Temporal Logics and Automata on Multi-attributed Data Words with Ordered Navigation

Normann Decker1 Peter Habermehl2 Martin Leucker1 Daniel Thoma1

1Institute for Software Engineering and Programming Languages
University of Lübeck, Germany

2LIAFA, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, France

December 5th, 2014
Motivation

Data words appear for example in:
- Documents with data
- Behaviour with names
 - Object identifiers
 - Process identifiers

Goals:
- Specify properties
- (Runtime) Verification
(Nested) data words

Example: Lists with iterators
- Three types of identifiers
 - List identifiers: \(l \)
 - State identifiers: \(s \)
 - Iterator identifiers: \(i \)

Run of a system:

\[
\begin{pmatrix}
\text{newlitr} & \text{newlitr} & \text{add} & \text{newlitr} & \text{next} & \text{add} & \ldots \\
1 & 1 & 1 & 1 & 2 & 1 & 2 & \ldots \\
1 & 1 & 2 & 1 & 1 & 2 & \ldots \\
1 & 2 & 1 & 1 & 2 & 1 & \ldots \\
\end{pmatrix}
\]
Properties:

- When an `add` occurs, the internal state of the list changes and is thus labeled by a new id: $G(add \rightarrow C_s \neg Y \equiv true)$
- When a `next` occurs, the state of the list did not change since the creation of an iterator: $G(next \rightarrow C_i(true S \equiv newltr))$
A second example

Network printer (variation of [Bjorklund et al. 06])
- Two identifiers:
 - User: u
 - Jobs: j
- Actions: request, print, login, logout

Run of a system:

\[
\begin{pmatrix}
 \text{login} & \text{request} & \text{request} & \text{print} & \text{print} & \text{logout} & \text{login} & \ldots \\
 u : & 1 & 1 & 1 & 1 & 1 & 1 & 2 & \ldots \\
\end{pmatrix}
\]

Properties:
- every print job requested by a user should eventually be printed: $G(\text{request} \rightarrow C_j X= \text{print})$
- users do not interleave: $G(\text{login} \rightarrow (C^1_u @ u) U \text{logout})$
Overview

- Motivation
- BD-LTL and fragments
 - Complexity of the satisfiability problem
 - Data automata and variants
- ND-LTL and fragments
 - Decidability and complexity of satisfiability problem
 - Nested data automata and variants
Overview of the logics

ND-LTL

(*) ND-LTL^-

BD-LTL

PLRV^T

BD-LTL^-

BD-LTL^+

LRV^T

UNDECIDABLE

ACKERMANN

REACH-VASS

2ExpSpace
BD-LTL [Kara et al. 10]

Defined over **multi-attributed** data words, but can only bind one data value.

Syntax:

- Position formulae (LTL with past)

\[\varphi ::= p \mid \varphi \land \varphi \mid \neg \varphi \mid X \varphi \mid Y \varphi \mid \varphi U \varphi \mid \varphi S \varphi \mid C^r_x \psi \]
BD-LTL [Kara et al. 10]

Defined over multi-attributed data words, but can only bind one data value.

Syntax:

- Position formulae (LTL with past)

\[\varphi ::= p \mid \varphi \land \varphi \mid \neg \varphi \mid X \varphi \mid Y \varphi \mid \varphi U \varphi \mid \varphi S \varphi \mid C^r_x \psi \]

- Class formulae

\[\psi ::= @x \mid \psi \land \psi \mid \neg \psi \mid X^= \psi \mid Y^= \psi \mid \psi U^= \psi \mid \psi S^= \psi \mid \varphi \]
Semantics

Formulae are interpreted over (finite) multi-attributed data words. $\text{pos}_d(w)$ is the set of positions where the data value d appears.

- $(w, i) \models C^r_x \psi$ if $0 < i + r < |w|$ and $(w, i + r, d_i(x)) \models \psi$,
- $(w, i, d) \models \varphi$ if $(w, i) \models \varphi$,
- $(w, i, d) \models \@ x$ if $d_i(x) = d$,
- $(w, i, d) \models X^= \psi$ if there is $j \in \text{pos}_d(w)$, $i < j$ and, for the smallest such j, $(w, j, d) \models \psi$,
- $(w, i, d) \models \psi_1 U^= \psi_2$ if there is $j \in \text{pos}_d(w)$, $i \leq j$ s.t. $(w, j, d) \models \psi_2$ and, for all $j' \in \text{pos}_d(w)$, $i \leq j' < j$, $(w, j', d) \models \psi_1$.
Semantics

Formulae are interpreted over (finite) multi-attributed data words. $\text{pos}_d(w)$ is the set of positions where the data value d appears.

