Complexity Classes for Optimization Problems

Stefan Kugele

Technical University of Munich

Joint Bavarian Swiss International School 2004, Binntal
"I can’t find an efficient algorithm. I guess I’m just to dumb"
"I can’t find an efficient algorithm, because no such algorithm is possible!"

A famous cartoon by Garey & Johnson, 1979
"I can’t find an efficient algorithm, but neither can all these famous people."
Why using approximation?

Question

Why using approximation?

Answer

- We are not able to solve \(\mathcal{NP} \)-complete problems efficiently, that is, there is no known way to solve them in polynomial time unless \(\mathcal{P} = \mathcal{NP} \).
- Why not looking for an approximate solution?
Why using approximation?

Question
Why using approximation?

Answer
- We are not able to solve \(\mathcal{NP} \)-complete problems efficiently, that is, there is no known way to solve them in polynomial time unless \(\mathcal{P} = \mathcal{NP} \).
- Why not looking for an approximate solution?
Why using approximation?

Question

Why using approximation?

Answer

- We are not able to solve \(\mathcal{NP} \)-complete problems efficiently, that is, there is no known way to solve them in polynomial time unless \(\mathcal{P} = \mathcal{NP} \).
- Why not looking for an approximate solution?
Two basic principles

- Algorithm design
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms
- Complexity classes
 - That's what we are dealing with today
Two basic principles

- **Algorithm design**
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- **Complexity classes**
 - That’s what we are dealing with today
Two basic principles

- Algorithm design
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- Complexity classes

That's what we are dealing with today
Two basic principles

- Algorithm design
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- Complexity classes
 - That's what we are dealing with today
Two basic principles

- **Algorithm design**
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- **Complexity classes**

That's what we are dealing with today
Two basic principles

- Algorithm design
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- Complexity classes

That's what we are dealing with today
Two basic principles

- Algorithm design
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- Complexity classes

 That’s what we are dealing with today
Two basic principles

- Algorithm design
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- Complexity classes

That’s what we are dealing with today
Two basic principles

- Algorithm design
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- Complexity classes

That’s what we are dealing with today
Two basic principles

- Algorithm design
 - Sequential algorithms
 - Greedy approach
 - Local search
 - Linear programming (LP)
 - Dynamic programming (DP)
 - Randomized algorithms

- Complexity classes
 - That's what we are dealing with today
Definition

Optimization Problem

\[O = (I, SOL, m, type) \]

- \(I \) the instance set
- \(SOL(i) \) the set of feasible solutions for instance \(i \) (\(SOL(i) \) for \(i \in I \))
- \(m(i, s) \) the measure of solution \(s \) with respect to instance \(i \) (positive integer for \(i \in I \) and \(s \in SOL(i) \))
- \(type \in \{\text{min, max}\} \)

\[\text{opt}(i) = \text{type} \cdot m(i, s) \]

\[s \in SOL(i) \]
An tight example

Example

Given is a knapsack with capacity C and a set of items $S = \{1, 2, \ldots, n\}$, where item i has weight w_i and value v_i.

Problem

The problem is to find a subset $T \subseteq S$ that maximizes the value of $\sum_{i \in T} v_i$ given that $\sum_{i \in T} w_i \leq C$; that is all the items fit in the knapsack with capacity C.

- All set $T \subseteq S : \sum_{i \in T} w(i) \leq C$ are feasible solutions.
- $\sum_{i \in T} v_i$ is the quality of the solution T with respect to instance i.
An tight example

Example
Given is a knapsack with capacity C and a set of items $S = \{1, 2, \ldots, n\}$, where item i has weight w_i and value v_i.

Problem
The problem is to find a subset $T \subseteq S$ that maximizes the value of $\sum_{i \in T} v_i$ given that $\sum_{i \in T} w_i \leq C$; that is all the items fit in the knapsack with capacity C.

- All set $T \subseteq S : \sum_{i \in T} w(i) \leq C$ are feasible solutions.
- $\sum_{i \in T} v_i$ is the quality of the solution T with respect to instance i.
An tight example

Example

Given is a knapsack with capacity C and a set of items $S = \{1, 2, \ldots, n\}$, where item i has weight w_i and value v_i.

Problem

The problem is to find a subset $T \subseteq S$ that maximizes the value of $\sum_{i \in T} v_i$ given that $\sum_{i \in T} w_i \leq C$; that is all the items fit in the knapsack with capacity C.

- All set $T \subseteq S : \sum_{i \in T} w(i) \leq C$ are feasible solutions.
- $\sum_{i \in T} v_i$ is the quality of the solution T with respect to instance i.
An tight example (cont.)

Instance

Knapsack = (I, SOL, m, max)

\[I = \{(S, w, C, v) \mid S = \{1, \ldots, n\}, \ w, v : S \to \mathbb{N}\} \]

\[SOL(i) = \left\{ T \subseteq S : \sum_{i \in T} w(i) \leq C \right\} \]

\[m(i, s) = \sum_{i \in T} v(i) \]
Outline

1. Approximation algorithms and errors

2. Classes
 - NPO
 - APX
 - PTAS and FPTAS
 - F – APX
 - Negative Results

3. Outlook
 - AP-Reductions
 - MaxSNP
Outline

1. Approximation algorithms and errors
 - Classes
 - NPO
 - APX
 - PTAS and FPTAS
 - F − APX
 - Negative Results

2. Outlook
 - AP-Reductions
 - MaxSNP
Approximation Algorithm

Definition

Given an optimization problem \(O = (I, SOL, m, type) \), an algorithm \(A \) is an approximation algorithm for \(O \) if, for any given instance \(i \in I \), it returns an approximate solution, that is a feasible solution \(A(i) \in SOL(i) \) with certain properties.

Question

But what is an approximate solution?

Answer

A solution whose value is "not too far" from the optimum.

What's the absolute error we make by approximating the solution?
Approximation Algorithm

Definition

Given an optimization problem \(O = (I, SOL, m, type) \), an algorithm \(A \) is an approximation algorithm for \(O \) if, for any given instance \(i \in I \), it returns an approximate solution, that is a feasible solution \(A(i) \in SOL(i) \) with certain properties.

Question

But what is an approximate solution?

Answer

A solution whose value is "not too far" from the optimum.
Definition

Given an optimization problem \(O = (I, SOL, m, type) \), an algorithm \(A \) is an approximation algorithm for \(O \) if, for any given instance \(i \in I \), it returns an approximate solution, that is a feasible solution \(A(i) \in SOL(i) \) with certain properties.

Question

But what is an approximate solution?

Answer

A solution whose value is "not too far" from the optimum.
Definition

Given an optimization problem \(O = (I, SOL, m, \text{type}) \), an algorithm \(A \) is an approximation algorithm for \(O \) if, for any given instance \(i \in I \), it returns an approximate solution, that is a feasible solution \(A(i) \in SOL(i) \) with certain properties.

Question

But what is an approximate solution?

