<th>VS</th>
<th>FRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ((x_1, x_2) \in Q) implies</td>
<td>• ((x_1, x_2) \in Q) implies</td>
<td>• ((x_1, x_2) \in Q) implies</td>
</tr>
<tr>
<td>• (\forall u_2 \in U_{S_2}(x_2))</td>
<td>• (\forall u \in U_{S_2}(x_2))</td>
<td>• (\forall u \in U_{S_2}(x_2))</td>
</tr>
<tr>
<td>• (\exists u_1 \in U_{S_1}(x_1))</td>
<td>• (u \in U_{S_1}(x_1))</td>
<td>• (u \in U_{S_1}(x_1))</td>
</tr>
<tr>
<td>• (\forall x'_1 \in F_1(x_1, u_1)) we have</td>
<td>• (\forall x'_1 \in F_1(x_1, u)) we have</td>
<td></td>
</tr>
<tr>
<td>(asr) (Q(x'_1) \cap F_2(x_2, u_2) \neq \emptyset)</td>
<td></td>
<td>(Q(x'_1) \subseteq F_2(x_2, u)) (frr)</td>
</tr>
</tbody>
</table>

Difference

1. ASR: inputs \(U_1\) and \(U_2\) can be different
2. (asr) vs (frr)

What is the problem with ASR?

• In the refinement with ASR
 1. for \((x_1, x_2) \in Q\) and \(u_2\) to pick the matching \(u_1\) we need to know concrete state \(x_1\)
 2. and to pick the right \(x'_2 \in Q(x'_1)\) we need to know \(F_2(x_2, u_2)\) so that \(x'_2 \in Q(x'_1)\) and \(x'_2 \in F_2(x_2, u_2)\)

• In the refinement with FRR
 1. \(u\) can directly be applied to \(S_1\)
 2. we can pick any \(x'_2 \in Q(x'_1)\) and use (frr) to ensure \(x'_2 \in F_2(x_2, u)\)
Feedback Refinement Relations: Necessary Conditions

Consider

- \(S_i = (X_i, U_i, F_i), \ i \in \{1, 2\} \)
- \(C = (X_c, X_{c,0}, U_c, V_c, Y_c, F_c, H_c) \)
- strict \(Q \subseteq X_1 \times X_2 \)

and the statements

1. \(C \) is feedback composable with \(S_2 \)
2. \(C \) is feedback composable with \(Q \circ S_1 \)
3. \(B(C \times (Q \circ S_1)) \subseteq B(C \times S_2) \)

Theorem: If 1. implies 2. and 3. then \(S_1 \preceq_Q S_2 \).

We have to show

- \(U_2 \subseteq U_1 \)
- \((x_1, x_2) \in Q \) implies \(U_{S_2}(x_2) \subseteq U_{S_1}(x_1) \)
- \((x_1, x_2) \in Q \) and \(u \in U_{S_2}(x_2) \) implies \(Q(F_1(x_1, u)) \subseteq F_2(x_2, u) \)

U_2 \subseteq U_1

- 1. implies \(Y_c \subseteq U_2 \)
- 2. implies \(Y_c \subseteq U_1 \)
- Since 1. implies 2. we have: \(Y_c \subseteq U_2 \) implies \(Y_c \subseteq U_1 \). Hence \(U_2 \subseteq U_1 \)

We have to show
Feedback Refinement Relations: Sufficient Conditions

Consider

- \(S_i = (X_i, U_i, F_i), \ i \in \{1, 2\} \)
- \(C = (X_c, X_{c,0}, U_c, V_c, Y_c, F_c, H_c) \)
- strict \(Q \subseteq X_1 \times X_2 \)

and the statements

1. \(C \) is feedback composable with \(S_2 \)
2. \(C \) is feedback composable with \(Q \circ S_1 \)
3. \(B(C \times (Q \circ S_1)) \subseteq B(C \times S_2) \)

Theorem: If \(S_1 \preceq_Q S_2 \), then (1. and \((*)\)) imply (2. and 3.) where

\[
(y_c, v_c) \in H_c(x_c, x_2) \land F_2(x_2, y_c) = \emptyset \implies F_c(x_c, v_c) = \emptyset
\]

\((*)\)

