Quantitative Verification
Chapter 4: Markov decision processes

Jan Křetínský

Technical University of Munich

Winter 2017/18
Discrete-time
Markov Decision Processes
MDP
DTMC – purely probabilistic
Possible successor states are chosen based on probabilities but not on decisions.

We want decisions to model both

- controllable setting (game theory, operations theory, control theory);
- uncontrollable setting (interleaving in concurrent systems, abstractions of models, open systems)

How to introduce decisions, i.e., non-determinism, to DTMC?
Definition:
A (labelled) Markov Decision Process (MDP) is a tuple

\[\mathcal{M} = (S, \text{Act}, \mathbb{P}, \pi_0, L) \]

where

▶ \(S \) is a countable set of states,
▶ \(\text{Act} \) is a finite set of actions,
▶ \(\mathbb{P} : S \times \text{Act} \times S \to [0, 1] \) is the transition probability function, such that for each state \(s \) and action \(\alpha \),
 ▶ \(\sum_{s' \in S} \mathbb{P}(s, \alpha, s') = 1 \), then we say that \(\alpha \) is enabled in \(s \); or
 ▶ \(\mathbb{P}(s, \alpha, s') = 0 \) for all \(s' \), then we say that \(\alpha \) is not enabled in \(s \).
▶ \(\pi_0 \) is the initial distribution, and
▶ \(L : S \to 2^{\text{Act}} \) is the labeling function.

The set of actions enabled in \(s \) is denoted by \(\text{Act}(s) \). We assume that for each \(s \), we have \(\text{Act}(s) \neq \emptyset \).
Example:

Problem:
How is the non-determinism resolved?
Example:

Problem:
How is the non-determinism resolved?
Allowing memory and randomness:

Definition (Scheduler):
A scheduler (also called strategy or policy) on an MDP \(\mathcal{M} = (S, \text{Act}, P, \pi_0, L) \) is a function \(\Theta \) assigning to each history \(s_0 \cdots s_n \in S^+ \) a probability distribution over \(\text{Act} \) such that \(\alpha \) is enabled in \(s_n \) whenever \(\Theta(s_0 \cdots s_n)(\alpha) > 0 \).
Definition (Induced DTMC):

Let $\mathcal{M} = (S, Act, P, \pi_0, L)$ be a MDP and scheduler Θ on \mathcal{M}. The induced DTMC is given by

$$\mathcal{M}^\Theta = (S^+, P^\Theta, \pi_0, L'),$$

where for any $h = s_0s_1 \ldots s_n$, we define

$$P^\Theta(h, hs_{n+1}) = \sum_{\alpha \in Act} \Theta(h)(\alpha) \cdot P(s_n, \alpha, s_{n+1})$$

and $L'(h) = L(s_n)$.
Example:
We choose a scheduler Θ that always takes action β in state s and action γ in state u. The induced DTMC M^Θ for the previous example:

Notation
- P^Θ – the probability measure of M^Θ
- There is a bijection ξ mapping each sequence of states $s_0s_1s_2\cdots$ to a sequence of histories $s_0\ s_0s_1\ s_0s_1s_2\ \cdots$ (a path of M^Θ).
- When using previous notation for sets of paths such as $\Diamond B$, we actually mean $\xi(\Diamond B)$
Classes of schedulers:

- A scheduler Θ is memoryless if for histories $s_0 s_1 \ldots s_n \in S^+$ and $s'_0 s'_1 \ldots s'_n \in S^+$ with $s_n = s'_n$ it holds

 $$\Theta(s_0 s_1 \ldots s_n) = \Theta(s'_0 s'_1 \ldots s'_n).$$

- A scheduler Θ is deterministic if for all histories $s_0 s_1 \ldots s_n \in S^+$ it holds $\Theta(s_0 s_1 \ldots s_n)(\alpha) = 1$ for some action α.

A memoryless deterministic (MD) Θ can be viewed as a function $\Theta : S \rightarrow \text{Act}$.

Example:

The scheduler of the previous example was memoryless and deterministic since the decision what action to take was fixed.

Note:

A scheduler has finite memory if representable by a finite automaton.
Analysis questions

For MC:

- Reachability: $x = Ax + b$ (with $(x(s))_{s \in S}$)
- Probabilistic logics: combination of the techniques
- Transient analysis: $\pi_n = \pi_0 P^n$
- Steady-state analysis: $\pi P = \pi$, $\pi 1^T = 1$ (ergodic)
- Rewards: reduction to steady-state analysis
Analysis questions

For MC:

- Reachability: $x = Ax + b$ (with $(x(s))_{s \in S}$)
- Probabilistic logics: combination of the techniques
- Transient analysis: $\pi_n = \pi_0 P^n$
- Steady-state analysis: $\pi P = \pi, \pi I = 1$ (ergodic)
- Rewards: reduction to steady-state analysis

For MDP:

- Quantities not defined per se, but depend on the scheduler
- We can naturally consider the best case and the worst case among all schedulers
 (recall that non-determinism can model controllable or uncontrollable choice)
MDP – Reachability
Min
When playing “Mensch Ärgere dich nicht” against a fixed opponent strategy, what is the minimal probability of having all pieces kicked out into the outside area again?

Max
What is the maximal probability of winning the game?
MDP - Reachability

Min

- **Best case for reaching undesirable states when controlled**
- **Worst case for reaching desirable states when not controlled**

The *minimum probability to reach* a set of states B from a state s (within n steps) is

$$\inf_\Theta P_s^\Theta(\Diamond B), \quad \inf_\Theta P_s^\Theta(\Diamond \leq n B)$$

Max

- **Best case for reaching desirable states when controlled**
- **Worst case for reaching undesirable states when not controlled**

The *maximum probability to reach* a set of states B from a state s (within n steps) is

$$\sup_\Theta P_s^\Theta(\Diamond B), \quad \sup_\Theta P_s^\Theta(\Diamond \leq n B)$$

Focus on maximum; minimum is similar
Recall for DTMC

Let \((S, P, \pi_0)\) be a finite DTMC and \(B \subseteq S\). The vector \(x\) with
\[x(s) = P_s(\Diamond B) \]
is the unique solution of the equation system

\[
x(s) = \begin{cases}
1 & \text{if } s \in B, \\
0 & \text{if } s \in S_0 = \{ s \mid P_s(\Diamond B) = 0 \}, \\
\sum_{u \in S} P(s, u) \cdot x(u) & \text{otherwise.}
\end{cases}
\]
Recall for DTMC
Let \((S, P, \pi_0)\) be a finite DTMC and \(B \subseteq S\). The vector \(x\) with \(x(s) = P_s(\Diamond B)\) is the unique solution of the equation system

\[
x(s) = \begin{cases}
1 & \text{if } s \in B, \\
0 & \text{if } s \in S_0 = \{s \mid P_s(\Diamond B) = 0\}, \\
\sum_{u \in S} P(s, u) \cdot x(u) & \text{otherwise}.
\end{cases}
\]

Theorem (Maximum Reachability Probability):
Let \((S, \text{Act}, P, \pi_0, L)\) be a finite MDP and \(B \subseteq S\). The vector \(x\) with \(x(s) = \sup_{\Theta} P_s^\Theta(\Diamond B)\) is the least solution of the equation system

\[
x(s) = \begin{cases}
1 & \text{if } s \in B, \\
0 & \text{if } s \in S_0^{\text{max}} = \{s \mid \sup_{\Theta} P_s^\Theta(\Diamond B) = 0\}, \\
\max_{\alpha \in \text{Act}(s)} \sum_{u \in S} P(s, \alpha, u) \cdot x(u) & \text{otherwise}.
\end{cases}
\]
Theorem (Optimal Memoryless Scheduler):
Let \mathcal{M} be a finite MDP with state space S, and $B \subseteq S$. There exist memoryless deterministic schedulers $\Theta^{\text{min}}, \Theta^{\text{max}}$ such that for any $s \in S$ it holds

$$P_s^{\Theta^{\text{min}}}(\diamond B) = \inf_{\Theta} P_s^{\Theta}(\diamond B), \quad P_s^{\Theta^{\text{max}}}(\diamond B) = \sup_{\Theta} P_s^{\Theta}(\diamond B)$$