Answer

A solution whose value is "not too far" from the optimum.

What’s the absolute error we make by approximating the solution?
Absolute error

Definition

Given an optimization problem O, for any instance $i \in I$ and for any feasible solution s of i, the **absolute error** for s with respect to i is defined as:

$$D(i, s) = |m^*(i) - m(i, s)|$$

where $m^*(i)$ denotes the measure of the optimal solution of instance i and $m(i, s)$ denotes the measure of solution s.
Absolute approximation algorithm

Definition

Given an optimization problem O and an approximation algorithm A for O, we say that A is an **absolute approximation algorithm** if there exists a constant k such that, for every instance i of O,

$$D(i, A(i)) \leq k$$

To express the quality of an approximate solution, commonly used notations are:

- the relative error
- the performance ratio
Absolute approximation algorithm

Definition

Given an optimization problem O and an approximation algorithm A for O, we say that A is an **absolute approximation algorithm** if there exists a constant k such that, for every instance i of O,

$$D(i, A(i)) \leq k$$

To express the quality of an approximate solution, commonly used notations are:

- the relative error
- the performance ratio
Relative error

Definition
Given an optimization problem O, for any instance i of O and for any feasible solution s of i, the relative error with respect to i is defined as

$$E(i,s) = \frac{|m^*(i) - m(i,s)|}{\max \{m^*(i), m(i,s)\}}$$

For both, maximization and minimization problems, the relative error is equal to 0 when the solution obtained is optimal, and becomes close to 1 when the approximate solution is very poor.
Definition

Given an optimization problem O and an approximation algorithm A for O, we say that A is an ϵ–approximate algorithm for O if, given any input instance i of O, the relative error of the approximate solution $A(i)$ provided by algorithm A is bounded by ϵ, that is

$$E(i, A(i)) \leq \epsilon$$

Different measure

Alternatively, the quality can be expressed by means of a different, but related, measure.
Definition

Given an optimization problem O and an approximation algorithm A for O, we say that A is an ϵ–approximate algorithm for O if, given any input instance i of O, the relative error of the approximate solution $A(i)$ provided by algorithm A is bounded by ϵ, that is

$$E(i, A(i)) \leq \epsilon$$

Different measure

Alternatively, the quality can be expressed by means of a different, but related, measure.
Performance ratio

Definition

Given an optimization problem O, for any instance i of O and for any feasible solution s of i, the performance ratio of s with respect to i is defined as

$$R(i, s) = \max \left\{ \frac{m(i, s)}{m^*(i)}, \frac{m^*(i)}{m(i, s)} \right\}$$

For both, minimization and maximization, the value of the performance ratio is equal to 1 in the case of an optimal solution, and can assume arbitrarily large values in the case of an poor approximate solution.
Definition

Given an optimization problem \(O \) and an approximation algorithm \(A \) for \(O \), we say that \(A \) is an \(r \)-approximate algorithm for \(O \), given any input instance \(i \) of \(O \), the performance ratio of the approximate solution \(A(i) \) is bounded by \(r \), that is

\[R(i, A(i)) \leq r \]

Relationship

\[
E(i, s) = 1 - \frac{1}{R(i, s)}
\]

\[
R(i, s) = -\frac{1}{E(i, s) - 1}
\]
r–approximate algorithm

Definition

Given an optimization problem O and an approximation algorithm A for O, we say that A is an r–approximate algorithm for O, given any input instance i of O, the performance ratio of the approximate solution $A(i)$ is bounded by r, that is

$$R(i, A(i)) \leq r$$

Relationship

$$E(i, s) = 1 - \frac{1}{R(i, s)}$$

$$R(i, s) = -\frac{1}{E(i, s) - 1}$$
Example: $E(i, s), R(i, s)$ for Minimum Vertex Cover

approx. solution

optimal solution

→ Flipchart
Outline

1. Approximation algorithms and errors

2. Classes
 - NPO
 - APX
 - PTAS and FPTAS
 - F − APX
 - Negative Results

3. Outlook
 - AP-Reductions
 - MaxSNP
The class \mathcal{NPO}

Definition

\mathcal{NPO} is the class of optimization problems whose decision versions are in \mathcal{NP}.

$O = (I, SOL, m, type) \in \mathcal{NPO}$ iff

- \exists polynomial $p : \forall i \in I, s \in SOL(i) : |s| \leq p(|i|)$
- deciding $s \in SOL(i)$ is in \mathcal{P}
- computing $m(s, i)$ is in \mathcal{FP}
The class \mathcal{NPO}

Definition

\mathcal{NPO} is the class of optimization problems whose decision versions are in \mathcal{NP}.

$O = (I, SOL, m, \text{type}) \in \mathcal{NPO}$ iff

- \exists \text{ polynomial } p : \forall i \in I, s \in SOL(i) : |s| \leq p(|i|)$
- deciding $s \in SOL(i)$ is in \mathcal{P}
- computing $m(s, i)$ is in \mathcal{FP}
The class \(\mathcal{NPO} \)

Definition

\(\mathcal{NPO} \) is the class of optimization problems whose decision versions are in \(\mathcal{NP} \).

\[O = (I, \text{SOL}, m, \text{type}) \in \mathcal{NPO} \iff \exists \text{ polynomial } p : \forall i \in I, s \in \text{SOL}(i) : |s| \leq p(|i|) \]

- deciding \(s \in \text{SOL}(i) \) is in \(\mathcal{P} \)
- computing \(m(s, i) \) is in \(\mathcal{FP} \)
The class \(\mathcal{NPO} \)

Definition

\(\mathcal{NPO} \) is the class of optimization problems whose decision versions are in \(\mathcal{NP} \).

\[O = (I, SOL, m, \text{type}) \in \mathcal{NPO} \text{ iff} \]

- \(\exists \) polynomial \(p \) : \(\forall i \in I, \ s \in SOL(i) : |s| \leq p(|i|) \)
- deciding \(s \in SOL(i) \) is in \(\mathcal{P} \)
- computing \(m(s, i) \) is in \(\mathcal{FP} \)
The class APX

Definition

APX is the class of all NPO problems such that, for some $r \geq 1$, there exists a polynomial-time r-approximate algorithm for O.

Inclusions

$\text{APX} \subset \text{NPO} \iff P \neq \text{NP}$

Example

MinVertexCover, MaxSat, MaxKnapsack, MaxCut, MaxBinPacking, MaxPlanarGraphColoring
The class APX

Definition

APX is the class of all NPO problems such that, for some $r \geq 1$, there exists a polynomial-time r-approximate algorithm for O.

Inclusions

$\text{APX} \subset \text{NPO} \iff P \neq \text{NP}$

Example

MinVertexCover, MaxSat, MaxKnapsack, MaxCut, MaxBinPacking, MaxPlanarGraphColoring
The class APX

Definition

APX is the class of all NPO problems such that, for some $r \geq 1$, there exists a polynomial-time r-approximate algorithm for O.