- \((*)\): \(C \) non-blocking \(\implies S_2 \) non-blocking
- In the proof we need \(C \times (Q \circ S_1) \) non-blocking \(\implies C \times S_2 \) non-blocking
Feedback Refinement Relations: Sufficient Conditions

Consider

- \(S_i = (X_i, U_i, F_i), \ i \in \{1, 2\} \)
- \(C = (X_c, X_{c,0}, U_c, V_c, Y_c, F_c, H_c) \)
- strict \(Q \subseteq X_1 \times X_2 \)

Corollary: If \(S_1 \preceq_Q S_2 \), then 1. and (\(\ast \)) imply

- \(C \circ Q \) is feedback composable with \(S_1 \)
- for every \((u, x_1) \in B((C \circ Q) \times S_1) \) exists \((u, x_2) \in B(C \times S_2) \) so that

\(\forall t \in \text{dom}(u, x_1) : (x_1(t), x_2(t)) \in Q \)
Applications

- Symbolic Synthesis
- Robust Synthesis
Specifications

Consider a system $S = (X, X_0, U, V, Y, F, H)$:
- any subset $\Sigma \subseteq (U \times Y)^\infty$ is a specification for S
- S satisfies Σ if $B(C \times S) \subseteq \Sigma$
- a system C solves the control problem (S, Σ) if
 - C is feedback composable with S
 - S and C satisfy (\ast) (non-blocking requirement)
 - $C \times S$ satisfies Σ

Consider
- two systems $S_i = (X_i, U_i, F_i), i \in \{1, 2\}$ with $U_2 \subseteq U_1$
- a specification Σ_1 for S_1
- a strict relation $Q \subseteq X_1 \times X_2$

A specification $\Sigma_2 \subseteq (X_2 \times X_2)^\infty$ for S_2 is an abstract specification associated with S_2, S_1, Σ_1 and Q if for any $(u, x_1, x_2) \in (U \times X_1 \times X_2)^{[0; T]}, \ T \in \mathbb{N} \cup \{\infty\}$ with

$$(u, x_2) \in \Sigma_2 \text{ and } \forall_{t \in [0; T]} : (x_1(t), x_2(t)) \in Q \implies (u, x_1) \in \Sigma_1$$

We use

$$(S_1, \Sigma_1) \lessdot_Q (S_2, \Sigma_2)$$

to denote the fact that $S_1 \lessdot_Q S_2$ and Σ_2 is an abstract specification associated with S_2, S_1, Σ_1 and Q
Symbolic Synthesis

As a direct consequence of the behavioral inclusion $\mathcal{B}(C \times (Q \circ S_1)) \subseteq \mathcal{B}(C \times S_2)$ for any system C and the definition of abstract specification we get:

Theorem: Let $(S_1, \Sigma_1) \preceq_Q (S_2, \Sigma_2)$. If C solves (S_2, Σ_2) then $C \circ Q$ solves (S_1, Σ_1).
We consider

- system $S_1 = (X_1, U_1, F_1)$
- specification Σ_1 for S_1
- quantizer Q
- perturbations
 - P_1 accounts for actuator imprecisions
 - P_2 accounts for measurement noise
 - P_3 and P_4 are useful to robustify the spec

We show how to construct

- auxiliary system \hat{S}_1
- auxiliary quantizer \hat{Q}
- auxiliary specification $\hat{\Sigma}_1$

so that if $C \circ \hat{Q}$ solves $(\hat{S}_1, \hat{\Sigma}_1)$ then the behavior of the Perturbed System satisfies Σ_1.

$C \circ \hat{Q}$ can be computed by an abstract problem (S_2, Σ_2) that satisfies

$$(\hat{S}_1, \hat{\Sigma}_1) \preceq_{\hat{Q}} (S_2, \Sigma_2)$$
Computation of Abstractions of Perturbed Control Systems
Computation of Abstractions

We focus on

- \(X_2 \) is a **cover** of \(X_1 \), i.e., \(X_2 \) is a set of non-empty subsets of \(X_1 \) and \(X_1 \subseteq \bigcup_{x_2 \in X_2} x_2 \)
- every cell \(x_2 \in X_2 \) is a subset of \(X_1 \)
- the quantizer \(Q \) is the **set membership relation** \(\in \)
- for a given \(x_1 \in X_1 \) the quantizer \(Q \) picks \(x_2 \in X_2 \) in a non-deterministic fashion so that \(x_1 \in x_2 \)