Proof Sketch
Theorem (Optimal Memoryless Scheduler):
Let \mathcal{M} be a finite MDP with state space S, and $B \subseteq S$. There exist memoryless deterministic schedulers $\Theta^{\text{min}}, \Theta^{\text{max}}$ such that for any $s \in S$ it holds

$$P_{s}^{\Theta^{\text{min}}}(\Diamond B) = \inf_{\Theta} P_{s}^{\Theta}(\Diamond B), \quad P_{s}^{\Theta^{\text{max}}}(\Diamond B) = \sup_{\Theta} P_{s}^{\Theta}(\Diamond B)$$

Proof Sketch

- For Θ^{min} it suffices to fix in each s an arbitrary action α that minimizes $\sum_{u \in S} P(s, \alpha, u) \cdot x_{u}$.

- Does not work for Θ^{max}!

- For Θ^{max} we fix in each s among the actions that maximize $\sum_{u \in S} P(s, \alpha, u) \cdot x_{u}$ an arbitrary action α that minimizes the number of steps needed to reach B with positive probability.

How can we compute the vectors of values?

- linear programming
- value iteration
Theorem (Optimal Memoryless Scheduler):
Let \mathcal{M} be a finite MDP with state space S, and $B \subseteq S$. There exist memoryless deterministic schedulers $\Theta^{\text{min}}, \Theta^{\text{max}}$ such that for any $s \in S$ it holds

$$P^\Theta_{\Theta^{\text{min}}} (\diamondsuit B) = \inf_{\Theta} P^\Theta_s (\diamondsuit B), \quad P^\Theta_{\Theta^{\text{max}}} (\diamondsuit B) = \sup_{\Theta} P^\Theta_s (\diamondsuit B)$$

Proof Sketch

- For Θ^{min} it suffices to fix in each s an arbitrary action α that minimizes $\sum_{u \in S} P(s, \alpha, u) \cdot x_u$.
- Does not work for Θ^{max}!
Theorem (Optimal Memoryless Scheduler):
Let \mathcal{M} be a finite MDP with state space S, and $B \subseteq S$. There exist memoryless deterministic schedulers $\Theta_{\text{min}}, \Theta_{\text{max}}$ such that for any $s \in S$ it holds

$$P_{s}^{\Theta_{\text{min}}}(\diamond B) = \inf_{\Theta} P_{s}^{\Theta}(\diamond B), \quad P_{s}^{\Theta_{\text{max}}}(\diamond B) = \sup_{\Theta} P_{s}^{\Theta}(\diamond B)$$

Proof Sketch

- For Θ_{min} it suffices to fix in each s an arbitrary action α that minimizes $\sum_{u \in S} P(s, \alpha, u) \cdot x_u$.
- Does not work for Θ_{max}!
- For Θ_{max} we fix in each s among the actions that maximize $\sum_{u \in S} P(s, \alpha, u) \cdot x_u$ an arbitrary action α that minimizes the number of steps needed to reach B with positive probability.
Theorem (Optimal Memoryless Scheduler):
Let \mathcal{M} be a finite MDP with state space S, and $B \subseteq S$. There exist memoryless deterministic schedulers $\Theta^{\min}, \Theta^{\max}$ such that for any $s \in S$ it holds

$$P_s^{\Theta^{\min}}(\diamond B) = \inf_{\Theta} P_s^{\Theta}(\diamond B), \quad P_s^{\Theta^{\max}}(\diamond B) = \sup_{\Theta} P_s^{\Theta}(\diamond B)$$

Proof Sketch

- For Θ^{\min} it suffices to fix in each s an arbitrary action α that minimizes $\sum_{u \in S} P(s, \alpha, u) \cdot x_u$.
- Does not work for Θ^{\max}!
- For Θ^{\max} we fix in each s among the actions that maximize $\sum_{u \in S} P(s, \alpha, u) \cdot x_u$ an arbitrary action α that minimizes the number of steps needed to reach B with positive probability.

How can we compute the vectors of values?
- linear programming
- value iteration
Let $(S, \text{Act}, P, \pi_0, L)$ be a finite MDP and $B \subseteq S$. The vector x with $x(s) = \sup \Theta P \Theta s(\triangleright B)$ is the unique solution of the linear program

$$\min \sum_{s \in S} x(s)$$
$$\text{satisfying } x(s) = 1 \forall s \in B,$$
$$x(s) = 0 \forall s \in S \setminus (B \cup S),$$
$$\min 0, x(s) \geq \sum_{u \in S} P(s, \alpha, u) \cdot x(u) \forall s \in S \setminus (B \cup S),$$
$$\forall \alpha \in \text{Act}.$$
MDP - Reachability - Linear Programming

Linear Program:

Let \((S, \text{Act}, P, \pi_0, L)\) be a finite MDP and \(B \subseteq S\). The vector \(x\) with \(x(s) = \sup_\Theta P_s^\Theta(\diamond B)\) is the unique solution of the linear program:

\[
\begin{align*}
\text{minimize} & \quad \sum_{s \in S} x(s) \\
\text{satisfying} & \quad x(s) = 1, \quad \forall s \in B, \\
& \quad x(s) = 0, \quad \forall s \in S \setminus (B \cup S_0^{\text{max}}), \\
& \quad x(s) \geq \sum_{u \in S} P(s, \alpha, u) \cdot x(u), \quad \forall s \in S \setminus (B \cup S_0^{\text{max}}), \forall \alpha \in \text{Act}.
\end{align*}
\]
Value Iteration Algorithm:

Let \mathcal{M} be a finite MDP with state space S, and $B \subseteq S$.

- Initialize $x_0(s)$ to 1 if $s \in B$ and to 0, otherwise.

- Iterate

$$x_{n+1}(s) = \begin{cases}
1 & \text{if } s \in B, \\
0 & \text{if } s \in S^\text{max}_0, \\
\max_{\alpha \in \text{Act}(s)} \sum_{u \in S} P(s, \alpha, u) \cdot x_n(u) & \text{otherwise}
\end{cases}$$

until convergence, i.e., until $\max_{s \in S} |x_{n+1}(s) - x_n(s)| < \epsilon$

for a small $\epsilon > 0$
Value Iteration Algorithm:
Let \mathcal{M} be a finite MDP with state space S, and $B \subseteq S$.

- Initialize $x_0(s)$ to 1 if $s \in B$ and to 0, otherwise.
- Iterate

$$x_{n+1}(s) = \begin{cases}
1 & \text{if } s \in B, \\
0 & \text{if } s \in S_{\text{max}}^0, \\
\max_{\alpha \in \text{Act}(s)} \sum_{u \in S} P(s, \alpha, u) \cdot x_n(u) & \text{otherwise}
\end{cases}$$

until convergence, i.e., until $\max_{s \in S} |x_{n+1}(s) - x_n(s)| < \epsilon$
for a small $\epsilon > 0$

Theorem

- $x_n(s) = \sup_{\Theta} P_s^\Theta(\Diamond \leq^n B)$.
- $\lim_{n \to \infty} x_n(s) = \sup_{\Theta} P_s^\Theta(\Diamond B)$.
Is a memoryless deterministic scheduler enough for optimizing $\Diamond \leq n B$?
Is a memoryless deterministic scheduler enough for optimizing $\diamond \leq n B$?