Inclusions

$\text{APX} \subset \text{NPO} \iff \mathcal{P} \neq \text{NP}$

Example

MinVertexCover, MaxSat, MaxKnapsack, MaxCut, MaxBinPacking, MaxPlanarGraphColoring
The class \mathcal{APX} (cont.)

Proof.

- Idee: TSP can not be r-approximated, no matter how large is the performance ratio r.
- Reduction from the \mathcal{NP}-complete HamiltonianCircuit decision problem.
- Let $G = (V, E)$ be an instance of HC with $|V| = n$.
- Construct for any $r \geq 1$ a MinTSP instance such that if we had a poly-time r-approximate algorithms for MinTSP, then we could decide whether the graph G has a HC in polynomial time.
The class \(\text{APX} \) (cont.)

Proof.

- Idee: TSP can not be \(r \)-approximated, no matter how large is the performance ratio \(r \).
- Reduction from the \(\mathcal{NP} \)-complete HamiltonianCircuit decision problem.
 - Let \(G = (V, E) \) be an instance of HC with \(|V| = n \).
 - Construct for any \(r \geq 1 \) a MinTSP instance such that if we had a poly-time \(r \)-approximate algorithms for MinTSP, then we could decide whether the graph \(G \) has a HC in polynomial time.
The class APX (cont.)

Proof.

- Idee: TSP can not be r-approximated, no matter how large is the performance ratio r.
- Reduction from the \mathcal{NP}-complete HamiltonianCircuit decision problem.
- Let $G = (V, E)$ be an instance of HC with $|V| = n$.
 - Construct for any $r \geq 1$ a MinTSP instance such that if we had a poly-time r-approximate algorithms for MinTSP, then we could decide whether the graph G has a HC in polynomial time.
The class \(APX \) (cont.)

Proof.

- Idee: TSP can not be \(r \)-approximated, no matter how large is the performance ratio \(r \).
- Reduction from the \(NP \)-complete Hamiltonian Circuit decision problem.
- Let \(G = (V, E) \) be an instance of HC with \(|V| = n \).
- Construct for any \(r \geq 1 \) a MinTSP instance such that if we had a poly-time \(r \)-approximate algorithms for MinTSP, then we could decide whether the graph \(G \) has a HC in polynomial time.
The class \mathcal{APX} (cont.)

Proof (cont.)

- The instance of MinTSP is defined on the same set of nodes V and with distances:

 $$d(v_i, v_j) = \begin{cases}
 1 & \text{if } (v_i, v_j) \in E \\
 1 + nr & \text{otherwise.}
 \end{cases}$$

- This instance of MinTSP has a solution of measure n iff G has a HC.

- The next smallest approximate solution has measure at least $n(1 + r)$ ($n - 1 + (1 + nr) = n + (nr) = n(1 + r)$) and the performance ratio is hence greater than r.

Stefan Kugele Complexity Classes for Optimization Problems
The class APX (cont.)

Proof (cont.)

- The instance of MinTSP is defined on the same set of nodes V and with distances:

$$d(v_i, v_j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 1 + nr & \text{otherwise.} \end{cases}$$

- This instance of MinTSP has a solution of measure n iff G has a HC.

- The next smallest approximate solution has measure at least $n(1 + r)$ ($(n - 1 + (1 + nr) = n + (nr) = n(1 + r)$) and the performance ratio is hence greater than r.

Stefan Kugele
Complexity Classes for Optimization Problems
The class \textbf{APX} (cont.)

Proof (cont.)

- The instance of MinTSP is defined on the same set of nodes V and with distances:
 \[
 d(v_i, v_j) = \begin{cases}
 1 & \text{if } (v_i, v_j) \in E \\
 1 + nr & \text{otherwise.}
 \end{cases}
 \]

- This instance of MinTSP has a solution of measure n iff G has a HC.

- The next smallest approximate solution has measure at least $n(1 + r) \left((n - 1 + (1 + nr) = n + (nr) = n(1 + r)\right)$ and the performance ratio is hence greater than r.
If G has no HC, then the optimal solution has measure at least $n(1 + r)$.

Therefore, if we had a polynomial r-approximate algorithm for MinTSP, we could use it to decide whether G has a HC in the following way: apply the approximation algorithm to the instance of MinTSP and answer YES iff it returns a solution of measure n.
The class APX (cont.)

Proof (cont.)

- If G has no HC, then the optimal solution has measure at least $n(1 + r)$.
- Therefore, if we had a polynomial r-approximate algorithm for MinTSP, we could use it to decide whether G has a HC in the following way: apply the approximation algorithm to the instance of MinTSP and answer YES iff it returns a solution of measure n.
Example: MinimumVertexCover

Example (MinimumVertexCover)

Instance: Graph $G = (V, E)$

Query: Smallest vertex cover

Theorem: MinimumVertexCover is 2-approximatable, that is $\text{MinimumVertexCover} \in \text{APX}$

Proof: The corresponding decision problem is NP-complete
Example: MinimumVertexCover

Example (MinimumVertexCover)

- **Instance:** Graph $G = (V, E)$
- **Query:** Smallest vertex cover
- **Theorem:** MinimumVertexCover is 2-approximatable, that is, $\text{MinimumVertexCover} \in \text{APX}$
- **Proof:** The corresponding decision problem is NP-complete.
Example: MinimumVertexCover

Example (MinimumVertexCover)

Instance: Graph $G = (V, E)$

Query: Smallest vertex cover

Theorem: MinimumVertexCover is 2-approximatable, that is $\text{MinimumVertexCover} \in \text{APX}$

Proof: The corresponding decision problem is \mathcal{NP}-complete.
Example: MinimumVertexCover

Example (MinimumVertexCover)

Instance: Graph $G = (V, E)$

Query: Smallest vertex cover

Theorm: MinimumVertexCover is 2-approximatable, that is $\text{MinimumVertexCover} \in \text{APX}$

Proof: The corresponding decision problem is \mathcal{NP}-complete
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

procedure VertexCover-2-Approx(V, E)
 while $E \neq \emptyset$ do
 pick an arbitrary edge $\{u, v\} \in E$
 add u and v to the vertex cover
 delete all edges covered by u and v from E
 end while
end procedure
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

while $E \neq \emptyset$ do
 pick an arbitrary edge $\{u, v\} \in E$
 add u and v to the vertex cover
 delete edges covered by u and v from E
end while

Trace

$VC = \{\}$
$E = \{(A, G), (A, E), (A, D), (A, C), (B, G), (B, F), (B, D), (B, C), (D, G), (D, F)\}$
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

\[
\text{while } E \neq \emptyset \text{ do }
\begin{align*}
&\text{pick an arbitrary edge } \{u, v\} \in E \\
&\text{add } u \text{ and } v \text{ to the vertex cover} \\
&\text{delete edges covered by } u \text{ and } v \text{ from } E
\end{align*}
\]

end while

Trace

\[
VC = \{\}
\]

\[
E = \{(A, G), (A, E), (A, D), (A, C), (B, G), (B, F), (B, D), (B, C), (D, G), (D, F)\}
\]
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

while $E \neq \emptyset$ do
 pick an arbitrary edge $\{u, v\} \in E$
 add u and v to the vertex cover
 delete edges covered by u and v from E
end while

