Motivation
Example: Simulation of a die by coins

Knuth & Yao die

Question:
- What is the probability of obtaining 2?
Definition:
A discrete-time Markov chain (DTMC) is a tuple \((S, P, \pi_0)\) where

- \(S\) is the set of states,
- \(P : S \times S \rightarrow [0, 1]\) with \(\sum_{s' \in S} P(s, s') = 1\) is the transition matrix, and
- \(\pi_0 \in [0, 1]^{|S|}\) with \(\sum_{s \in S} \pi_0(s) = 1\) is the initial distribution.
Example: Craps

Two dice game:

- First: $\sum \in \{7, 11\} \Rightarrow \text{win}$, $\sum \in \{2, 3, 12\} \Rightarrow \text{lose}$, else $s = \sum$
- Next rolls: $\sum = s \Rightarrow \text{win}$, $\sum = 7 \Rightarrow \text{lose}$, else iterate
Example: Craps

Two dice game:

- First: $\sum \in \{7, 11\} \Rightarrow \text{win}$, $\sum \in \{2, 3, 12\} \Rightarrow \text{lose}$, else $s = \sum$
- Next rolls: $\sum = s \Rightarrow \text{win}$, $\sum = 7 \Rightarrow \text{lose}$, else iterate

![Craps Game Diagram]
Example: Craps

Two dice game:

- First: $\sum \in \{7, 11\} \Rightarrow \text{win}$, $\sum \in \{2, 3, 12\} \Rightarrow \text{lose}$, else $s = \sum$
- Next rolls: $\sum = s \Rightarrow \text{win}$, $\sum = 7 \Rightarrow \text{lose}$, else iterate
Example: Zero Configuration Networking (Zeroconf)

- Previously: **Manual** assignment of IP addresses
- Zeroconf: **Dynamic** configuration of local IPv4 addresses
- Advantage: **Simple** devices able to communicate automatically

Automatic Private IP Addressing (APIPA) – RFC 3927

- Used when DHCP is **configured** but **unavailable**
- Pick randomly an address from 169.254.1.0 – 169.254.254.255
- Find out whether anybody else uses this address (by sending several ARP requests)

Model:

- Randomly pick an address among the K (65024) addresses.
- With m hosts in the network, collision probability is $q = \frac{m}{K}$.
- Send 4 ARP requests.
- In case of collision, the probability of no answer to the ARP request is p (due to the lossy channel)
Example: Zero Configuration Networking (Zeroconf)

For 100 hosts and $p = 0.001$, the probability of error is $\approx 1.55 \cdot 10^{-15}$.
What is probabilistic model checking?

- **Probabilistic** specifications, e.g. probability of reaching bad states shall be smaller than 0.01.
- Probabilistic model checking is an automatic verification technique for this purpose.

Why quantities?

- **Randomized** algorithms
- **Faults** e.g. due to the environment, lossy channels
- **Performance** analysis, e.g. reliability, availability
Basics of Probability Theory
(Recap)
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But …[Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But ... [Bertrand's Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But … [Bertrand’s Paradox]
Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?
Definition: Probability Function
Given sample space Ω and σ-algebra \mathcal{F}, a probability function $P: \mathcal{F} \to [0, 1]$ satisfies:

- $P(A) \geq 0$ for $A \in \mathcal{F}$,
- $P(\Omega) = 1$, and
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ for pairwise disjoint $A_i \in \mathcal{F}$

Definition: Probability Space
A probability space is a tuple (Ω, \mathcal{F}, P) with a sample space Ω, σ-algebra $\mathcal{F} \subseteq 2^\Omega$ and probability function P.

Example
A random real number taken uniformly from the interval $[0, 1]$.
- Sample space: $\Omega = [0, 1]$.
Definition: Probability Function

Given sample space Ω and σ-algebra \mathcal{F}, a **probability function** $P : \mathcal{F} \rightarrow [0, 1]$ satisfies:

- $P(A) \geq 0$ for $A \in \mathcal{F}$,
- $P(\Omega) = 1$, and
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ for pairwise disjoint $A_i \in \mathcal{F}$

Definition: Probability Space

A **probability space** is a tuple (Ω, \mathcal{F}, P) with a sample space Ω, σ-algebra $\mathcal{F} \subseteq 2^\Omega$ and probability function P.

Example

A random real number taken uniformly from the interval $[0, 1]$.