No! For step-bounded reachability we might need finite memory. (Intuition: Depending on the current step, different paths of different length might be optimal).
We rather compute the set

\[S_{>0}^{\max} = \{ s \mid \sup_{\Theta} P_s^{\Theta}(\Diamond B) > 0 \} \]

and return

\[S^{\max}_0 = S \setminus S_{>0}^{\max} \]
We rather compute the set

$$S_{>0}^{\text{max}} = \{ s \mid \sup_{\Theta} P_s^\Theta(\diamond B) > 0 \}$$

and return

$$S_0^{\text{max}} = S \setminus S_{>0}^{\text{max}}$$

$S_{>0}^{\text{max}}$:

Initialize the set to B and in every iteration add states that reach the set in one step with positive probability for some enabled action. Repeat until fix-point is reached.
We rather compute the set

\[S_{>0}^{\text{max}} = \{ s \mid \sup_\Theta P_s^\Theta(\Diamond B) > 0 \} \]

and return

\[S_{0}^{\text{max}} = S \setminus S_{>0}^{\text{max}} \]

\(S_{>0}^{\text{max}} \):

Initialize the set to \(B \) and in every iteration add states that reach the set in one step with positive probability for some enabled action. Repeat until fix-point is reached.

(Similarly for \(S_{>0}^{\text{min}} \):)
We rather compute the set

\[S_{>0}^{\max} = \{ s \mid \sup_\Theta P_s^\Theta (\Diamond B) > 0 \} \]

and return

\[S_{0}^{\max} = S \setminus S_{>0}^{\max} \]

\(S_{>0}^{\max} \):

Initialize the set to \(B \) and in every iteration add states that reach the set in one step with positive probability for some enabled action. Repeat until fix-point is reached.

(Similarly for \(S_{>0}^{\min} \): replace “some” by “every”)

\(\)
Analysis questions

- Reachability: LP or VI
- Probabilistic logics: combination of the techniques (in particular reachability and bounded reachability)
- Transient analysis
- Steady-state analysis
- Rewards
MDP – PCTL & LTL
Recall: MDP non-determinism

We consider two different sources of non-determinism:

Controllable If we can control the choice of actions:
Is there possibly a scheduler guaranteeing the specified desirable behavior?

Uncontrollable If we cannot control the choice of actions:
Do all schedulers necessarily guarantee the specified desirable behavior?

Note: If we have undesirable behaviour specified, we can apply negation to obtain the desirable behaviour.
pLTL
Example: the probability that eventually red player is kicked out and then immediately kicks out blue player is possibly / necessarily ≥ 0.8

\[\exists \Theta / \forall \Theta : \ P^\Theta(\mathcal{F} (\text{rkicked} \land X \text{ bkicked})) \geq 0.8 \]

PCTL
Example: with prob. necessarily ≥ 0.5 the probability to return to initial state is always necessarily ≥ 0.1: $P_{\geq 0.5} \mathcal{G} P_{\geq 0.1} \mathcal{F} \text{ init}$
PCTL Semantics

Recall: DTMC
For a state s:

- $s \models true$ (always),
- $s \models a$ iff $a \in L(s)$,
- $s \models \phi_1 \land \phi_2$ iff $s \models \phi_1$ and $s \models \phi_2$,
- $s \models \neg \phi$ iff $s \not\models \phi$,
- $s \models P_J(\psi)$ iff $P_s(Paths(\psi)) \in J$

MDP
Stays the same except for P_J defined in one of the following ways:

- **Possibility (controllable):** $s \models P_J(\psi)$ iff $\exists \Theta : P^\Theta_s(Paths(\psi)) \in J$;
- **Necessity (uncontrollable):** $s \models P_J(\psi)$ iff $\forall \Theta : P^\Theta_s(Paths(\psi)) \in J$.

Note
PCTL path formulae semantics stays the same.
Algorithm

Input: MDP \mathcal{M}, state s, PCTL state formula Φ

Output: TRUE iff $s \models \Phi$.

The algorithm is conceptually the same as for DTMC:
Again, consider the bottom-up traversal of the parse tree of Φ:

- The leaves are $a \in AP$ or true and
- the inner nodes are:
 - unary – labelled with the operator \neg or $P_J(X)$;
 - binary – labelled with an operator \wedge, $P_J(U)$, or $P_J(U \leq n)$.

Example: $\neg a \wedge P_{\leq 0.2}(\neg b \ U \ P_{\geq 0.9} (\Diamond c))$

Compute $Sat(\Psi) = \{s \in S \mid s \models \Psi\}$ for each node Ψ of the tree in a bottom-up fashion. Then $s \models \Phi$ iff $s \in Sat(\Phi)$.
PCTL Verification (2) – Algorithm

As before:

- \(\text{Sat}(\text{true}) = S \),
- \(\text{Sat}(a) = \{ s \mid a \in L(s) \} \),
- \(\text{Sat}(\Phi_1 \land \Phi_2) = \text{Sat}(\Phi_1) \cap \text{Sat}(\Phi_2) \),
- \(\text{Sat}(\neg \Phi) = S \setminus \text{Sat}(\Phi) \)

Path operator

We need to restrict to path operators of the form \(P^\triangledown_{\trianglerighteq} p \) with \(p \in [0, 1] \) and \(\triangledown \in \{ \leq, <, >, \geq \} \). We have

- for \(\triangledown \in \{ \leq, < \} \):
 \[\text{Sat}(P^\triangledown_{\trianglerighteq} p(\Psi)) = \{ s \in S \mid \min_\Theta P^\Theta_s(\text{Paths}(\Psi)) \triangledown p \} \]
- for \(\triangledown \in \{ \geq, > \} \):
 \[\text{Sat}(P^\triangledown_{\trianglerighteq} p(\Psi)) = \{ s \in S \mid \max_\Theta P^\Theta_s(\text{Paths}(\Psi)) \trianglerighteq p \} \]
As before:

- $Sat(true) = S$,
- $Sat(a) = \{s | a \in L(s)\}$
- $Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)$
- $Sat(\neg \Phi) = S \setminus Sat(\Phi)$

Path operator

We need to restrict to path operators of the form $\mathcal{P}_{\rhd p}$ with $p \in [0, 1]$ and $\rhd \in \{\leq, <, >, \geq\}$. We have

- for $\rhd \in \{\leq, <\}$:
 $Sat(\mathcal{P}_{\rhd p}(\Psi)) = \{s \in S | \min_\Theta P_s^\Theta(Paths(\Psi)) \rhd p\}$
- for $\rhd \in \{\geq, >\}$:
 $Sat(\mathcal{P}_{\rhd p}(\Psi)) = \{s \in S | \max_\Theta P_s^\Theta(Paths(\Psi)) \rhd p\}$

Necessarily

can be done similarly by swapping max and min.
PCTL Verification – Algorithm (3)

Similar as before:

▶ Next:

$$\max_{\Theta} P_{s}^{\Theta}(\text{Paths}(X \Phi)) =$$

▶ Bounded Until:

$$\max_{\Theta} P_{s}^{\Theta}(\text{Paths}(\Phi_{1} \ U \leq_{n} \Phi_{2})) =$$

▶ Unbounded Until:

$$\max_{\Theta} P_{s}(\text{Paths}(\Phi_{1} \ U \Phi_{2})) =$$
PCTL Verification – Algorithm (3)

Similar as before:

- **Next:**
 \[
 \max_{\Theta} P^\Theta_s \left(\text{Paths}(\mathcal{X} \Phi) \right) = \max_{\alpha \in \text{Act}(s)} \sum_{s' \in \text{Sat}(\Phi)} P(s, s')
 \]

- **Bounded Until:**
 \[
 \max_{\Theta} P^\Theta_s \left(\text{Paths}(\Phi_1 \cup \leq_n \Phi_2) \right) = \max_{\Theta} P^\Theta_s \left(\text{Sat}(\Phi_1) \cup \leq_n \text{Sat}(\Phi_2) \right)
 \]