Trace

$VC = \{A, D\}$
$E = \{(A, G), (A, E), (A, D), (A, C), (B, G), (B, F), (B, D), (B, C), (D, G), (D, F)\}$
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

while $E \neq \emptyset$ do
 pick an arbitrary edge $\{u, v\} \in E$
 add u and v to the vertex cover
 delete edges covered by u and v from E
end while

Trace

$VC = \{A, D\}$

$E = \{(A, G), (A, E), (A, D), (A, C),
(B, G), (B, F), (B, D), (B, C),
(D, G), (D, F)\}$
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

while $E \neq \emptyset$ do
 pick an arbitrary edge $\{u, v\} \in E$
 add u and v to the vertex cover
 delete edges covered by u and v from E
end while

Trace

$VC = \{A, D\}$
$E = \{(B, G), (B, F), (B, C)\}$
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

while $E \neq \emptyset$ do
 pick an arbitrary edge $\{u, v\} \in E$
 add u and v to the vertex cover
 delete edges covered by u and v from E
end while

Trace

$VC = \{A, D, B, G\}$
$E = \{(B, G), (B, F), (B, C)\}$
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

while $E \neq \emptyset$ do
 pick an arbitrary edge $\{u, v\} \in E$
 add u and v to the vertex cover
 delete edges covered by u and v from E
end while

Trace

$VC = \{A, D, B, G\}$

$E = \{(B, G), (B, F), (B, C)\}$
Example: MinimumVertexCover (cont.)

Algorithm MinimumVertexCover

\[\text{while } E \neq \emptyset \text{ do} \]
\[\quad \text{pick an arbitrary edge } \{u, v\} \in E \]
\[\quad \text{add } u \text{ and } v \text{ to the vertex cover} \]
\[\quad \text{delete edges covered by } u \text{ and } v \text{ from } E \]
\[\text{end while}\]

Trace

\[\text{VC} = \{A, D, B, G\} \quad \leftarrow 2 - \text{approx.result} \]
\[E = \{\} \]
Example: Minimum Vertex Cover (cont.)

approx. solution

optimal solution
Example: MinimumVertexCover (cont.)

Question

The result is a vertex cover but is its size maximum twice the optimum?

Answer

Yes. No two edges chosen by the algorithm have shared nodes. Hence, a vertex cover of only those edges has to contain at least either of them, i.e. be at least half of the size of the found vertex cover.
Example: MinimumVertexCover (cont.)

Question

The result is a vertex cover but is its size maximum twice the optimum?

Answer

Yes. No two edges chosen by the algorithm have shared nodes. Hence, a vertex cover of only those edges has to contain at least either of them, i.e. be at least half of the size of the found vertex cover.
Inclusions so far ($\mathcal{P} \neq \mathcal{NP}$)

Stefan Kugele
Complexity Classes for Optimization Problems
Limits to approximability: The gap technique

Theorem

Let \(O' \) be an NP-complete decision problem and let \(O \) be an \(NP \) minimization problem. Let us suppose that there exist two polynomial-time computable functions

\[
f : I_{O'} \rightarrow I_O \\
c : I_{O'} \rightarrow \mathbb{N}
\]

a constant gap > 0, such that for any instance \(i \) of \(O' \),

\[
m^*(f(i)) = \begin{cases}
 c(i) & \text{if } i \text{ is a positive instance} \\
 c(i)(1 + \text{gap}) & \text{otherwise}.
\end{cases}
\]

Then no polynomial-time \(r \)-approximate algorithm for \(O \) with \(r < 1 + \text{gap} \) can exist, unless \(P = NP \).
Limits to approximability: *The gap technique* (cont.)

Proof.

→ Flipchart
Limits to approximability: The gap technique (cont.)

Example (1)

Given a planar graph decide whether this graph is 3-colorable. This problem is \(\mathcal{NP} \)-complete. But any planar graph can be colored with 4 colors.

Define \(f \) as the identity function: \(f(G) = G \) is a planar graph

- If \(G \) is 3-colorable, then \(m^*(f(G)) = 3 \)
- If \(G \) is not 3-colorable, then \(m^*(f(G)) = 4 = 3(1 + \frac{1}{3}) \)
- \(\text{gap} = \frac{1}{3} \)

Theorem

MinimumGraphColoring has no \(r \)-approximate algorithm with \(r < \frac{4}{3} \) unless \(\mathcal{P} = \mathcal{NP} \).
Limits to approximability: *The gap technique* (cont.)

Example (1)

Given a planar graph decide whether this graph is 3-colorable. This problem is \(\mathcal{NP} \)-complete. But any planar graph can be colored with 4 colors.

Define \(f \) as the identity function: \(f(G) = G \) is a planar graph

- If \(G \) is 3-colorable, then \(m^*(f(G)) = 3 \)
- If \(G \) is not 3-colorable, then \(m^*(f(G)) = 4 = 3(1 + \frac{1}{3}) \)
- \(\text{gap} = \frac{1}{3} \)

Theorem

MinimumGraphColoring has no \(r \)-approximate algorithm with \(r < \frac{4}{3} \) unless \(\mathcal{P} = \mathcal{NP} \).
Limits to approximability: *The gap technique* (cont.)

Example (1)

Given a planar graph decide whether this graph is 3-colorable. This problem is \(\mathcal{NP} \)-complete. But any planar graph can be colored with 4 colors.

Define \(f \) as the identity function: \(f(G) = G \) is a planar graph

- If \(G \) is 3-colorable, then \(m^*(f(G)) = 3 \)
- If \(G \) is not 3-colorable, then \(m^*(f(G)) = 4 = 3(1 + \frac{1}{3}) \)

\(\text{gap} = \frac{1}{3} \)

Theorem

MinimumGraphColoring has no \(r \)-approximate algorithm with \(r < \frac{4}{3} \) unless \(\mathcal{P} = \mathcal{NP} \).
Limits to approximability: *The gap technique (cont.)*

Example (1)

Given a planar graph decide whether this graph is 3-colorable. This problem is \(NP \)-complete. But any planar graph can be colored with 4 colors.

Define \(f \) as the identity function: \(f(G) = G \) is a planar graph

- If \(G \) is 3-colorable, then \(m^*(f(G)) = 3 \)
- If \(G \) is not 3-colorable, then \(m^*(f(G)) = 4 = 3(1 + \frac{1}{3}) \)
- \(gap = \frac{1}{3} \)

Theorem

 MinimumGraphColoring has no \(r \)-approximate algorithm with \(r < \frac{4}{3} \) unless \(\mathcal{P} = \mathcal{NP} \).
Limits to approximability: *The gap technique* (cont.)