- Sample space: $\Omega = [0, 1]$.
- σ-algebra: \mathcal{F} is the minimal superset of $\{[a, b] \mid 0 \leq a \leq b \leq 1\}$ closed under complementation and countable union.
- Probability function: $P([a, b]) = (b - a)$, by Carathéodory’s extension theorem there is a unique way how to extend it to all elements of \mathcal{F}.
Random Variables

```c
int get_random_number()
{
    return 4;  // chosen by fair dice roll.
    // guaranteed to be random.
}
```
Definition: Random Variable
A random variable X is a measurable function $X : \Omega \rightarrow I$ to some I. Elements of I are called random elements. Often $I = \mathbb{R}$:

![Diagram showing a random variable X mapping from a sample space Ω to a real number line \mathbb{R}]

Example (Bernoulli Trials)
Throwing a coin 3 times: $\Omega_3 = \{hhh, hht, hth, htt, thh, tht, tth, ttt\}$.
We define 3 random variables $X_i : \Omega \rightarrow \{h, t\}$. For all $x, y, z \in \{h, t\}$,

- $X_1(xyz) = x$,
- $X_2(xyz) = y$,
- $X_3(xyz) = z$.
Stochastic Processes and Markov Chains
Definition:
Given a probability space \((\Omega, \mathcal{F}, P)\), a **stochastic process** is a family of random variables

\[
\{X_t \mid t \in T\}
\]

defined on \((\Omega, \mathcal{F}, P)\). For each \(X_t\) we assume

\[
X_t : \Omega \rightarrow S
\]

where \(S = \{s_1, s_2, \ldots\}\) is a finite or countable set called **state space**.

A stochastic process \(\{X_t \mid t \in T\}\) is called

- **discrete-time** if \(T = \mathbb{N}\) or
- **continuous-time** if \(T = \mathbb{R}_{\geq 0}\).

For the following lectures we focus on discrete time.
Example: Weather Forecast

- $S = \{\text{sun, rain}\}$,
- we model time as discrete – a random variable for each day:
 - X_0 is the weather today,
 - X_i is the weather in i days.
- how can we set up the probability space to measure e.g. $P(X_i = \text{sun})$?
Let us fix a state space S. How can we construct the probability space (Ω, \mathcal{F}, P)?

Definition: Sample Space Ω

We define $\Omega = S^\infty$. Then, each X_n maps a sample $\omega = \omega_0\omega_1\ldots$ onto the respective state at time n, i.e.,

$$(X_n)(\omega) = \omega_n \in S.$$
Definition: Cylinder Set

For $s_0 \cdots s_n \in S^{n+1}$, we set the cylinder $C(s_0 \cdots s_n) = \{s_0 \cdots s_n \omega \in \Omega\}$.

Example: $S = \{s_1, s_2, s_3\}$ and $C(s_1 s_3)$

Definition: σ-algebra \mathcal{F}

We define \mathcal{F} to be the smallest σ-Algebra that contains all cylinder sets, i.e.,

$$\{C(s_0 \cdots s_n) \mid n \in \mathbb{N}, s_i \in S\} \subseteq \mathcal{F}.$$

Check: Is each X_i measurable?
(on the discrete set S we assume the full σ-algebra 2^S).
How to specify the probability Function P?

We only needs to specify for each $s_0 \cdots s_n \in S^n$

$$P(C(s_0 \cdots s_n)).$$

This amounts to specifying

1. $P(C(s_0))$ for each $s_0 \in S$, and
2. $P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1}))$ for each $s_0 \cdots s_i \in S^i$

since

$$P(C(s_0 \cdots s_n)) = P(C(s_0 \cdots s_n) \mid C(s_0 \cdots s_{n-1})) \cdot P(C(s_0 \cdots s_{n-1}))$$

$$= P(C(s_0)) \cdot \prod_{i=1}^{n} P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1}))$$
How to specify the probability Function P?

We only needs to specify for each $s_0 \cdots s_n \in S^n$

$$P(C(s_0 \cdots s_n)).$$

This amounts to specifying

1. $P(C(s_0))$ for each $s_0 \in S$, and
2. $P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1}))$ for each $s_0 \cdots s_i \in S^i$

since

$$P(C(s_0 \cdots s_n)) = P(C(s_0 \cdots s_n) \mid C(s_0 \cdots s_{n-1})) \cdot P(C(s_0 \cdots s_{n-1}))$$

$$= P(C(s_0)) \cdot \prod_{i=1}^{n} P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1}))$$

Still, lots of possibilities...
Discrete-time Stochastic Processes - Construction (5)