- **Unbounded Until:**
 \[
 \max_{\Theta} P_s \left(\text{Paths}(\Phi_1 \cup \Phi_2) \right) = \max_{\Theta} P_s \left(\text{Sat}(\Phi_1) \cup \text{Sat}(\Phi_2) \right)
 \]
PCTL Verification – Algorithm (3)

Similar as before:

- **Next:**
 \[
 \max_\Theta P^\Theta_s \left(\text{Paths}(\mathcal{X} \Phi) \right) = \max_{\alpha \in \text{Act}(s)} \sum_{s' \in \text{Sat}(\Phi)} P(s, s')
 \]

- **Bounded Until:**
 \[
 \max_\Theta P^\Theta_s \left(\text{Paths}(\Phi_1 \text{ U } \leq n \Phi_2) \right) = \max_\Theta P^\Theta_s \left(\text{Sat}(\Phi_1) \text{ U } \leq n \text{ Sat}(\Phi_2) \right)
 \]

- **Unbounded Until:**
 \[
 \max_\Theta P_s \left(\text{Paths}(\Phi_1 \text{ U } \Phi_2) \right) = \max_\Theta P_s \left(\text{Sat}(\Phi_1) \text{ U } \text{ Sat}(\Phi_2) \right)
 \]

- Similarly for \(\min \)
PCTL Verification – Algorithm (3)

Similar as before:

- **Next:**
 \[
 \max_{\Theta} P^\Theta_s \left(\text{Paths}(\mathcal{X} \ \Phi) \right) = \max_{\alpha \in \text{Act}(s)} \sum_{s' \in \text{Sat}(\Phi)} P(s, s')
 \]

- **Bounded Until:**
 \[
 \max_{\Theta} P^\Theta_s \left(\text{Paths}(\Phi_1 \ \mathcal{U} \leq^n \Phi_2) \right) = \max_{\Theta} P^\Theta_s \left(\text{Sat}(\Phi_1) \ \mathcal{U} \leq^n \text{Sat}(\Phi_2) \right)
 \]

- **Unbounded Until:**
 \[
 \max_{\Theta} P^\Theta_s \left(\text{Paths}(\Phi_1 \ \mathcal{U} \ \Phi_2) \right) = \max_{\Theta} P^\Theta_s \left(\text{Sat}(\Phi_1) \ \mathcal{U} \ \text{Sat}(\Phi_2) \right)
 \]

- Similarly for \(\min_{\Theta} \)

As before:
can be reduced to step-bounded/unbounded max/min reachability.
LTL Verification

Input: MDP \mathcal{M}, state s, LTL formula Ψ, threshold $p \in [0, 1]$
Output: TRUE iff $\exists \Theta : P_s^\Theta(Paths(\Psi)) \geq p$.

Reducing subcases
We can reduce \leq to \geq by:
$\exists \Theta : P_s^\Theta(Paths(\Psi)) \leq p$ \iff
LTL Verification

Input: MDP \mathcal{M}, state s, LTL formula Ψ, threshold $p \in [0, 1]$
Output: TRUE iff $\exists \Theta : P_s^\Theta(Paths(\Psi)) \geq p$.

Reducing subcases

We can reduce \leq to \geq by:

$\exists \Theta : P_s^\Theta(Paths(\Psi)) \leq p \iff \exists \Theta : P_s^\Theta(Paths(\neg \Psi)) \geq 1 - p$
LTL Verification

Input: MDP \mathcal{M}, state s, LTL formula Ψ, threshold $p \in [0, 1]$
Output: TRUE iff $\exists \Theta : P^\Theta_s(Paths(\Psi)) \geq p$.

Reducing subcases

We can reduce \leq to \geq by:
$\exists \Theta : P^\Theta_s(Paths(\Psi)) \leq p \iff \exists \Theta : P^\Theta_s(Paths(\neg \Psi)) \geq 1 - p$
and necessarily to possibly ($\forall \rightarrow \exists$) by:
$\forall \Theta : P^\Theta_s(Paths(\Psi)) > p \iff \ldots$
LTL Verification

Input: MDP \mathcal{M}, state s, LTL formula Ψ, threshold $p \in [0, 1]$
Output: TRUE iff $\exists \Theta : P_s^{\Theta}(\text{Paths}(\Psi)) \geq p$.

Reducing subcases

We can reduce \leq to \geq by:
$\exists \Theta : P_s^{\Theta}(\text{Paths}(\Psi)) \leq p \iff \exists \Theta : P_s^{\Theta}(\text{Paths}(\neg\Psi)) \geq 1 - p$
and necessarily to possibly ($\forall \rightarrow \exists$) by:
$\forall \Theta : P_s^{\Theta}(\text{Paths}(\Psi)) > p \iff \neg \exists \Theta : P_s^{\Theta}(\text{Paths}(\Psi)) \leq p$.
LTL Verification

Input: MDP \mathcal{M}, state s, LTL formula Ψ, threshold $p \in [0, 1]$
Output: TRUE iff $\exists \Theta : P^\Theta_s(\text{Paths}(\Psi)) \geq p$.

Reducing subcases

We can reduce \leq to \geq by:
$\exists \Theta : P^\Theta_s(\text{Paths}(\Psi)) \leq p \iff \exists \Theta : P^\Theta_s(\text{Paths}(\neg \Psi)) \geq 1 - p$
and necessarily to possibly ($\forall \rightarrow \exists$) by:
$\forall \Theta : P^\Theta_s(\text{Paths}(\Psi)) > p \iff \neg \exists \Theta : P^\Theta_s(\text{Paths}(\Psi)) \leq p$.

Algorithm
LTL Verification

Input: MDP \(\mathcal{M} \), state \(s \), LTL formula \(\Psi \), threshold \(p \in [0, 1] \)
Output: TRUE iff \(\exists \Theta : P^\Theta_s(\text{Paths}(\Psi)) \geq p \).

Reducing subcases

We can reduce \(\leq \) to \(\geq \) by:
\[\exists \Theta : P^\Theta_s(\text{Paths}(\Psi)) \leq p \iff \exists \Theta : P^\Theta_s(\text{Paths}(\neg \Psi)) \geq 1 - p \]
and necessarily to possibly (\(\forall \to \exists \)) by:
\[\forall \Theta : P^\Theta_s(\text{Paths}(\Psi)) > p \iff \neg \exists \Theta : P^\Theta_s(\text{Paths}(\Psi)) \leq p. \]

Algorithm

The algorithm is conceptually the same as for DTMC:

1. transform \(\Psi \) to a deterministic Rabin automaton \(R \) with \(\text{Lang}(R) = \text{Paths}(\Psi) \),
LTL Verification

Input: MDP \mathcal{M}, state s, LTL formula Ψ, threshold $p \in [0, 1]$

Output: TRUE iff $\exists \Theta : P_s^\Theta (\text{Paths}(\Psi)) \geq p$.

Reducing subcases

We can reduce \leq to \geq by:

$\exists \Theta : P_s^\Theta (\text{Paths}(\Psi)) \leq p \iff \exists \Theta : P_s^\Theta (\text{Paths}(\neg \Psi)) \geq 1 - p$

and necessarily to possibly ($\forall \rightarrow \exists$) by:

$\forall \Theta : P_s^\Theta (\text{Paths}(\Psi)) > p \iff \neg \exists \Theta : P_s^\Theta (\text{Paths}(\Psi)) \leq p$.

Algorithm

The algorithm is conceptually the same as for DTMC:

1. transform Ψ to a deterministic Rabin automaton R with $\text{Lang}(R) = \text{Paths}(\Psi)$,

2. construct product MDP $\mathcal{M} \times R$,
LTL Verification

Input: MDP \mathcal{M}, state s, LTL formula ψ, threshold $p \in [0, 1]$
Output: TRUE iff $\exists \Theta : P^\Theta_s(Paths(\psi)) \geq p$.