- $(w, i) \models C_x \psi$ if $0 < i + r < |w|$ and $(w, i + r, d_i(x)) \models \psi$,
- $(w, i, d) \models \varphi$ if $(w, i) \models \varphi$,
- $(w, i, d) \models @x$ if $d_i(x) = d$,
- $(w, i, d) \models X \neg \psi$ if there is $j \in \text{pos}_d(w)$, $i < j$ and, for the smallest such j, $(w, j, d) \models \psi$,
- $(w, i, d) \models \psi_1 U \neg \psi_2$ if there is $j \in \text{pos}_d(w)$, $i \leq j$ s.t. $(w, j, d) \models \psi_2$ and, for all $j' \in \text{pos}_d(w)$, $i \leq j' < j$, $(w, j', d) \models \psi_1$.

Theorem (Kara et al. 10)

BD-LTL is decidable. As hard as reachability of VASS (Petri Nets).
Fragments

- BD-LTL\(^{-}\) (class past) : without \(X^=\) and \(U^=\)
- BD-LTL\(^{+}\) (class future) : without \(Y^=\) and \(S^=\)
Fragments

- BD-LTL\(^-\) (class past): without \(X^=\) and \(U^=\)
- BD-LTL\(^+\) (class future): without \(Y^=\) and \(S^=\)

Lemma

The satisfiability problems of both fragments are 2EXPSPACE-complete.

Proof.

Hardness: Follow from an encoding of LRV [Demri et al. 13] in BD-LTL\(^+\) and from encoding of a variant in BD-LTL\(^-\). The upper bounds are shown using data automata like in [Kara et al. 10].
Data automata (DA)

[Bojanczyk, Segoufin, ... 2006]

- accept one-dimensional data words of \((\Sigma \times \Delta)^*\)
- \(\mathcal{D} = (\mathcal{A}, \mathcal{B})\)
 - \(\mathcal{A}\) is a letter-to-letter transducer on \(\Sigma \times \Gamma\).
 - \(\mathcal{B}\) is the class automaton over alphabet \(\Gamma\).
- Class projection of a data word \(u = (a_1a_2...a_n)\):
 \[\text{class}(d, u) = a_{i_1}a_{i_2}...a_{i_k} \text{ s.t. } (a_{i_1}a_{i_2}...a_{i_k}) \text{ is maximal subsequence of } u.\]
 - \(\text{class}(1, (\begin{array}{c}a\ b\
1 \\
2 \\
1 \end{array})) = ab\)
 - \(\text{class}(2, (\begin{array}{c}a\ b\
1 \\
2 \\
1 \end{array})) = a\)
- \(\text{classes}(u) := \bigcup_{d \in \Delta} \text{class}(d, u)\)
- A data word \(w\) is accepted by \(\mathcal{D}\) iff \(\text{classes}(\mathcal{A}(w)) \subseteq L(\mathcal{B})\).
Data automata (DA)

[Bojanczyk, Segoufin, ... 2006]

- accept **one-dimensional** data words of \((\Sigma \times \Delta)^*\)
- \(\mathcal{D} = (\mathcal{A}, \mathcal{B})\)
 - \(\mathcal{A}\) is a letter-to-letter transducer on \(\Sigma \times \Gamma\).
 - \(\mathcal{B}\) is the class automaton over alphabet \(\Gamma\)
 - Class projection of a data word \(u = (a_1 a_2 \ldots a_n; d_1 d_2 \ldots d_n)\):

 \[
 \text{class}(d, u) = a_{i_1} a_{i_2} \ldots a_{i_k} \text{ s.t. } (a_{i_1} a_{i_2} \ldots a_{i_k}; d d \ldots d) \text{ is maximal subsequence of } u.
 \]
 - \(\text{class}(1, (\frac{aab}{121})) = ab\)
 - \(\text{class}(2, (\frac{aab}{121})) = a\)
 - \(\text{classes}(u) := \bigcup_{d \in \Delta} \text{class}(d, u)\)
- A data word \(w\) is accepted by \(\mathcal{D}\) iff \(\text{classes}(\mathcal{A}(w)) \subseteq L(\mathcal{B})\).

 - **prefixDA**: all states of \(\mathcal{B}\) are final
 - **suffixDA**: all states of \(\mathcal{B}\) are initial
Emptiness of Data automata

- Translation to VASS
 - A k-dimensional VASS has transitions $q \xrightarrow{\mathbf{v}} q'$ (\mathbf{v} is a k-dimensional vector over \mathbb{Z})
 - and $(q, x) \rightarrow (q', x + \mathbf{v})$ provided that $x + \mathbf{v} \geq \mathbf{0}$.
 - States of the transducer \rightarrow states of the VASS
 - Only the number of times each state in the class automaton B is in use has to be tracked (a counter for each state), the dimension of the VASS is the number of states of B.