Weather Example: Option 1 - statistics of days of a year

- the forecast starts on Jan 01,
- a distribution p_j over \{sun, rain\} for each $1 \leq j \leq 365$,
- for each $i \in \mathbb{N}$ and $s_0 \cdots s_i \in S^{i+1}$

$$P(C(s_0 \cdots s_i) | C(s_0 \cdots s_{i-1})) = p_i \% 365(s_i)$$

Weather Example: Option 2 - two past days

- a distribution $p_{s's''}$ over \{sun, rain\} for each $s', s'' \in S$,
- for each $i \geq 2$ and $s_0 \cdots s_i \in S^{i+1}$

$$P(C(s_0 \cdots s_i) | C(s_0 \cdots s_{i-1})) = p_{s_{i-2}s_{i-1}}(s_i)$$
Weather Example: Option 1 - statistics of days of a year

- the forecast starts on Jan 01,
- a distribution \(p_j \) over \(\{sun, rain\} \) for each \(1 \leq j \leq 365 \),
- for each \(i \in \mathbb{N} \) and \(s_0 \cdots s_i \in S^{i+1} \)

\[
P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_i \%_{365}(s_i)
\]

Weather Example: Option 2 - two past days

- a distribution \(p_{s's''} \) over \(\{sun, rain\} \) for each \(s', s'' \in S \),
- for each \(i \geq 2 \) and \(s_0 \cdots s_i \in S^{i+1} \)

\[
P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_{s_{i-2}s_{i-1}}(s_i)
\]

Here: time-homogeneous Markovian stochastic processes
Definition: Markov
A discrete-time stochastic process \(\{X_n \mid n \in \mathbb{N}\} \) is Markov if

\[
P(X_n = s_n \mid X_{n-1} = s_{n-1}, \ldots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1})
\]

for all \(n > 1 \) and \(s_0, \ldots, s_n \in S \) with \(P(X_{n-1} = s_{n-1}) > 0 \).

Definition: Time-homogeneous
A discrete-time Markov process \(\{X_n \mid n \in \mathbb{N}\} \) is time-homogeneous if

\[
P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)
\]

for all \(n > 1 \) and \(s, s' \in S \) with \(P(X_0 = s) > 0 \).
Definition: Markov
A discrete-time stochastic process \(\{ X_n \mid n \in \mathbb{N} \} \) is Markov if
\[
P(X_n = s_n \mid X_{n-1} = s_{n-1}, \ldots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1})
\]
for all \(n > 1 \) and \(s_0, \ldots, s_n \in S \) with
\(P(X_{n-1} = s_{n-1}) > 0 \).

Definition: Time-homogeneous
A discrete-time Markov process \(\{ X_n \mid n \in \mathbb{N} \} \) is time-homogeneous if
\[
P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)
\]
for all \(n > 1 \) and \(s, s' \in S \) with \(P(X_0 = s) > 0 \).
Weather Example: Option 3 - one past day

- a distribution \(p_{s'} \) over \(\{\text{sun}, \text{rain}\} \) for each \(s' \in S \),
- for each \(i \geq 1 \) and \(s_0 \cdots s_i \in S^{i+1} \)

\[
P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1})) = p_{s_{i-1}}(s_i)
\]

- a distribution \(\pi \) over \(\{\text{sun}, \text{rain}\} \) such that \(P(C(s_0)) = \pi(s_0) \).

Overly restrictive, isn't it?

Not really – one only needs to extend the state space \(S = \{1, \ldots, 365\} \times \{\text{sun}, \text{rain}\} \times \{\text{sun}, \text{rain}\} \), now each state encodes current day of the year, current weather, and weather yesterday, we can define over \(S \) a time-homogeneous Markov process based on both Options 1 & 2 given earlier.
Weather Example: Option 3 - one past day

- a distribution \(p_{s'} \) over \{sun, rain\} for each \(s' \in S \),
- for each \(i \geq 1 \) and \(s_0 \cdots s_i \in S^{i+1} \)

\[
P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_{s_{i-1}}(s_i)
\]

- a distribution \(\pi \) over \{sun, rain\} such that \(P(C(s_0)) = \pi(s_0) \).

Overly restrictive, isn’t it?
Weather Example: Option 3 - one past day

- A distribution \(p_{s'} \) over \{sun, rain\} for each \(s' \in S \),
- For each \(i \geq 1 \) and \(s_0 \cdots s_i \in S^{i+1} \)

\[
P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1})) = p_{s_{i-1}}(s_i)
\]

- A distribution \(\pi \) over \{sun, rain\} such that \(P(C(s_0)) = \pi(s_0) \).