Reducing subcases

We can reduce \leq to \geq by:
$\exists \Theta : P^\Theta_s(Paths(\psi)) \leq p \iff \exists \Theta : P^\Theta_s(Paths(\neg\psi)) \geq 1 - p$
and necessarily to possibly ($\forall \rightarrow \exists$) by:
$\forall \Theta : P^\Theta_s(Paths(\psi)) > p \iff \neg \exists \Theta : P^\Theta_s(Paths(\psi)) \leq p$.

Algorithm

The algorithm is conceptually the same as for DTMC:

1. transform ψ to a deterministic Rabin automaton R with $\text{Lang}(R) = Paths(\psi)$,
2. construct product MDP $\mathcal{M} \times R$,
3. by graph algorithms, find in the product MDP all accepting end components,
LTL Verification

Input: MDP M, state s, LTL formula ψ, threshold $p \in [0, 1]$

Output: TRUE iff $\exists \Theta : P_s^\Theta(\text{Paths}(\psi)) \geq p$.

Reducing subcases

We can reduce \leq to \geq by:
$\exists \Theta : P_s^\Theta(\text{Paths}(\psi)) \leq p \iff \exists \Theta : P_s^\Theta(\text{Paths}(\neg \psi)) \geq 1 - p$
and necessarily to possibly ($\forall \rightarrow \exists$) by:
$\forall \Theta : P_s^\Theta(\text{Paths}(\psi)) > p \iff \neg \exists \Theta : P_s^\Theta(\text{Paths}(\psi)) \leq p$.

Algorithm

The algorithm is conceptually the same as for DTMC:

1. transform ψ to a deterministic Rabin automaton R with $\text{Lang}(R) = \text{Paths}(\psi)$,
2. construct product MDP $M \times R$,
3. by graph algorithms, find in the product MDP all accepting end components,
4. their union is denoted by X
5. return TRUE iff $\max_{\Theta} P_s^\Theta(\Diamond X) \geq p$.
LTL Verification

Input: MDP \(\mathcal{M} \), state \(s \), LTL formula \(\Psi \), threshold \(p \in [0, 1] \)
Output: TRUE iff \(\exists \Theta : P_s^\Theta(\text{Paths}(\Psi)) \geq p \).

Reducing subcases

We can reduce \(\leq \) to \(\geq \) by:
\[\exists \Theta : P_s^\Theta(\text{Paths}(\Psi)) \leq p \iff \exists \Theta : P_s^\Theta(\text{Paths}(\neg \Psi)) \geq 1 - p \]
and necessarily to possibly (\(\forall \rightarrow \exists \)) by:
\[\forall \Theta : P_s^\Theta(\text{Paths}(\Psi)) > p \iff \neg \exists \Theta : P_s^\Theta(\text{Paths}(\Psi)) \leq p. \]

Algorithm

The algorithm is conceptually the same as for DTMC:

1. transform \(\Psi \) to a deterministic Rabin automaton \(R \) with \(\text{Lang}(R) = \text{Paths}(\Psi) \),
2. construct product MDP \(\mathcal{M} \times R \),
3. by graph algorithms, find in the product MDP all accepting end components, ← How to do this?!?
4. their union is denoted by \(X \)
5. return TRUE iff \(\max_\Theta P_s^\Theta(\Diamond X) \geq p \).
An end component is a subset of states S' and actions A' such that $\sum_{s'' \in S'} P(s', \alpha', s'') = 1$ for each $s' \in S'$ and $\alpha' \in A'(s')$ that is strongly connected (when considering edges of all actions).

With probability 1, infinitely often visited states on a run form an end component.
An end component is a subset of states S' and actions A' such that $\sum_{s'' \in S'} P(s', \alpha', s'') = 1$ for each $s' \in S'$ and $\alpha' \in A'(s')$ that is strongly connected (when considering edges of all actions).

With probability 1, infinitely often visited states on a run form an end component.

It is accepting if for some Rabin pair (E_i, F_i) it contains no state of E_i and some state of F_i.

But: there are exponentially many end components.
An end component is a subset of states S' and actions A' such that $\sum_{s'' \in S'} P(s', \alpha', s'') = 1$ for each $s' \in S'$ and $\alpha' \in A'(s')$ that is strongly connected (when considering edges of all actions).

With probability 1, infinitely often visited states on a run form an end component.

It is accepting if for some Rabin pair (E_i, F_i) it contains no state of E_i and some state of F_i.

But: there are exponentially many end components.

The solution: Maximal end components

Maximal exist as union of two non-disjoint end components is an end component.

Thus, we can deal with partition, instead.

Accepting MEC for Rabin condition $(E_i, F_i)_{i \in I}$
An end component is a subset of states S' and actions A' such that \(\sum_{s'' \in S'} P(s', \alpha', s'') = 1 \) for each $s' \in S'$ and $\alpha' \in A'(s')$ that is strongly connected (when considering edges of all actions).

With probability 1, infinitely often visited states on a run form an end component.

It is accepting if for some Rabin pair (E_i, F_i) it contains no state of E_i and some state of F_i.

But: there are exponentially many end components.

The solution: Maximal end components

Maximal exist as union of two non-disjoint end components is an end component.

Thus, we can deal with partition, instead.

Accepting MEC for Rabin condition $(E_i, F_i)_{i \in I}$

For each $i \in I$ construct an MDP M_i by removing states E_i and repetitively removing (a) actions that lead with positive probability to some removed state and (b) states with no actions.

Accepting MEC in each M_i are those containing some state of F_i.
A partition-refinement algorithm
Start with partition \(\{S\} \). In each iteration for each partition class \(T \).

1. Find in the induced subgraph of \(T \) (when considering edges of all actions) all SCCs that have at least one edge.
2. Repetitively:
 a. Remove all actions that leave with positive probability its SCC.
 b. Remove from each SCC all states that have no actions.
3. Replace \(T \) by what is left of each SCC.
4. Newly added classes may be not strongly-connected, repeat.
A partition-refinement algorithm
Start with partition \(|S|\). In each iteration for each partition class \(T\).

1. Find in the induced subgraph of \(T\) (when considering edges of all actions) all SCCs that have at least one edge.
2. Repetitively:
 (a) Remove all actions that leave with positive probability its SCC.
 (b) Remove from each SCC all states that have no actions.
3. Replace \(T\) by what is left of each SCC.
4. Newly added classes may be not strongly-connected, repeat.
Analysis questions

- Reachability: LP or VI
- Probabilistic logics: combination of the techniques
- Transient analysis: preference over \(S \) needed
- Steady-state analysis: preference over \(S \) needed
- Rewards: solves transient and steady-state analysis

For best/worst transient/steady-state distribution, a preference over \(S \) needed

- Step bounded reachability \(\Diamond \leq nB \) is one approach to distribution after \(n \) steps (preferred are exactly the states in \(B \)).
- A more fine tuned preference can be specified by \textit{rewards}
MDP – Rewards

- expected instantaneous reward
- expected mean payoff
MDP – Rewards

Instantaneous rewards
What is the maximal expected number of my pieces in the play area after 50 rounds?

Step-bounded cumulative rewards
What is the maximal expected number of times I kick out a piece of the opponent within the first 100 steps?

Cumulative rewards to reach a target
What is the minimal expected number of steps before the game ends?