Let

- \(S_i = (X_i, U_i, F_i) \) be two systems \(i \in \{1, 2\} \)
- \(X_2 \) be a cover by non-empty sets of \(X_1 \)

Theorem: \(S_1 \preceq_\in S_2 \) if and only if

1. \(U_2 \subseteq U_1 \) and \(x_1 \in x_2 \in X_2 \) implies \(U_{S_2}(x_2) \subseteq U_{S_1}(x_1) \)
2. \(x_2, x'_2 \in X_2, u \in U_{S_2}(x_2) \) and \(x'_2 \cap F_1(x_2, u) \neq \emptyset \) implies \(x'_2 \in F_2(x_2, u) \)

Computation of abstraction reduces to computation (overapproximation) of reachable sets!
Abstractions of Perturbed Control Systems

We consider a differential inclusion

\[\dot{\xi} \in f(\xi, u) + W \]

(\text{**})

We cast the sample-and-hold behavior of (\text{**}) with \(\tau \in \mathbb{R}_{>0} \) as system

\[S_1 = (\mathbb{R}^n, \mathbb{R}^m, F_1) \]

The abstraction \(S_2 = (X_2, U_2, F_2) \) is given by

- \(U_2 \subseteq \mathbb{R}^m \)
- \(X_2 \) is a cover of \(\mathbb{R}^n \)
- cells are hyper-rectangles with center \(c \in \mathbb{R}^n \) and radius \(r \in \mathbb{R}^n_{>0} \)

\[x_2 = c + [-r, r] = [c_1 - r_1, c_1 + r_1] \times \ldots \times [c_n - r_n, c_n + r_n] \]

- we overapproximate the reachable set by another hyper-rectangle \(c' + [-r', r'] \)

\[F_1(c + [-r, r], u) \subseteq c' + [-r', r'] \]

- and then determine the cells \(\bar{c} + [-\bar{r}, \bar{r}] \in X_2 \) with

\[\bar{c} + [-\bar{r}, \bar{r}] \cap c' + [-r', r'] \neq \emptyset \]
How to compute c' and r'?

Theorem:
- consider (***) and $S_1 = (\mathbb{R}^n, \mathbb{R}^m, F_1)$ for $\tau \in \mathbb{R}_{>0}$
- $u \in U$ and $f(\cdot, u)$ is continuously differentiable
- disturbances $W = [-w, w]$, $w \in \mathbb{R}_{\geq 0}$
- a cell $c + [-r, r] \subseteq K$, with $K \subseteq \mathbb{R}^n$ is convex
- ξ sol. of (***), with $\xi(0) \in K \implies \xi(t) \in K$ for all $t \in [0, \tau] \cap \text{dom} \xi$
- let $L \in \mathbb{R}^{n \times n}$ satisfy for all $x \in K$

$$L_{i,j}(u) \geq \begin{cases} D_j f_i(x, u) & \text{if } i = j \\ |D_j f_i(x, u)| & \text{if } i = j \end{cases}$$

$D_j f_i$: partial derivative of f_i w.r.t. jth component of 1st argument

Then

$$F_1(c + [-r, r], u) \subseteq c' + [−r', r']$$

where c' and r' follow by the solution at time τ of

$$\begin{align*} c' : \quad & \dot{y} = f(y, u) \quad y(0) = c \\ r' : \quad & \dot{z} = Lz + w \quad z(0) = r \end{align*}$$

Overapproximation of reachable set is reduced to
- estimation of partial derivatives of f
- solution of two unperturbed initial value problems
Numerical Examples

- A planning problem for a mobile robot
- An aircraft landing maneuver
Reach-Avoid Specifications

The desired behavior Σ in both examples is defined in terms of three sets

- A_{init}: the set of initial states
- A_{avoid}: the set of obstacles
- A_{reach}: the target set

Given $S = (X, U, F)$, we define a reach-avoid specification $\Sigma \subseteq (U \times X)^\infty$ for S by

$$(u, x) \in \Sigma \iff x(0) \in A_{init} \implies \exists T \ x(T) \in A_{reach} \wedge \forall t \in [0; T] \ x(t) \notin A_{avoid}$$