Example (1)

Given a planar graph decide whether this graph is 3-colorable. This problem is \(\mathcal{NP} \)-complete. But any planar graph can be colored with 4 colors.

Define \(f \) as the identity function: \(f(G) = G \) is a planar graph

- If \(G \) is 3-colorable, then \(m^*(f(G)) = 3 \)
- If \(G \) is not 3-colorable, then \(m^*(f(G)) = 4 = 3(1 + \frac{1}{3}) \)
- \(\text{gap} = \frac{1}{3} \)

Theorem

MinimumGraphColoring has no \(r \)-approximate algorithm with \(r < \frac{4}{3} \) unless \(\mathcal{P} = \mathcal{NP} \).
Limits to approximability: *The gap technique* (cont.)

Example (2)

MinimumBinPacking → Flipchart
Definition

Let O be an \mathcal{NP} problem. An algorithm A is said to be a polynomial time approximation scheme (\mathcal{PTAS}) for O if, for any instance i of O and any rational value $r > 1$, A when applied to input (i, r) returns an r-approximate solution of i in time polynomial in $|i|$.

- The running time of a \mathcal{PTAS} may also depend exponentially on $\frac{1}{r-1}$.
- The better the approximation, the larger may be the running time.
Polynomial-time approximation schemes (PTAS)

Definition

Let O be an NPO problem. An algorithm A is said to be a polynomial time approximation scheme (PTAS) for O if, for any instance i of O and any rational value $r > 1$, A when applied to input (i, r) returns an r-approximate solution of i in time polynomial in $|i|$.

- The running time of a PTAS may also depend exponentially on $\frac{1}{r-1}$
- The better the approximation, the larger may be the running time
Definition

Let O be an \mathcal{NP} problem. An algorithm A is said to be a polynomial time approximation scheme (PTAS) for O if, for any instance i of O and any rational value $r > 1$, A when applied to input (i, r) returns an r-approximate solution of i in time polynomial in $|i|$.

- The running time of a PTAS may also depend exponentially on $\frac{1}{r-1}$.
- The better the approximation, the larger may be the running time.
The class \textbf{PTAS}

Definition

\textbf{PTAS} is the class of \textbf{NPO} problems that admit a polynomial-time approximation scheme.

Example

MaxIntegerKnapsack, MaxIndependentSet (for planar graphs)

Inclusions

$\textbf{PTAS} \subset \textbf{APX} \iff P \neq NP$

In some cases, the increase in the running time of the approximation scheme with the degree of approximation may prevent any practical use of the scheme.
The class \(\text{PTAS} \)

Definition

\(\text{PTAS} \) is the class of \(\text{NP} \)O problems that admit a polynomial-time approximation scheme.

Example

MaxIntegerKnapsack, MaxIndependentSet (for planar graphs)

Inclusions

\[\text{PTAS} \subset \text{APX} \iff \mathbb{P} \neq \mathbb{NP} \]

In some cases, the increase in the running time of the approximation scheme with the degree of approximation may prevent any practical use of the scheme.
The class PTAS

Definition

PTAS is the class of NPO problems that admit a polynomial-time approximation scheme.

Example

MaxIntegerKnapsack, MaxIndependentSet (for planar graphs)

Inclusions

$\text{PTAS} \subset \text{APX} \iff \mathcal{P} \neq \mathcal{NP}$

In some cases, the increase in the running time of the approximation scheme with the degree of approximation may prevent any practical use of the scheme.
The class \(\text{PTAS} \)

Definition

\(\text{PTAS} \) is the class of \(\text{NPO} \) problems that admit a polynomial-time approximation scheme.

Example

MaxIntegerKnapsack, MaxIndependentSet (for planar graphs)

Inclusions

\[\text{PTAS} \subset \text{APX} \iff \mathcal{P} \neq \mathcal{NP} \]

In some cases, the increase in the running time of the approximation scheme with the degree of approximation may prevent any practical use of the scheme.
The class \(\mathcal{PTAS} \) (cont.)

Proof.

- Already done. MinimumBinPacking-example
- MinimumBinPacking has no \(r \)-approximate algorithm with \(r < \frac{3}{2} \) unless \(\mathcal{P} = \mathcal{NP} \).
- Therefore, unless \(\mathcal{P} = \mathcal{NP} \), MinimumBinPacking does not admit a \(\mathcal{PTAS} \).
Inclusions so far ($P \neq NP$)
A much better situation would arise when the running time is polynomial both in the size of the input and in the inverse of the performance ratio.

Definition

Let O be an \mathcal{NP} problem. An algorithm is said to be a fully polynomial time approximation scheme (FPTAS) for O if, for any instance i of O and for any rational value $r > 1$, A when applied to input (i, r) returns an r-approximate solution of i in time polynomial both in $|i|$ and $\frac{1}{(r-1)}$.
Fully polynomial-time approximation scheme (FPTAS)

A much better situation would arise when the running time is polynomial both in the size of the input and in the inverse of the performance ratio.

Definition

Let O be an $NP\bar{O}$ problem. An algorithm is said to be a fully polynomial time approximation scheme (FPTAS) for O if, for any instance i of O and for any rational value $r > 1$, A when applied to input (i, r) returns an r-approximate solution of i in time polynomial both in $|i|$ and $\frac{1}{(r-1)}$.

Stefan Kugele
Complexity Classes for Optimization Problems
The class \textsf{FPTAS}

Definition

\textsf{FPTAS} is the class of \textsf{NPO} problems that admit a fully polynomial-time approximation scheme.

Example

MaximumKnapsack

Inclusions

$\textsf{FPTAS} \subset \textsf{PTAS} \iff \textsf{P} \neq \textsf{NP}$
The class **FPTAS**

Definition

FPTAS is the class of \(\mathcal{NPO} \) problems that admit a fully polynomial-time approximation scheme.

Example

MaximumKnapsack

Inclusions

\[\text{FPTAS} \subset \text{PTAS} \iff \mathcal{P} \neq \mathcal{NP} \]
The class \textit{FPTAS}

\textbf{Definition}

\textit{FPTAS} is the class of \textit{NPO} problems that admit a fully polynomial-time approximation scheme.

\textbf{Example}

MaximumKnapsack

\textbf{Inclusions}

\[\text{FPTAS} \subset \text{PTAS} \iff \mathbb{P} \neq \mathbb{NP} \]
The class \textit{FPTAS} (cont.)

\begin{itemize}
\item Some hints:
 \begin{itemize}
 \item MaximumIndependentSet
 \item polynomially bounded
 \end{itemize}
\item Later, if you want to ;-)\end{itemize}
The class $FPTAS$ (cont.)

Proof.

- Some hints:
 - MaximumIndependentSet
 - polynomially bounded
 - Later, if you want to ;-)
The class \mathcal{FPTAS} (cont.)

Proof.