Mean payoff (long-run average reward)
What is the average number of pieces on board? (restart after game end ⇒ infinite run)
Definition

\[
\sup_{\Theta} E^{\Theta}[l_r^k] \text{ where } l_r^k(\xi(s_0s_1\ldots)) = r(s_k)
\]
Definition

\[\sup_{\Theta} E^{\Theta}[I_r^{=k}] \text{ where } I_r^{=k}(\xi(s_0s_1\ldots)) = r(s_k) \]

Theorem

For an MDP with reward \(r \), the vector \(x(s) = \sup_{\Theta} E^{\Theta}_s[I_r^{=k}] \) equals to \(x^k(s) \) where

\[
x^\ell(s) = \begin{cases}
 r(s) & \text{if } \ell = 0 \\
 \max_{\alpha \in \text{Act}(s)} \sum_{s' \in S} P(s, \alpha, s') \cdot x^{\ell-1}(s') & \text{otherwise}
\end{cases}
\]

Corollary

There are optimal deterministic schedulers for \(\max E^{\Theta}_s[I_r^{=k}] \) (and similarly \(\min \)).
Definition
\[\sup_{\Theta} E^{\Theta}[I_r^k] \quad \text{where} \quad I_r^k(\xi(s_0s_1\ldots)) = r(s_k) \]

Theorem
For an MDP with reward \(r \), the vector \(x(s) = \sup_{\Theta} E^{\Theta}_s[I_r^k] \) equals to \(x^k(s) \) where
\[
x^\ell(s) = \begin{cases}
 r(s) & \text{if } \ell = 0 \\
 \max_{\alpha \in \text{Act}(s)} \sum_{s' \in S} P(s, \alpha, s') \cdot x^{\ell-1}(s') & \text{otherwise}
\end{cases}
\]

Corollary
There are optimal deterministic schedulers for \(\max E^{\Theta}_s[I_r^k] \)
(and similarly min).
Definition
\[\sup_\Theta E^\Theta[I_r^=k] \text{ where } I_r^=k(\xi(s_0s_1\ldots)) = r(s_k) \]

Theorem
For an MDP with reward \(r \), the vector \(x(s) = \sup_\Theta E_s^\Theta[I_r^=k] \) equals to \(x^k(s) \) where

\[
x^\ell(s) = \begin{cases}
 r(s) & \text{if } \ell = 0 \\
 \max_{\alpha \in \text{Act}(s)} \sum_{s' \in S} P(s, \alpha, s') \cdot x^{\ell-1}(s') & \text{otherwise}
\end{cases}
\]

Corollary
There are optimal deterministic schedulers for \(\max E_s^\Theta[I_r^=k] \) (and similarly min).

What about step-bounded cumulative reward?
\[
x^\ell(s) = \begin{cases}
 r(s) & \text{if } \ell = 0 \\
 r(s) + \max_{\alpha \in \text{Act}(s)} \sum_{s' \in S} P(s, \alpha, s') \cdot x^{\ell-1}(s') & \text{otherwise}
\end{cases}
\]
Recall mean payoff (long-run average reward):

\[R_1 R_2 \cdots = 42 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \cdots \]

\[\lim_{n \to \infty} \frac{\sum_{i=1}^{n} R_i}{n} = 1.5 \]

Example: Money investment

- > 0 earning, < 0 losing
- maximize expected mean payoff
Recall mean payoff (long-run average reward):

\[R_1 R_2 \cdots = 42 \ 1 \ 2 \ 1 \ 2 \ 1 \ 2 \cdots \]

\[\lim_{n \to \infty} \frac{\sum_{i=1}^{n} R_i}{n} = 1.5 \]

Example: Money investment

- > 0 earning, < 0 losing
- maximize expected mean payoff

Limit may not exist:

\[0 \ (1)^{10} \ (0)^{1000} \ (1)^{1000000} \cdots \]

\[\liminf_{n \to \infty} \frac{\sum_{i=1}^{n} R_i}{n} = 0 \]

Definition

\[\sup_{\Theta} \liminf_{n \to \infty} \frac{1}{n} E^\Theta[I_r^{\leq k}] \text{ where } I_r^{\leq k}(\xi(s_0 s_1 \ldots)) = \sum_{i=1}^{k} r(s_i) \]
\(\vec{v} \) the smallest solution of LP, strategy derived from its dual LP

Primary linear program:

Minimize:

\[
\sum_{s \in S} \vec{\lambda}_s \vec{x}_s
\]

Subject to:

for all \(s \in S, a \in \text{Act}(s) \):

\[
\vec{x}_s \geq \sum_{s' \in S} \delta(a)(s') \vec{x}_{s'}
\]

for all \(s \in S, a \in \text{Act}(s) \):

\[
\vec{x}_s \geq r(a) + \sum_{s' \in S} \delta(a)(s') \vec{y}_{s'} - \vec{y}_s
\]

where \(\vec{\mu}_s > 0 \) arbitrarily chosen
Dual linear program:

Maximize:

\[\sum_{a \in A} r(a) \vec{x}_a \]

Subject to:

for all \(s \in S \):

\[\bar{\mu}_s + \sum_{a \in A} \delta(a)(s) \vec{y}_a = \sum_{a \in \text{Act}(s)} \vec{y}_a + \sum_{a \in \text{Act}(s)} \vec{x}_a \]

\[\sum_{a \in A} \delta(a)(s) \vec{x}_a = \sum_{a \in \text{Act}(s)} \vec{x}_a \]

\(\vec{x} \): occupation measure in the limit

\(\vec{y}_a \): expected number of taking action \(a \) during the transient phase

both flows subject to Kirchhoff’s law
Optimal strategy: \(f \) such that

- \(\bar{x}_{f(s)} > 0 \) if \(s \in S_{\bar{x}} \)
- \(\bar{y}_{f(s)} > 0 \) if \(s \not\in S_{\bar{x}} \)

where \(S_{\bar{x}} := \{ s \in S \mid \sum_{a \in Act(s)} \bar{x}_a > 0 \} \)
Value vector \vec{v} found by successive approximation
For unichains (every strategy induces a Markov chain with only one BSCC), extensible to MDPs (but more complicated)

1. Choose $\varepsilon > 0$, and take $\vec{w} \in \mathbb{R}^{|S|}$ arbitrarily
2. Compute:
 - $q(a) := r(a) + \sum_{s' \in S} \delta(a)(s')\vec{w}_{s'}$, for $s \in S$ and $a \in \text{Act}(s)$
 - $\vec{u}_s := \max_{a \in \text{Act}(s)} q(a)$, for $s \in S$, and take f such that $\vec{u}_s = r(f(s)) + \sum_{s' \in S} \delta(f(s), s')\vec{w}_{s'}$
 - $k := \max_{s \in S} (\vec{u}_s - \vec{w}_s)$, $l := \min_{s \in S} (\vec{u}_s - \vec{w}_s)$
3. If $k - l \leq \varepsilon$: f is an ε-optimal strategy and $\frac{k + l}{2}$ is a $\frac{1}{2}\varepsilon$-approximation of the value \vec{v} (Stop)
 Otherwise: $\vec{w} := \vec{u}$ and go to step 2.

\vec{w}^t approximates the optimal total reward in time t
$\vec{w}^t - \vec{w}^{t-1}$, computed as $\vec{u} - \vec{w}$, converges to \vec{v}
k and l approximate \vec{v} from above and below, respectively.
Sequence \(f^0, f^1, \ldots \) of strategies such that \(\bar{v}(f^{t+1}) \geq \bar{v}(f^t) \) and converging to an optimal strategy

Finitely many strategies \(\Rightarrow \) termination

\[
\begin{align*}
\text{for all } s \in S: & \quad \tilde{x}_s = \sum_{s' \in S} \delta(f(s), s') \tilde{x}_{s'} \\
\text{for all } s \in S: & \quad \tilde{x}_s + \tilde{y}_s = \sum_{s' \in S} \delta(f(s), s') \tilde{y}_{s'} + r(f(s)) \\
\text{for all } s \in S: & \quad \tilde{y}_s + \tilde{z}_s = \sum_{s' \in S} \delta(f(s), s') \tilde{z}_{s'}
\end{align*}
\]