- emptiness of DA: Reachability problem of VASS
- (ω)-pDA: (Repeated) control-state reachability in VASS (EXPSPACE)
- sDA: Control-state reachability in VASS (EXPSPACE) + additional stuff for ω-sDA
Satisfiability of BD-LTL and fragments

- Satisfiability of BD-LTL \rightarrow Emptiness of DA (the class automaton is of exponential size)
 - tuple of data values \rightarrow one data value per position (aka Umklapptrick)
 - Pure LTL \rightarrow transducer of the DA
- BD-LTL$^-$ \rightarrow pDA of exponential size
- BD-LTL$^+$ \rightarrow sDA of exponential size
Tuple navigation in BD-LTL

\[C^r_{(x,y)} (w, i) \models C^r_{(x,y)} \psi \text{ if } 0 < i + r < |w| \]
\[\text{and } (w, i + r, (d_i(x), d_i(y))) \models \psi \]

Theorem

The satisfiability problem of \(BD-LTL^\pm \) with tuple navigation (it is enough to have \(C^r_{(x,y)}, C^r_x \) and \(C^r_y \)) is undecidable.

Proof.

\(BD-LTL^+ \) subsumes \(LRV \) which is known to be undecidable (PCP) when extended with tuple navigation [Demri et al. 13].
ND-LTL: Ordered navigation

We fix an order on attributes (see examples). Tuple navigation is restricted to data values of smaller attributes.

\[(w, i) \models C_x^r \psi \text{ if } 0 < i + r < |w| \text{ and } (w, i + r, d_i|_{x<}) \models \psi,\]
ND-LTL: Ordered navigation

We fix an order on attributes (see examples). Tuple navigation is restricted to data values of smaller attributes.

- \((w, i) \models C_x^r \psi \) if \(0 < i + r < |w| \) and \((w, i + r, d_i | x <) \models \psi \),
- \((w, i, d) \models @x \) if \(d_i | x < = d \),
- \((w, i, d) \models X^- \psi \) if there is \(j \in pos_d(w) \), \(i < j \), and, for the smallest such \(j \), \((w, j, d) \models \psi \),
- \((w, i, d) \models \psi_1 U^- \psi_2 \) if there is \(j \in pos_d(w) \), \(i \leq j \) s.t. \((w, j, d) \models \psi_2 \) and, for all \(j' \in pos_d(w) \), \(i \leq j' < j \), \((w, j', d) \models \psi_1 \).
We fix an order on attributes (see examples).
Tuple navigation is restricted to data values of smaller attributes.

- \((w, i) \models C^r_x \psi\) if \(0 < i + r < |w|\) and \((w, i + r, d_i|_{x<}) \models \psi\),
- \((w, i, d) \models @x\) if \(d_i|_{x<} = d\),
- \((w, i, d) \models X^- \psi\) if there is \(j \in \text{pos}_d(w), i < j\), and, for the smallest such \(j\), \((w, j, d) \models \psi\),
- \((w, i, d) \models \psi_1 U^- \psi_2\) if there is \(j \in \text{pos}_d(w), i \leq j\) s.t. \((w, j, d) \models \psi_2\) and, for all \(j' \in \text{pos}_d(w), i \leq j' < j\), \((w, j', d) \models \psi_1\).

Fragments of ND-LTL
- \(\text{ND-LTL}^+, \text{ND-LTL}^-\)
Hardness results

Theorem

ND-LTL is undecidable.

Proof.

Similar to [Bjorklund, Bojanczyk 07] using two-counter machines.
Theorem

ND-LTL is undecidable.

Proof.
Similar to [Bjorklund, Bojanczyk 07] using two-counter machines.

Theorem

Satisfiability of ND-LTL$^\pm$ is Ackermann-hard.

Proof.
Using control-state reachability of lossy reset VASS.
Hardness results

Theorem

Satisfiability of \(ND-LTL^- \) *over* \(\omega \)-*words is undecidable.*

Proof.

Using *repeated* control-state reachability of lossy reset VASS.
Positive results

Theorem

Satisfiability of \(ND-LTL^- \) over finite words is decidable.

Theorem

Satisfiability of \(ND-LTL^+ \) is decidable.

Proof.