- Some hints:
 - MaximumIndependentSet
 - polynomially bounded

- Later, if you want to ;-)
The class \textit{FPTAS} (cont.)

Proof.

- Some hints:
 - \texttt{MaximumIndependentSet}
 - polynomially bounded
- Later, if you want to ;-)
Inclusions so far ($P \neq NP$)
Definition
Let O be an \mathcal{NP} problem. O is said to be in $\mathcal{F} - \mathcal{APX}$ if and only if there exists an f-approximation algorithm A for O which runs in polynomial-time for some function $f \in \mathcal{F}$.

Inclusions
\[\text{FPTAS} \subset \text{PTAS} \subset \text{APX} \subset \text{log} - \text{APX} \subset \text{poly} - \text{APX} \subset \exp - \text{APX} \subset \mathcal{NP} \ L \equiv \mathcal{P} \neq \mathcal{NP} \]
F – APX

Definition
Let O be an $\mathcal{NP}O$ problem. O is said to be in $\mathcal{F} – \mathcal{APX}$ if and only if there exists an f-approximation algorithm A for O which runs in polynomial-time for some function $f \in \mathcal{F}$.

Inclusions
\[
\mathcal{FPTAS} \subset \mathcal{PTAS} \subset \mathcal{APX} \subset \log – \mathcal{APX} \subset \text{poly} – \mathcal{APX} \subset \text{exp} – \mathcal{APX} \subset \mathcal{NP}O \iff \mathcal{P} \neq \mathcal{NP}
\]
$\mathcal{F} - \mathcal{APX}$ (cont.)

Example

\mathcal{APX} Max3Sat

$\log - \mathcal{APX}$ SetCover

$\text{poly} - \mathcal{APX}$ Coloring

$\exp - \mathcal{APX}$ TSP
$F - APX$ (cont.)

Example

APX Max3Sat
$log-APX$ SetCover
$poly-APX$ Coloring
$exp-APX$ TSP
Example

- \mathcal{APX}: Max3Sat
- $\log - \mathcal{APX}$: SetCover
- $\text{poly} - \mathcal{APX}$: Coloring
- $\exp - \mathcal{APX}$: TSP
Example

<table>
<thead>
<tr>
<th>Class</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{APX})</td>
<td>Max3Sat</td>
</tr>
<tr>
<td>(\log \text{−APX})</td>
<td>SetCover</td>
</tr>
<tr>
<td>(\text{poly−APX})</td>
<td>Coloring</td>
</tr>
<tr>
<td>(\exp \text{−APX})</td>
<td>TSP</td>
</tr>
</tbody>
</table>
Inclusions so far ($\mathcal{P} \neq \mathcal{NP}$)
Polynomially bounded optimization problems

Definition

An optimization problem is \textit{polynomially bounded} if there exists a polynomial p such that, for any instance i and for any $s \in SOL(i)$, $m(i, s) \leq p(|i|)$.

Theorem

No NP-hard polynomially bounded optimization problem belongs to the class $FPTAS$ unless $P = NP$.

Example

MaximumIndependentSet
Polynomially bounded optimization problems

Definition

An optimization problem is **polynomially bounded** if there exists a polynomial \(p \) such that, for any instance \(i \) and for any \(s \in SOL(i) \),
\[
m(i, s) \leq p(|i|).
\]

Theorem

No \(\mathcal{NP} \)-hard polynomially bounded optimization problem belongs to the class \(\mathcal{FPTAS} \) unless \(\mathcal{P} = \mathcal{NP} \).

Example

MaximumIndependentSet
Polynomially bounded optimization problems

Definition

An optimization problem is **polynomially bounded** if there exists a polynomial p such that, for any instance i and for any $s \in SOL(i)$, $m(i, s) \leq p(|i|)$.

Theorem

No \mathcal{NP}-hard polynomially bounded optimization problem belongs to the class \mathcal{FPTAS} unless $\mathcal{P} = \mathcal{NP}$.

Example

MaximumIndependentSet
Polynomially bounded optimization problems (cont.)

Proof.

→ Flipchart
Pseudo-polynomial problem

Definition

An \(NPO \) problem \(O \) is **pseudo-polynomial** if it can be solved by an algorithm that, on any instance \(i \), runs in time bounded by a polynomial in \(|i| \) and in \(\max(i) \), where \(\max(i) \) denotes the value of the largest number occurring in \(i \).

Theorem

Let \(O \) be an \(NPO \) problem in \(FPTAS \). If a polynomial \(p \) exists such that, for every input \(i \), \(m^*(x) \leq p(|i|, \max(i)) \), then \(O \) is a pseudo-polynomial problem.

Example

MaximumKnapsack: \(\max(i) = \max\{a_1, \ldots, a_n, p_1, \ldots, p_n\} \)
Pseudo-polynomial problem

Definition

An \mathcal{NP} problem O is **pseudo-polynomial** if it can be solved by an algorithm that, on any instance i, runs in time bounded by a polynomial in $|i|$ and in $\max(i)$, where $\max(i)$ denotes the value of the largest number occurring in i.

Theorem

Let O be an \mathcal{NP} problem in \mathcal{FPTAS}. If a polynomial p exists such that, for every input i, $m^*(x) \leq p(|i|, \max(i))$, then O is a pseudo-polynomial problem.

Example

Maximum Knapsack: $\max(i) = \max\{a_1, \ldots, a_n, p_1, \ldots, p_n\}$
Pseudo-polynomial problem

Definition
An \mathcal{NP} problem O is **pseudo-polynomial** if it can be solved by an algorithm that, on any instance i, runs in time bounded by a polynomial in $|i|$ and in $\max(i)$, where $\max(i)$ denotes the value of the largest number occurring in i.

Theorem
Let O be an \mathcal{NP} problem in \mathcal{FPTAS}. If a polynomial p exists such that, for every input i, $m^*(x) \leq p(|i|, \max(i))$, then O is a pseudo-polynomial problem.

Example
MaximumKnapsack: \[\max(i) = \max\{a_1, \ldots, a_n, p_1, \ldots, p_n\} \]
Let O be an $\mathcal{NP\Omega}$ problem and let p be a polynomial. We denote by $O^{\text{max},p}$ the problem obtained by restricting O to only those instances i which $\max(i) \leq p(|i|)$.

Definition

An $\mathcal{NP\Omega}$ problem O is said to be strongly \mathcal{NP}-hard if a polynomial p exists such that $O^{\text{max},p}$ is \mathcal{NP}-hard.
Let O be an \mathcal{NP} problem and let p be a polynomial. We denote by $O^{\text{max},p}$ the problem obtained by restricting O to only those instances i which $\max(i) \leq p(|i|)$.

Definition

An \mathcal{NP} problem O is said to be strongly \mathcal{NP}-hard if a polynomial p exists such that $O^{\text{max},p}$ is \mathcal{NP}-hard.
Theorem

If \(\mathcal{P} \neq \mathcal{NP} \), then no strongly \(\mathcal{NP} \)-hard problem can be pseudo-polynomial.