\(\tilde{x} \) is equal to \(\mathbb{E}^f[MP] \)
\(\tilde{y} \) is the difference between total and long-run rewards
\(\tilde{z} \) is used in the algorithm to prevent cycling
Using \((\vec{x}, \vec{y})\)

\[
B(s, f) = \left\{ a \in \text{Act}(s) \mid \begin{array}{l}
\sum_{s'} \delta(a)(s')\vec{x}_{s'} > \vec{x}_s \text{ or } \\
\sum_{s'} \delta(a)(s')\vec{x}_{s'} = \vec{x}_s \text{ and } \\
r(a) + \sum_{s'} \delta(a)(s')\vec{y}_{s'} > \vec{x}_s + \vec{y}_s
\end{array} \right\} \quad (4)
\]

1. Start with any \(f \in F\).
2. Determine unique \((\vec{x}, \vec{y})\)-part in a solution of the linear system \((3)\).
3. For every \(s \in S\) : determine \(B(s, f)\) as defined in \((4)\) using the values \(\vec{x}\) and \(\vec{y}\) from step 2.
4. If \(B(s, f) = \emptyset\) for every \(s \in S\) : go to step 6.
Otherwise: take any \(g \neq f\) such that \(g(s) \in B(s, f)\) if \(g(s) \neq f(s)\).
5. \(f := g\) and go to step 2.
6. \(f\) is an average optimal strategy.
Optimize multiple mean payoffs $MP_i, i \in \{1, \ldots, n\}$, in MDP:

- **expectation**

 $$\bigwedge_i \mathbb{E}[MP_i] \geq \exp_i$$

- **satisfaction** (quantiles, percentiles)
 - **conjunctive**

 $$\bigwedge_i \mathbb{P}[MP_i \geq \text{sat}_i] \geq \text{prob}_i$$

 - **joint**

 $$\mathbb{P}[\bigwedge_i MP_i \geq \text{sat}_i] \geq \text{prob}$$

- **conjunctions** thereof [CKK15,CR15]
Examples

Example 1: Money investment
- > 0 earning, < 0 losing
- maximize expected mean payoff $E[MP]$
Examples

Example 1: Money investment

- > 0 earning, < 0 losing
- maximize expected mean payoff \(\mathbb{E}[MP] \)
- maximize probability \(\mathbb{P}[MP \geq 0] \)
Examples

Example 1: Money investment

- > 0 earning, < 0 losing
- maximize expected mean payoff $\mathbb{E}[MP]$
- maximize probability $\mathbb{P}[MP \geq 0]$
- maximize $\mathbb{E}[MP]$ while ensuring $\mathbb{P}[MP \geq 0] \geq 0.95$

“risk-averse” strategies
Examples

Example 1: Money investment

- > 0 earning, < 0 losing
- maximize expected mean payoff $\mathbb{E}[MP]$
- maximize probability $\mathbb{P}[MP \geq 0]$
- maximize $\mathbb{E}[MP]$ while ensuring $\mathbb{P}[MP \geq 0] \geq 0.95$

“risk-averse” strategies

Example 2: Downloading service (multiple mean payoffs)

- gratis service: expected throughput $MP_1 = 1\text{Mbps}$
- premium service: $\mathbb{E}[MP_2] \geq 10\text{Mbps}$ and 95% connections run on $\geq 5\text{Mbps}$; sold at p_2 per Mb
- need to hire MP_3 resources from a cloud each at price p_3
- while satisfying the guarantees, maximize $\mathbb{E}[p_2 \cdot MP_2 - p_3 \cdot MP_3]$
Example

\[\begin{align*}
\text{sat} &= (0.5, 0.5), \quad \text{prob} = (0.8, 0.8) \\
0.3 & \quad .3 & \quad 1 & \quad 1
\end{align*} \]
Example

exp = (1.1, 0.5), sat = (0.5, 0.5), prob = (0.8, 0.8)

1: $0.2 \cdot 4 + 0.6 \cdot 0.5 = 1.1$

2: $0.6 \cdot 0.5 + 0.2 \cdot 1 = 0.5$
Example

\[\text{exp} = (1.1, 0.5), \text{sat} = (0.5, 0.5), \text{prob} = (0.8, 0.8) \]

- linear programming
- feasible and practically useful
Model Construction Principles
The setting

▶ “Real” parallel system: $P = P_1 \parallel \ldots \parallel P_n$.
The setting

- “Real” parallel system: $P = P_1 \parallel \ldots \parallel P_n$.
- Transition system: $T = T_1 \parallel \ldots \parallel T_n$.
The setting

- “Real” parallel system: $P = P_1 \parallel \ldots \parallel P_n$.
- Transition system: $T = T_1 \parallel \ldots \parallel T_n$.

Our goal: Define semantic parallel operators on transition systems to model “real” parallel operators.
The setting

- “Real” parallel system: $P = P_1 \parallel \ldots \parallel P_n$.
- Transition system: $T = T_1 \parallel \ldots \parallel T_n$.

Our goal: Define semantic parallel operators on transition systems to model “real” parallel operators.

In the following we:

1. recall the notions without randomness
2. observe how to add the randomness
A transition system in a tuple

\[\mathcal{T} = (S, \text{Act}, \rightarrow, s_0, \text{AP}, L) \]

- **\(S \)** is the state space, i.e., set of states,
- **\(\text{Act} \)** is a set of actions,
- **\(\rightarrow \subseteq S \times \text{Act} \times S \)** is the transition relation of the form \(s \xrightarrow{\alpha} s' \) where \(s, s' \in S \) and \(\alpha \in \text{Act} \).
- **\(s_0 \in S \)** is the initial state,
- **\(\text{AP} \)** is a set of atomic propositions,
- **\(L : S \rightarrow 2^{\text{AP}} \)** is the labelling function.
1. **Pure concurrency**: Interleaving operator, no communication, no dependencies

2. **Synchronous product**: For hardware systems with a shared clock

3. **Synchronous message passing**

4. **Communication via shared variables**

5. **Channel systems**: Shared variables + communication via channels
\[T_1 = (S_1, \text{Act}_1, \rightarrow_1, s_01, \text{AP}_1, L_1) \]

\[T_2 = (S_2, \text{Act}_2, \rightarrow_2, s_02, \text{AP}_2, L_2) \]

The composite transition system \(T_1 \parallel T_2 \) is given by:

\[T_1 \parallel T_2 = (S_1 \times S_2, \text{Act}_1 \cup \text{Act}_2, \rightarrow, \langle s_01, s_02 \rangle, \text{AP}, L) \]

where \(\rightarrow \) is given by:

\[s_1 \xrightarrow{\alpha_1} s'_1 \quad \Rightarrow \quad \langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle \]

\[s_2 \xrightarrow{\alpha_2} s'_2 \quad \Rightarrow \quad \langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle \]

atomic propositions: \(\text{AP} = \text{AP}_1 \cup \text{AP}_2 \)

labelling function: \(L(\langle s_1, s_2 \rangle) = L(s_1) \cup L(s_2) \)
Model Construction - 2. Synchronous Product \(\otimes \)

\[
\mathcal{T}_1 = (S_1, \text{Act}_1, \rightarrow_1, s_{01}, \text{AP}_1, L_1)
\]

\[
\mathcal{T}_2 = (S_2, \text{Act}_2, \rightarrow_2, s_{02}, \text{AP}_2, L_2)
\]

The composite transition system \(\mathcal{T}_1 \otimes \mathcal{T}_2 \) is given by:

\[
\mathcal{T}_1 \otimes \mathcal{T}_2 = (S_1 \times S_2, \text{Act}, \rightarrow, \langle s_{01}, s_{02} \rangle, \text{AP}, L)
\]

where \(\rightarrow \) is given by:

\[
\begin{align*}
\frac{s_1 \xrightarrow{\alpha_1} s_1' \land s_2 \xrightarrow{\beta_2} s_2'}{\langle s_1, s_2 \rangle \xrightarrow{\alpha \ast \beta} \langle s_1', s_2' \rangle}
\end{align*}
\]

\[
\ast : \text{Act}_1 \times \text{Act}_2 \rightarrow \text{Act}
\]
\[T_1 = (S_1, \text{Act}_1, \rightarrow_1, s_{01}, \text{AP}_1, L_1) \]
\[T_2 = (S_2, \text{Act}_2, \rightarrow_2, s_{02}, \text{AP}_2, L_2) \]