Use Nested Data Automata
Nested Data Automata

- accept \(k \)-attribute data words
- \(\mathcal{D} = (\mathcal{A}, \mathcal{B}_1, \ldots, \mathcal{B}_k) \)
 - \(\mathcal{A} \) is a letter-to-letter transducer on \(\Sigma \times \Gamma \)
 - \(\mathcal{B}_i \) are class automata over alphabet \(\Gamma \)
 - Now class projections are defined for each \(1 \leq i \leq k \). Class projections are defined on the first \(i \) attributes.
 - A multi-attributed data word \(w \) is accepted by \(\mathcal{D} \) iff for all \(1 \leq i \leq k \) we have \(\text{classes}_i(\mathcal{A}(w)) \subseteq L(\mathcal{B}_i) \).
- pNDA: all states of \(\mathcal{B}_i \) are final
- sNDA: all states of \(\mathcal{B}_i \) are initial
Example

\[
\begin{pmatrix}
 \text{login} & \text{req} & \text{req} & \text{print} & \text{print} & \text{logout} & \text{login} & \ldots \\
 u : & 1 & 1 & 1 & 1 & 1 & 1 & 2 & \ldots \\
\end{pmatrix}
\]

\[
\text{classes}_1(w) = \{\text{login req req print print logout, login} \ldots , \ldots \}
\]

\[
\text{classes}_2(w) = \{\text{request print}\}
\]

\[
L(B_1) = \text{login}(\text{req + print})^* \text{logout}
\]

\[
L(B_2) = \{\text{req print}\}
\]
Theorem

Emptiness of 2-NDA is undecidable.
Results

Theorem

Emptiness of 2-NDA is undecidable.

Theorem

Emptiness of pNDA and \((\omega)\)-sNDA is decidable.
Results

Theorem

Emptiness of 2-NDA is undecidable.

Theorem

Emptiness of pNDA and (ω)-sNDA is decidable.

This in turn leads to:

Theorem

Satisfiability of \(ND-LTL^- \) over finite words is decidable.

Theorem

Satisfiability of \(ND-LTL^+ \) is decidable.
Handling NDA

NDA \rightarrow nested VASS

Nested VASS (here of order 2)

- states: $(q_1, \{(q'_1, \{q''_1 : 2, q''_2 : 3\}) : 2, (q'_2, \{q''_2 : 3\}) : 3\})$
- transitions are of the form
 - $q_1 \rightarrow (q_2, q'_1, q''_1)$
 - ex: $(q_2, \{(q'_1, \{q''_1 : 2, q''_2 : 3\}) : 2, (q'_2, \{q''_2 : 3\}) : 3, (q'_1, \{q''_1 : 1\}) : 1\})$
 - $(q_1, q'_1) \rightarrow (q_2, q'_2, q''_1)$
 - ex: $(q_2, \{(q'_1, \{q''_1 : 2, q''_2 : 3\}) : 1, (q'_2, \{q''_1 : 2, q''_2 : 4\}) : 1, (q'_2, \{q''_2 : 3\}) : 3\})$
 - $(q_1, q'_1, q''_1) \rightarrow (q_2, q'_2, q''_2)$
 - ex: $(q_2, \{(q'_1, \{q''_1 : 2, q''_2 : 3\}) : 1, (q'_2, \{q''_1 : 2, q''_2 : 2\}) : 1, (q'_2, \{q''_2 : 1\}) : 1, (q'_2, \{q''_2 : 3\}) : 3\})$
- a set of initial control states and a set of final states (control state + others)
Reachability is undecidable for order 2 nested VASS.

Proof.

Simulate a 2-counter machine (similarly as [Bjorklund, Bojanczyk 07]).
Results on nested VASS

Lemma

Reachability is undecidable for order 2 nested VASS.

Proof.

Simulate a 2-counter machine (similarly as [Bjorklund, Bojanczyk 07]).

Lemma

Coverability is decidable.

Proof.

nested VASS are well-structured transition systems.
From NDA to nested VASS

Example from 2-NDA to 2-nested VASS:
while reading a letter \((a, d_1, d_2)\):

- Transducer move \((a/A) \rightarrow \text{control state move}\)
- guess:
 - \(d_1\) is new: we guess two initial states of \(B_1\) and \(B_2\) which can perform \(A\)
 - \(d_1\) is not new but \(d_2\) is: we take a state in \(B_1\) already remembered and guess an initial state of \(B_2\) and match \(A\)
 - \((d_1, d_2)\) is not new: We match the \(A\) move in both \(B_1\) and \(B_2\)
Conclusion and open problems

- Decidable logics on multi-attributed data words with restricted tuple navigation
- Other decidable data logics with tuple navigation ?
- Applications