Given $\hat{S} = (\hat{X}, \hat{U}, \hat{F})$ with $S \preceq \in \hat{S}$ the abstract specification is defined by the reach-void specification induced by the sets

- $\hat{A}_{init} = \{ \hat{x} \in \hat{X} \mid \hat{x} \cap A_{init} \neq \emptyset \}$
- $\hat{A}_{avoid} = \{ \hat{x} \in \hat{X} \mid \hat{x} \cap A_{avoid} \neq \emptyset \}$
- $\hat{A}_{reach} = \{ \hat{x} \in \hat{X} \mid \hat{x} \subseteq A_{reach} \}$
Robot Path Planning

- unicycle/segway dynamics

\[
\begin{align*}
\dot{\xi}_1 &= u_1 \cos(\alpha + \xi_3) \cos(\alpha)^{-1} \\
\dot{\xi}_2 &= u_1 \sin(\alpha + \xi_3) \cos(\alpha)^{-1} \\
\dot{\xi}_3 &= u_1 \tan(u_2)
\end{align*}
\]

where \(\alpha = \arctan(\tan(u_2)/2)\)

- \(\xi_1\) and \(\xi_2\) coordinates in the plane
- \(\xi_3\) orientation
- \(u_1\) forward velocity
- \(u_2\) steering angle

- sampling time \(\tau = 0.3\) sec

- computation of \(S_2 = (X_2, U_2, F_2)\)
 - number of states \(|X_2| \approx 91 \cdot 10^3\)
 - number of inputs \(|U_2| = 49\)
 - number of transitions \(\approx 28.4 \cdot 10^6\)

- computation times
 - 2.33 sec to compute the abstract problem
 - 0.22 sec to solve the abstract problem
Aircraft Landing Maneuver

- aircraft dynamics
 \[
 \dot{\xi}_1 = \frac{1}{m} (u_1 \cos u_2 - D(u_2, \xi_1) - mg \sin \xi_2)
 \]
 \[
 \dot{\xi}_2 = \frac{1}{mx_1} (u_1 \sin u_2 + L(u_2, \xi_1) - mg \cos \xi_2)
 \]
 \[
 \dot{\xi}_3 = \xi_1 \sin \xi_2
 \]

- \(\xi_1\) forward velocity
- \(\xi_2\) flight path angle
- \(\xi_3\) altitude
- \(u_1 \in [0, 16 \cdot 10^4]\) engine thrust
- \(u_2 \in [0, 10^\circ]\) angle of attack

- actuator and measurement errors
 \[P_1(u) = (u + [-5 \cdot 10^3, 5 \cdot 10^3] \times [-0.25^\circ, 0.25^\circ]) \cap U\]
 \[P_2(x) = x + \frac{1}{20} [-0.25, 0.25] \times \frac{1}{20} [-0.05^\circ, 0.05^\circ] \times \frac{1}{20} [-1, 1]\]

- sampling time \(\tau = 0.25\) sec
- computation of \(S_2 = (X_2, U_2, F_2)\)
 - number of states \(|X_2| \approx 9.3 \cdot 10^6\)
 - number of inputs \(|U_2| = 20\)
 - number of transitions \(\approx 9.4 \cdot 10^9\)
- \(\approx 11\) min to compute \((S_2, \Sigma_2)\)
- 26 sec to solve \((S_2, \Sigma_2)\)

- aircraft

- specification:
 steer the aircraft from \(\approx 55\) m close to the ground with a given total and horizontal touchdown velocity

- landing maneuver
Summary and Related Work

We have seen

- Feedback refinement relations
 - Solve general control problems via abstraction and refinement
 - Account for various perturbations

- Computation of abstractions

Related and ongoing work

- Abstraction-based solution of optimal control problems
- Combination of the computation of abstractions within existing toolboxes to solve synthesis problems with more complex specifications
- Various work to reduce the complexity of the computation of the abstraction
 - compositional construction of abstractions
 - merge the computation of the abstraction with the solution of the abstract control problem
 - pick a cell radius so as to minimize number of transitions
 - Gunther: local refinement of the abstract state space

- Gunther: Validated numerics: account for approximation errors in the solution of ODE and other computations
- ...
- ...