Overly restrictive, isn't it?

Not really – one only needs to extend the state space

- \(S = \{1, \ldots, 365\} \times \{sun, rain\} \times \{sun, rain\} \),
- Now each state encodes current day of the year, current weather, and weather yesterday,
- We can define over \(S \) a time-homogeneous Markov process based on both Options 1 & 2 given earlier.
Discrete-time Markov Chains
DTMC
Stochastic process → Graph based

Given a discrete-time homogeneous Markov process \(\{X(n) \mid n \in \mathbb{N}\} \)

- with state space \(S \),
- defined on a probability space \((\Omega, \mathcal{F}, P)\)

we take over the state space \(S \) and define

- \(P(s, s') = P(X_n = s' \mid X_{n-1} = s) \) for an arbitrary \(n \in \mathbb{N} \) and
- \(\pi_0(s) = P(X_0 = s) \).

Graph based → stochastic process

Given a DTMC \((S, P, \pi_0)\), we set \(\Omega \) to \(S^\infty \), \(\mathcal{F} \) to the smallest \(\sigma \)-Algebra containing all cylinder sets and

\[
P(C(s_0 \ldots s_n)) = \pi_0(s_0) \cdot \prod_{1 \leq i \leq n} P(s_{i-1}, s_i)
\]

which uniquely defines the probability function \(P \) on \(\mathcal{F} \).
Let \((S, P, \pi_0)\) be a DTMC. We denote by

- \(P_s\) the probability function of DTMC \((S, P, \delta_s)\) where

\[
\delta_s(s') = \begin{cases}
1 & \text{if } s' = s \\
0 & \text{otherwise}
\end{cases}
\]

- \(E_s\) the expectation with respect to \(P_s\)
Analysis questions

- Transient analysis
- Steady-state analysis
- Rewards
- Reachability
- Probabilistic logics
DTMC - Transient Analysis
Example: Gambling with a Limit

What is the probability of being in state 0 after 3 steps?
Definition:
Given a DTMC \((S, P, \pi_0)\), we assume w.l.o.g. \(S = \{0, 1, \ldots\}\) and write \(p_{ij} = P(i, j)\). Further, we have

- \(P^{(1)} = P = (p_{ij})\) is the 1-step transition matrix.
- \(P^{(n)} = (p^{(n)}_{ij})\) denotes the \(n\)-step transition matrix with

\[
p^{(n)}_{ij} = P(X_n = j \mid X_0 = i) \quad (= P(X_{k+n} = j \mid X_k = i)).
\]

How can we compute these probabilities?
Definition: Chapman-Kolmogorov Equation

Application of the law of total probability to the n-step transition probabilities $p_{ij}^{(n)}$ results in the Chapman-Kolmogorov Equation

$$p_{ij}^{(n)} = \sum_{h \in S} p_{ih}^{(m)} p_{hj}^{(n-m)} \quad \forall 0 < m < n.$$

Consequently, we have $P^{(n)} = PP^{(n-1)} = \ldots = P^n$.
Definition: Chapman-Kolmogorov Equation

Application of the law of total probability to the n-step transition probabilities $p_{ij}^{(n)}$ results in the Chapman-Kolmogorov Equation

$$p_{ij}^{(n)} = \sum_{h \in S} p_{ih}^{(m)} p_{hj}^{(n-m)} \quad \forall 0 < m < n.$$

Consequently, we have $P^{(n)} = PP^{(n-1)} = \ldots = P^n$.

Definition: Transient Probability Distribution

The transient probability distribution at time $n > 0$ is defined by

$$\pi_n = \pi_0 P^n = \pi_{n-1} P.$$
Example:

$$P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$P^2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.25 & 0 & 0.25 & 0 & 0 \\
0.25 & 0 & 0.5 & 0 & 0.25 & 0 \\
0 & 0.25 & 0 & 0.25 & 0 & 0.5 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

- For $$\pi_0 = [0 \ 0 \ 1 \ 0 \ 0]$$, $$\pi_2 = \pi_0 P^2 = [0.25 \ 0 \ 0.5 \ 0 \ 0.25]$$.
- For $$\pi_0 = [0.4 \ 0 \ 0 \ 0 \ 0.6]$$, $$\pi_2 = \pi_0 P^2 = [0.4 \ 0 \ 0 \ 0 \ 0.6]$$.

