Distributed synthesis for acyclic architectures

Anca Muscholl and Igor Walukiewicz

Bordeaux

TUM, July 2014
Motivation

\[\varphi \subseteq (\text{In} \ ; \ \text{Out})^* \]

Synthesis (Church ’62)

- Given: specification \(\varphi \) relating inputs/outputs.
- Output: I/O automaton \(C \subseteq \varphi \) (controller) + additional requirements (e.g., unconstrained inputs).
Motivation

Synthesis (Church ’62)

- Given: specification φ relating inputs/outputs.
- Output: I/O automaton $C \subseteq \varphi$ (controller) + additional requirements (e.g., unconstrained inputs).

Control (Ramadge & Wonham ’89)

Given
- plant = deterministic finite automaton P,
- some actions are uncontrollable, others are controllable
- specification φ.
Motivation

Synthesis (Church ’62)
- Given: specification \(\varphi \) relating inputs/outputs.
- Output: I/O automaton \(C \subseteq \varphi \) (controller) + additional requirements (e.g., unconstrained inputs).

Control (Ramadge & Wonham ’89)
Given
- plant = deterministic finite automaton \(P \),
- some actions are uncontrollable, others are controllable
- specification \(\varphi \).

Search for a controller \(C \) such that \(P \times C \subseteq \varphi \). Controller must allow every uncontrollable action.
Example

- $\Sigma = \{a, b\}$ with b uncontrollable
- Specification: never more than two consecutive a.

Plant P
Example

- $\Sigma = \{a, b\}$ with b uncontrollable
- Specification: never more than two consecutive a.

![Diagram of Plant P and Controller C]
Control

Example

- $\Sigma = \{a, b\}$ with b uncontrollable
- Specification: never more than two consecutive a.

Plant P

Controller C

Controlled plant $= P \times C$
Distributed synthesis
Emerson and Clarke ’82, ‘Using branching time temporal logic to synthesize synchronization skeletons”

We present a method of constructing concurrent programs in which the synchronization skeleton of the program is automatically synthesized from a (branching time) temporal logic specification.
Emerson and Clarke ’82, ‘Using branching time temporal logic to synthesize synchronization skeletons’

We present a method of constructing concurrent programs in which the synchronization skeleton of the program is automatically synthesized from a (branching time) temporal logic specification.

BUT: *No environment. Synthesized programs are not guaranteed to be implementable in a distributed model.*
Emerson and Clarke ’82, “Using branching time temporal logic to synthesize synchronization skeletons”

We present a method of constructing concurrent programs in which the synchronization skeleton of the program is automatically synthesized from a (branching time) temporal logic specification.

BUT: No environment. Synthesized programs are not guaranteed to be implementable in a distributed model.

Pnueli/Rosner ’90, “Distributed reactive systems are hard to synthesize”

The limitation (of [CE82]) is that all the synthesis algorithms produce a program for a single module [...]. This is particularly embarrassing in cases that the problem we set out to solve is meaningful only in a distributed context, such as the mutual exclusion problem [...]. The somewhat ad-hoc solution [...] is to use first the general algorithm to produce a single module program, and then to decompose this program into a set of programs, one for each distributed component of the system.

BUT: the last task is undecidable.
Distributed synthesis

Distributed model?

- architecture: network of processes + local cooperation
- synchronous/asynchronous
- messages/shared variables/signals

Limits?

Synthesis is related to alternation. Alternation + multiple players is undecidable because of partial information (Peterson & Reif '79).
Distributed synthesis

Distributed model?
- architecture: network of processes + local cooperation
- synchronous/asynchronous
- messages/shared variables/signals

Limits?
Synthesis is related to alternation. Alternation + multiple players is undecidable because of partial information (Peterson & Reif ’79).
Distributed control

Ramadge and Wonham formulation

- Given a distributed automaton (plant) P with two kinds of actions: controllable (system) and uncontrollable (environment), and a specification φ.

- Find another distributed automaton (controller) C such that $P \times C \subseteq \varphi$. Controller cannot block uncontrollable actions.
Distributed control

Ramadge and Wonham formulation
- Given a **distributed** automaton (plant) P with two kinds of actions: **controllable** (system) and **uncontrollable** (environment), and a specification φ.
- Find another distributed automaton (controller) C such that $P \times C \subseteq \varphi$. Controller cannot block uncontrollable actions.