Concurrent execution with synchronization over all actions in \(\text{Syn} \subseteq \text{Act}_1 \cap \text{Act}_2 \):

\[T_1 \parallel_{\text{syn}} T_2 = (S_1 \times S_2, \text{Act}_1 \cup \text{Act}_2, \rightarrow, \langle s_{01}, s_{02} \rangle, \text{AP}, L) \]

- **Interleaving for** \(\alpha \not\in \text{Syn} \):

\[
\begin{align*}
 s_1 & \xrightarrow{\alpha_1} s'_1 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle s'_1, s_2 \rangle
\end{align*}
\]

\[
\begin{align*}
 s_2 & \xrightarrow{\alpha_2} s'_2 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle s_1, s'_2 \rangle
\end{align*}
\]

- **Handshaking for** \(\alpha \in \text{Syn} \):

\[
\begin{align*}
 s_1 & \xrightarrow{\alpha_1} s'_1 \land s_2 \xrightarrow{\alpha_2} s'_2 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle s'_1, s'_2 \rangle
\end{align*}
\]
1. **Pure concurrency**: Interleaving operator, no communication, no dependencies

2. **Synchronous product**: For hardware systems with a shared clock

3. **Synchronous message passing**: Interleaving + synchronization

4. **Communication via shared variables**
 - Encode possible variable values as states
 - Transition system describes possible updates and lookups
 - Resort to synchronous message passing

5. **Channel systems**: Shared variables + communication via channels
 - communication over shared variables
 - synchronous message passing (channels of capacity 0)
 - asynchronous message passing (channels of capacity ≥ 1)

 can be encoded into
 - transition systems using only
 - synchronous message passing
Given \(n \) different processes \(i = 1, \ldots, n \)

To model variable \(x \) with values \(V = \{v_1, \ldots, v_m\} \)

Introduce another process and new actions

\[\mathcal{T}_x = (S_x, \text{Act}_x, \rightarrow_x, \ldots) \]

\[S_x = \{v_1, \ldots, v_m\} \]

\[\text{Act}_x = \{\text{get}_{x,i,v}, \text{set}_{x,i,v} \mid i \in \{1, \ldots, n\}, v \in V\} \]

\[\rightarrow_x = \{(v, \text{get}_{x,i,v}, v), (v, \text{set}_{x,i,v'}, v') \mid i \in \{1, \ldots, n\}, v \in V, v' \in V\} \]

Act of process \(i \) is extended by \(\text{Act}_x \) to get and set the variable \(x \)

Mathematical operations can be derived
Model Construction - 5. Asynchronous message pass.

- Extension similar to shared variables
- Use transition system to model channel
 - parallel composition
 - rename actions as needed
Pure concurrency and Synchronous product are special cases of synchronous message passing.

Communication via shared variables and Channel systems can be encoded by synchronous message passing.
Model Construction Principles
The Stochastic Case
\[\mathcal{D}_1 = (S_1, \text{Act}_1, \rightarrow_1, \ldots) \]

\[\mathcal{D}_2 = (S_2, \text{Act}_2, \rightarrow_2, \ldots) \]

The composite transition system \(\mathcal{D}_1 \parallel \mathcal{D}_2 \) is given by:

\[\mathcal{D}_1 \parallel \mathcal{D}_2 = (S_1 \times S_2, \text{Act}_1 \cup \text{Act}_2, \rightarrow, \ldots) \]

where \(\rightarrow \) is given by:

\[
\begin{align*}
\langle s_1, s_2 \rangle & \xrightarrow{\alpha_1} \langle \mu_1, s_2 \rangle \\
\langle s_1, s_2 \rangle & \xrightarrow{\alpha_2} \langle \mu_2, s_1 \rangle \\
\langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle s_1, \mu_2 \rangle
\end{align*}
\]

where \(\langle \mu_1, s_2 \rangle(\langle s'_1, s'_2 \rangle) = \mu_1(s'_1) \) if \(s'_2 = s_2 \) and 0 otherwise, and \(\langle s_1, \mu_2 \rangle(\langle s'_1, s'_2 \rangle) = \mu_2(s'_2) \) if \(s'_1 = s_1 \) and 0 otherwise.
Recall:

\[\mathcal{T}_1 = (S_1, \text{Act}_1, \rightarrow_1, \ldots) \quad \mathcal{T}_2 = (S_2, \text{Act}_2, \rightarrow_2, \ldots) \]

Concurrent execution with synchronization over all actions in \(\text{Syn} \subseteq \text{Act}_1 \cap \text{Act}_2 \):

\[\mathcal{T}_1 \parallel_{\text{syn}} \mathcal{T}_2 = (S_1 \times S_2, \text{Act}_1 \cup \text{Act}_2, \rightarrow, \ldots) \]

- **Interleaving for** \(\alpha \notin \text{Syn} \):

 \[
 \begin{align*}
 s_1 & \xrightarrow{\alpha_1} s'_1 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle s'_1, s_2 \rangle \\
 \end{align*}
 \]

 \[
 \begin{align*}
 s_2 & \xrightarrow{\alpha_2} s'_2 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle s_1, s'_2 \rangle \\
 \end{align*}
 \]

- **Handshaking for** \(\alpha \in \text{Syn} \):

 \[
 \begin{align*}
 s_1 & \xrightarrow{\alpha_1} s'_1 \land s_2 \xrightarrow{\alpha_1} s'_2 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle s'_1, s'_2 \rangle \\
 \end{align*}
 \]
$\mathcal{D}_1 = (S_1, Act_1, \rightarrow_1, \ldots)$ \hspace{1cm} $\mathcal{D}_2 = (S_2, Act_2, \rightarrow_2, \ldots)$

Concurrent execution with synchronization over all actions in $Syn \subseteq Act_1 \cap Act_2$:

$\mathcal{D}_1 \parallel_{syn} \mathcal{D}_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, \ldots)$

- **Interleaving for $\alpha \notin Syn$:**

 \[
 \begin{align*}
 s_1 & \xrightarrow{\alpha} \mu_1 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle \mu_1, s_2 \rangle
 \end{align*}
 \]

 \[
 \begin{align*}
 s_2 & \xrightarrow{\alpha} \mu_2 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle s_1, \mu_2 \rangle
 \end{align*}
 \]

- **Handshaking for $\alpha \in Syn$:**

 \[
 \begin{align*}
 s_1 & \xrightarrow{\alpha} \mu_1 \land s_2 \xrightarrow{\alpha} \mu_2 \\
 \langle s_1, s_2 \rangle & \xrightarrow{\alpha} \langle \mu_1, \mu_2 \rangle
 \end{align*}
 \]

where $\langle \mu_1, \mu_2 \rangle(\langle s_1', s_2' \rangle) = \mu_1(s_1') \cdot \mu_2(s_2')$.
Probabilistic automata - Example

What is $s_0 \parallel \{\alpha\} t_0$?
Probabilistic automata - Example
Probabilistic automata - Parallelism & Communication

- Pure concurrency
- Synchronous product
- Synchronous message passing
- Communication via shared variables
- Channel systems

What is the difference of PA to MDPs, actually?
What is the difference pf PA to MDPs, actually?

MDP: each state has \textit{at most one} transition for a given action.
PA: each state \textit{can have several} transitions for a given action.
Further models

- PTA, Attack trees
- STA
- CTMC, CTMDP, failure trees (transient, steady-state, CSL)
- hybrid automata (reachability)
- corresponding games