Proof.

→ Flipchart

From the last two theorems, the following result can be derived. Let \(O \) be a strongly \(\mathcal{NP} \)-hard problem that admits a polynomial \(p \) such that \(m^*(i) \leq p(|i|, \max(i)) \), for every input \(i \). If \(\mathcal{P} \neq \mathcal{NP} \), then \(O \) does not belong to the class \(\text{FPTAS} \).
If \(P \neq \mathcal{NP} \), then no strongly \(\mathcal{NP} \)-hard problem can be pseudo-polynomial.

Proof.

From the last two theorems, the following result can be derived. Let \(O \) be a strongly \(\mathcal{NP} \)-hard problem that admits a polynomial \(p \) such that \(m^*(i) \leq p(|i|, \max(i)) \), for every input \(i \). If \(P \neq \mathcal{NP} \), then \(O \) does not belong to the class \(\text{FPTAS} \).
Strongly \(\mathcal{NP} \)-hard problem (cont.)

Theorem

If \(\mathcal{P} \neq \mathcal{NP} \), then no strongly \(\mathcal{NP} \)-hard problem can be pseudo-polynomial.

Proof.

→ Flipchart

From the last two theorems, the following result can be derived. Let \(O \) be a strongly \(\mathcal{NP} \)-hard problem that admits a polynomial \(p \) such that \(m^*(i) \leq p(|i|, \max(i)) \), for every input \(i \). If \(\mathcal{P} \neq \mathcal{NP} \), then \(O \) does not belong to the class \(\mathcal{FPTAS} \).
Negative results for the class \(\text{FPTAS} \)

- The class of combinatorial problems in \(\text{PTAS} \) that admit a \(\text{FPTAS} \) is drastically reduced of those problems, whose value of the optimal measure is polynomially bounded with respect to the length of the instance.
- No \(\text{NP} \)-hard polynomially bounded optimization problem belongs to the class \(\text{FPTAS} \) unless \(\mathcal{P} = \mathcal{NP} \).
- No \(\text{NP} \)-hard problem that admits a polynomial \(p \) such that \(m^*(i) \leq p(|i|, \max(i)) \), for every input \(i \) belongs to the class \(\text{FPTAS} \) unless \(\mathcal{P} = \mathcal{NP} \).
Negative results for the class \(\text{FPTAS} \)

- The class of combinatorial problems in \(\text{PTAS} \) that admit a \(\text{FPTAS} \) is drastically reduced of those problems, whose value of the optimal measure is polynomially bounded with respect to the length of the instance.

- No \(\text{NP} \)-hard polynomially bounded optimization problem belongs to the class \(\text{FPTAS} \) unless \(\mathcal{P} = \mathcal{NP} \).

- No \(\text{NP} \)-hard problem that admits a polynomial \(p \) such that \(m^*(i) \leq p(|i|, \max(i)) \), for every input \(i \) belongs to the class \(\text{FPTAS} \) unless \(\mathcal{P} = \mathcal{NP} \).
Negative results for the class \mathcal{FPTAS}

- The class of combinatorial problems in \mathcal{PTAS} that admit a \mathcal{FPTAS} is drastically reduced of those problems, whose value of the optimal measure is polynomially bounded with respect to the length of the instance.

- No \mathcal{NP}-hard polynomially bounded optimization problem belongs to the class \mathcal{FPTAS} unless $\mathcal{P} = \mathcal{NP}$.

- No \mathcal{NP}-hard problem that admits a polynomial p such that $m^*(i) \leq p(|i|, \max(i))$, for every input i belongs to the class \mathcal{FPTAS} unless $\mathcal{P} = \mathcal{NP}$.
Negative results for the class \mathcal{FPTAS}

- The class of combinatorial problems in \mathcal{PTAS} that admit a \mathcal{FPTAS} is drastically reduced of those problems, whose value of the optimal measure is polynomially bounded with respect to the length of the instance.

- No \mathcal{NP}-hard polynomially bounded optimization problem belongs to the class \mathcal{FPTAS} unless $\mathcal{P} = \mathcal{NP}$.

- No \mathcal{NP}-hard problem that admits a polynomial p such that $m^*(i) \leq p(|i|, \max(i))$, for every input i belongs to the class \mathcal{FPTAS} unless $\mathcal{P} = \mathcal{NP}$.
Outline

1. Approximation algorithms and errors
2. Classes
 - \(NPO \)
 - \(APX \)
 - \(PTAS \) and \(FPTAS \)
 - \(F - APX \)
 - Negative Results
3. Outlook
 - AP-Reductions
 - \(MaxSNP \)
Definition

Let O_1 and O_2 be two optimization problems in \mathcal{NP}_O. O_1 is said to be AP-reducible to O_2, in symbol $O_1 \leq_{AP} O_2$, if two functions f and g and a positive constant $\alpha \geq 1$ exist such that:

- For any instance $i \in I_{O_1}$ and for any rational $r > 1$, $f(i, r) \in I_{O_2}$.
- For any instance $i \in I_{O_1}$ and for any rational $r > 1$, if $SOL_{O_1}(i) \neq \emptyset$ then $SOL_{O_2}(f(i, r)) \neq \emptyset$.
- For any instance $i \in I_{O_1}$, for any rational $r > 1$, and for any $y \in SOL_{O_2}(f(i, r))$, $g(i, y, r) \in SOL_{O_1}(i)$.
Approximation Preserving Reductions

Definition

Let O_1 and O_2 be two optimization problems in $\mathcal{NP}O$. O_1 is said to be **AP-reducible** to O_2, in symbol $O_1 \leq_{AP} O_2$, if two functions f and g and a positive constant $\alpha \geq 1$ exist such that:

- For any instance $i \in I_{O_1}$ and for any rational $r > 1$, $f(i, r) \in I_{O_2}$.
- For any instance $i \in I_{O_1}$ and for any rational $r > 1$, if $SOL_{O_1}(i) \neq \emptyset$ then $SOL_{O_2}(f(i, r)) \neq \emptyset$.
- For any instance $i \in I_{O_1}$, for any rational $r > 1$, and for any $y \in SOL_{O_2}(f(i, r))$, $g(i, y, r) \in SOL_{O_1}(i)$.

Stefan Kugele

Complexity Classes for Optimization Problems
Approximation Preserving Reductions

Definition

Let O_1 and O_2 be two optimization problems in \mathcal{NP}. O_1 is said to be \textbf{AP-reducible} to O_2, in symbol $O_1 \leq_{AP} O_2$, if two functions f and g and a positive constant $\alpha \geq 1$ exist such that:

- For any instance $i \in I_{O_1}$ and for any rational $r > 1$, $f(i, r) \in I_{O_2}$.
- For any instance $i \in I_{O_1}$ and for any rational $r > 1$, if $SOL_{O_1}(i) \neq \emptyset$ then $SOL_{O_2}(f(i, r)) \neq \emptyset$.
- For any instance $i \in I_{O_1}$, for any rational $r > 1$, and for any $y \in SOL_{O_2}(f(i, r))$, $g(i, y, r) \in SOL_{O_1}(i)$.