Equivalent formulation
Given a network P of locally cooperating processes, find **local controllers** that communicate at the same time as the original processes.
Distributed control

Ramadge and Wonham formulation

- Given a distributed automaton (plant) P with two kinds of actions: controllable (system) and uncontrollable (environment), and a specification φ.
- Find another distributed automaton (controller) C such that $P \times C \subseteq \varphi$. Controller cannot block uncontrollable actions.

Equivalent formulation

Given a network P of locally cooperating processes, find local controllers that communicate at the same time as the original processes.

How much communication?

- Restricting communication of controllers \rightarrow undecidability.
- Extra communication of controllers \rightarrow centralized control.
Distributed model: Zielonka automata
ZIELONKA AUTOMATA

Processes p, q, r, \ldots

Local states sets S_p, S_q, S_r.

Local transitions $\delta_b : S_q \times S_r \to S_q \times S_r, \ldots$
Zielonka automata

- **Processes** p, q, r, \ldots
- **Local states sets** S_p, S_q, S_r.
- **Local transitions** $\delta_b : S_q \times S_r \to S_q \times S_r, \ldots$

Process p executes *local* action c.
Processes p, q, r, \ldots

Local states sets S_p, S_q, S_r.

Local transitions $\delta_b : S_q \times S_r \rightarrow S_q \times S_r, \ldots$

Process p executes local action c,
Processes q, r synchronize on action b (and update states) \ldots
ZIELONKA AUTOMATA

Processes p, q, r, \ldots

Local states sets S_p, S_q, S_r.

Local transitions $\delta_b : S_q \times S_r \rightarrow S_q \times S_r, \ldots$

Process p executes local action c,
 Processes q, r synchronize on action b (and update states) . . .

Processes evolve asynchronously.
Zielonka Automata

- \mathcal{P}: finite set of processes, each $p \in \mathcal{P}$ has its set of states S_p
- **distributed alphabet** $\langle \Sigma, \text{dom} : \Sigma \to (2^{\mathcal{P}} \setminus \emptyset) \rangle$

 $\text{dom}(a) =$ set of processes involved in action a

- transition functions $\delta_a : \prod_{p \in \text{dom}(a)} S_p \to \prod_{p \in \text{dom}(a)} S_p$
ZIELONKA AUTOMATA

- \mathbb{P}: finite set of processes, each $p \in \mathbb{P}$ has its set of states S_p
- distributed alphabet $\langle \Sigma, \text{dom} : \Sigma \to (2^\mathbb{P} \setminus \emptyset) \rangle$
 $\text{dom}(a) =$ set of processes involved in action a
- transition functions $\delta_a : \prod_{p \in \text{dom}(a)} S_p \to \prod_{p \in \text{dom}(a)} S_p$

\rightarrow exchange of information between processes executing a
ZIELONKA AUTOMATA

- \mathbb{P}: finite set of processes, each $p \in \mathbb{P}$ has its set of states S_p
- distributed alphabet $\langle \Sigma, \text{dom} : \Sigma \to (2^\mathbb{P} \setminus \emptyset) \rangle$
 $\text{dom}(a) =$ set of processes involved in action a
- transition functions $\delta_a : \prod_{p \in \text{dom}(a)} S_p \to \prod_{p \in \text{dom}(a)} S_p$
 \rightarrow exchange of information between processes executing a

THE LANGUAGE OF THE AUTOMATON

The (regular) language of the product automaton.
Example

CAS

Compare-and-swap (CAS): \(\text{CAS}(x: \text{variable}; \ old, \ new: \ \text{int}) \).

Effect: return the value of \(x \) and set the value of \(x \) to \(new \), but only if the previous value of \(x \) was equal to \(old \).

Multi-threaded programs

- One process per thread \(t \) and per shared variable \(x \).
- CAS

\[
\begin{align*}
\text{CAS} \quad & x \quad i \quad \rightarrow \quad k \\
& t \quad s \quad \rightarrow \quad s' \\
& y = \text{CAS}_x(i, k)
\end{align*}
\[
\begin{align*}
\text{CAS} \quad & x \quad j \quad \rightarrow \quad j \\
& t \quad s \quad \rightarrow \quad s'' \\
& y = \text{CAS}_x(i, k)
\end{align*}
\]

In state \(s' \) we have \(y = i \), and in \(s'' \), we have \(y = j \).
Distributed control

Ramadge and Wonham formulation

- Given a Zielonka automaton P (plant) with two kinds of actions: controllable (system) and uncontrollable (environment), and a specification φ.
- Find another Zielonka automaton (controller) C such that $P \times C \subseteq \varphi$. Controller cannot block uncontrollable actions.
Distributed control

Ramadge and Wonham formulation

- Given a Zielonka automaton P (plant) with two kinds of actions: controllable (system) and uncontrollable (environment), and a specification φ.
- Find another Zielonka automaton (controller) C such that $P \times C \subseteq \varphi$. Controller cannot block uncontrollable actions.