Stefan Kugele
Complexity Classes for Optimization Problems
Approximation Preserving Reductions

Definition

Let O_1 and O_2 be two optimization problems in $\mathcal{NP} \mathcal{O}$. O_1 is said to be **AP-reducible** to O_2, in symbol $O_1 \leq_{AP} O_2$, if two functions f and g and a positive constant $\alpha \geq 1$ exist such that:

- For any instance $i \in I_{O_1}$ and for any rational $r > 1$, $f(i, r) \in I_{O_2}$.
- For any instance $i \in I_{O_1}$ and for any rational $r > 1$, if $\text{SOL}_{O_1}(i) \neq \emptyset$ then $\text{SOL}_{O_2}(f(i, r)) \neq \emptyset$.
- For any instance $i \in I_{O_1}$, for any rational $r > 1$, and for any $y \in \text{SOL}_{O_2}(f(i, r))$, $g(i, y, r) \in \text{SOL}_{O_1}(i)$.
Definition (cont.)

- f and g are computable by two algorithms A_f and A_g, respectively, whose running time is polynomial for any fixed rational r.
- For any instance $i \in I_{O_1}$, for any rational $r > 1$, and for any $y \in SOL_{O_2}(f(i, r))$,
 \[R_{O_2}(f(i, r), y) \leq r \Rightarrow R_{O_1}(i, g(x, y, r)) \leq 1 + \alpha(r - 1). \]

 This is the **AP-condition**.
- The triple (f, g, α) is said to be an AP-reduction from O_1 to O_2.

Stefan Kugele

Complexity Classes for Optimization Problems
Approximation Preserving Reductions (cont.)

Definition (cont.)

- f and g are computable by two algorithms A_f and A_g, respectively, whose running time is polynomial for any fixed rational r.
- For any instance $i \in I_{O_1}$, for any rational $r > 1$, and for any $y \in SOL_{O_2}(f(i, r))$, $R_{O_2}(f(i, r), y) \leq r \Rightarrow R_{O_1}(i, g(x, y, r)) \leq 1 + \alpha(r - 1)$.

This is the **AP-condition**.

- The triple (f, g, α) is said to be an AP-reduction from O_1 to O_2.
Approximation Preserving Reductions (cont.)

Definition (cont.)

- f and g are computable by two algorithms A_f and A_g, respectively, whose running time is polynomial for any fixed rational r.
- For any instance $i \in I_{O_1}$, for any rational $r > 1$, and for any $y \in SOL_{O_2}(f(i, r))$,

$$R_{O_2}(f(i, r), y) \leq r \Rightarrow R_{O_1}(i, g(x, y, r)) \leq 1 + \alpha(r - 1).$$

This is the AP-condition.
- The triple (f, g, α) is said to be an AP-reduction from O_1 to O_2.
AP-Reduction (cont.)

\[\text{AP-Reduction} \]

\[I_{O_1} \]
\[f \]
\[f(i, r) = i' \]
\[\text{SOL}_{O_1}(i) \]
\[g(i, y, r) \]
\[g \]
\[\text{SOL}_{O_2}(f(i)) \]
\[A_{O_2} \]
Lemma

If $O_1 \leq_{AP} O_2$ and $O_2 \in APX$ (respectively, $O_2 \in PTAS$), then $O_1 \in APX$ (respectively, $O_1 \in PTAS$).

Proof.

→ Flipchart

Example

MaximumClique \leq_{AP} MaximumIndependentSet
AP-Reduction (cont.)

Lemma

If $O_1 \leq_{AP} O_2$ and $O_2 \in APX$ (respectively, $O_2 \in PTAS$), then $O_1 \in APX$ (respectively, $O_1 \in PTAS$).

Proof.

→ Flipchart

Example

MaximumClique \leq_{AP} MaximumIndependentSet
Lemma

If $O_1 \leq_{AP} O_2$ and $O_2 \in APX$ (respectively, $O_2 \in PTAS$), then $O_1 \in APX$ (respectively, $O_1 \in PTAS$).

Proof.

→ Flipchart

Example

MaximumClique \leq_{AP} MaximumIndependentSet
Fagin’s Theorem (1974)

Theorem

A property is expressible in existential second-order logic ($\exists SO$) iff it is decidable in \mathcal{NP}.

Fagin, Ron, IBM
The class SNP ($\mathsf{strictNP}$)

The class SNP consists of all properties expressible as

$$\exists S \forall x_1 \forall x_2 \ldots \forall x_k \varphi(S, G, x_1, \ldots, x_k)$$

- φ is a quantifier-free First-Order expression involving the variables x_i and the structures G and S.
- G is the input, S is the demanded relation that satisfies φ.

Modifications

- φ holds not for all k-tuples of nodes (x_1, \ldots, x_k), instead we seek the relation S such that φ holds for as many k-tuples (x_1, \ldots, x_k) as possible.
- G now is a collection G_1, \ldots, G_m of relations of arbitrary arity.
The class \mathcal{SNP} (strict \mathcal{NP})

The class \mathcal{SNP} consists of all properties expressible as

$$\exists S \forall x_1 \forall x_2 \ldots \forall x_k \varphi(S, G, x_1, \ldots, x_k)$$

- φ is a quantifier-free First-Order expression involving the variables x_i and the structures G and S.
- G is the input, S is the demanded relation that satisfies φ.

Modifications

- φ holds not for all k-tuples of nodes (x_1, \ldots, x_k), instead we seek the relation S such that φ holds for as many k-tuples (x_1, \ldots, x_k) as possible.
- G now is a collection G_1, \ldots, G_m of relations of arbitrary arity.
The classes MaxSNP_0 and MaxSNP

MaxSNP_0

$$\max_S \left| \left\{ (x_1, \ldots, x_k) \in V^k : \varphi(G_1, \ldots, G_m, S, x_1, \ldots, x_k) \right\} \right|$$

Definition

MaxSNP is the class of all optimization problems that are L-reducible to a problem in MaxSNP_0

- Introduced in 1989 by Papadimitriou and Yannakakis
- They showed, that all problems in MaxSNP are in APX
- You can get an approximation algorithm canonical out of the problem definition using φ
The classes MaxSNP_0 and MaxSNP

MaxSNP_0

$$\max_S \left| \left\{ (x_1, \ldots, x_k) \in V^k : \varphi(G_1, \ldots, G_m, S, x_1, \ldots, x_k) \right\} \right|$$

Definition

MaxSNP is the class of all optimization problems that are L-reducible to a problem in MaxSNP_0

- Introduced in 1989 by Papadimitriou and Yannakakis
- They showed, that all problems in MaxSNP are in APX
- You can get an approximation algorithm canonical out of the problem definition using φ