Decidability status: OPEN

Local controllers exchange information when communicating. This entails a potentially unbounded information flow. Unclear whether a finite-state C exists.
Distributed control

Ramadge and Wonham formulation

- Given a Zielenka automaton P (plant) with two kinds of actions: controllable (system) and uncontrollable (environment), and a specification φ.
- Find another Zielenka automaton (controller) C such that $P \times C \subseteq \varphi$. Controller cannot block uncontrollable actions.

Decidability status: open

Local controllers exchange information when communicating. This entails a potentially unbounded information flow. Unclear whether a finite-state C exists.
Distributed control

Example

- Plant:

 \[
 \begin{align*}
 p & \quad c \\
 q & \quad a \quad \alpha \\
 r & \quad b \\
 \end{align*}
 \]

- Process \(q: (ab + ba)(\alpha + \beta) \)

- Controllable actions: \(c \) and \(d \)

- Specification:

 \[
 \begin{align*}
 p & \quad c \\
 q & \quad a \quad \alpha \\
 r & \quad b \\
 \end{align*}
 \]

 \[
 \begin{align*}
 p & \quad a \\
 q & \quad b \quad \beta \\
 r & \quad d \\
 \end{align*}
 \]

Plant is controllable: by communication with \(q \), processes \(p \) and \(r \) can know about the order between \(a \) and \(b \).
Decidability: partial results

[Madhusudan & Thiagarajan 2002]
Decidability for restricted local strategies:
- clocked: depending only on time, not history
- synchronization-rigid: each local strategy proposes either local actions or communication with the same process.

[Gastin & Lerman & Zeitoun 2004]
Decidability for restricted alphabets of actions: co-graphs.

[Madhusudan & Thiagarajan & Yang 2005]
Decidability for restricted Zielonka automata: every process misses only bounded knowledge. MSO specifications.

[Genest & Gimbert & M & Walukiewicz 2013]
Decidability for acyclic process communication and local reachability conditions (blocking). Shared actions controllable.
Complexity: non-elementary (complete). EXPTIME-complete for depth one.
Decidability for acyclic process communication

Setting
- Shared actions are binary. Communication graph is **acyclic**.
- Shared actions are **uncontrollable**. Not a restriction.
- Each process has its own ω-regular specification.

Result
For a given plant (Zielonka automaton) \(\mathcal{A} \) and local ω-regular specification \(\phi \) it is decidable whether a controller (Zielonka automaton) \(\mathcal{C} \) exists s.t. \(\mathcal{A} \times \mathcal{C} \models \phi \). Complexity is **non-elementary**, EXPTIME-complete for depth one.
Proof

Main idea
Reduction by simulating a leaf process by its parent.

![Diagram of process simulation](image)

Further ideas
- We can assume that there is a **bound** on the number of local actions of process \(r \) between consecutive synchronizations with \(q \).
- In \(A^\triangledown \), process \(q \) simulates process \(r \) by **choosing an \(r \)-local strategy** (until the simulation of a synchronization between \(q \) and \(r \)).
Proof

Simulation of \(r \) by \(q \)

In \(\mathcal{A}_q \) and \(\mathcal{A}_r \).

In \(\mathcal{A}_q^\nabla \).
CONCLUSION

- We have solved the control problem for acyclic communication. Complexity of server-client architectures is EXPTIME-c (this is undecidable in Pnueli & Rosner model).

- Open for arbitrary architectures.

- Application: control of hierarchical topologies with shared variables. We can translate reads/writes or more complex instructions into Zielonka automata. The reverse translation appears to require instructions like CAS.

- Open if control is decidable for hierarchical topologies with R/W.
CONCLUSION

- We have solved the control problem for acyclic communication. Complexity of server-client architectures is EXPTIME-c (this is undecidable in Pnueli & Rosner model).
- Open for arbitrary architectures.
- Application: control of hierarchical topologies with shared variables. We can translate reads/writes or more complex instructions into Zielonka automata. The reverse translation appears to require instructions like CAS.
- Open if control is decidable for hierarchical topologies with R/W.

Thank you!