Actually, $$\pi_n = [0.4 \ 0 \ 0 \ 0 \ 0.6]$$ for all $$n \in \mathbb{N}$$!
Example:

\[
P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
P^2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.25 & 0 & 0.25 & 0 & 0 \\
0.25 & 0 & 0.5 & 0 & 0.25 & 0 \\
0 & 0.25 & 0 & 0.25 & 0 & 0.25 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

- For \(\pi_0 = [0 \ 0 \ 1 \ 0 \ 0 \ 0] \), \(\pi_2 = \pi_0 P^2 = [0.25 \ 0 \ 0.5 \ 0 \ 0.25 \ 0] \).
- For \(\pi_0 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \), \(\pi_2 = \pi_0 P^2 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \).

Actually, \(\pi_n = [0.4 \ 0 \ 0 \ 0 \ 0 \ 0.6] \) for all \(n \in \mathbb{N} \)!

Are there other “stable” distributions?
DTMC - Steady State Analysis
Definition: Stationary Distribution

A distribution π is **stationary** if

$$\pi = \pi P.$$

Stationary distribution is generally **not unique**.
Definition: Stationary Distribution

A distribution π is **stationary** if

$$\pi = \pi P.$$

Stationary distribution is generally **not unique**.

Definition: Limiting Distribution

$$\pi^* := \lim_{n \to \infty} \pi_n = \lim_{n \to \infty} \pi_0 P^n = \pi_0 \lim_{n \to \infty} P^n = \pi_0 P^*.$$

The limit can depend on π_0 and does not need to exist.
Definition: Stationary Distribution
A distribution π is stationary if

$$\pi = \pi P.$$

Stationary distribution is generally not unique.

Definition: Limiting Distribution

$$\pi^* := \lim_{n \to \infty} \pi_n = \lim_{n \to \infty} \pi_0 P^n = \pi_0 \lim_{n \to \infty} P^n = \pi_0 P^*.$$

The limit can depend on π_0 and does not need to exist.

Connection between stationary and limiting?
Definition: Periodicity
The period of a state i is defined as $d_i = \gcd\{n | p^n_{ii} > 0\}$.

A state i is called aperiodic if $d_i = 1$ and periodic with period d_i otherwise. A Markov chain is aperiodic if all states are aperiodic.

Lemma
In a finite aperiodic Markov chain, the limiting distribution exists.

Example: Gambling with Social Guarantees

What are the stationary and limiting distributions?
Example: Gambling with Social Guarantees

What are the stationary and limiting distributions?

Definition: Periodicity

The period of a state i is defined as

$$d_i = \gcd\{n \mid p^n_{ii} > 0\}.$$

A state i is called **aperiodic** if $d_i = 1$ and **periodic** with period d_i otherwise. A Markov chain is aperiodic if all states are aperiodic.

Lemma

In a finite aperiodic Markov chain, the limiting distribution exists.
Example

DTMC - Steady-State Analysis - Irreducibility (1)
Definition:
A DTMC is called **irreducible** if for all states \(i, j \in S \) we have \(p_{ij}^n > 0 \) for some \(n \geq 1 \).

Lemma

In an aperiodic and irreducible Markov chain, the limiting distribution exists and does not depend on \(\pi_0 \).
What is the stationary / limiting distribution?

Lemma
In a finite aperiodic and irreducible Markov chain, the limiting distribution exists, does not depend on π_0, and equals the unique stationary distribution.
Lemma

In a finite aperiodic and irreducible Markov chain, the limiting distribution exists, does not depend on π_0, and equals the unique stationary distribution.

What is the stationary / limiting distribution?
What is the stationary / limiting distribution?

Lemma

In a finite aperiodic and irreducible Markov chain, the limiting distribution exists, does not depend on \(\pi_0 \), and equals the unique stationary distribution.
Definition:
Let \(f_{ij}^{(n)} = P(X_n = j \land \forall 1 \leq k < n : X_k \neq j \mid X_0 = i) \) for \(n \geq 1 \) be the \(n \)-step hitting probability. The hitting probability is defined as

\[
f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}
\]

and a state \(i \) is called
- transient if \(f_{ii} < 1 \) and
- recurrent if \(f_{ii} = 1 \).
Definition:
Let expectation $m_{ij} = \sum_{n=1}^{\infty} n \cdot f_{ij}^{(n)}$, a recurrent state i is called
 - positive recurrent or recurrent non-null if $m_{ii} < \infty$ and
 - recurrent null if $m_{ii} = \infty$.

Lemma
The states of an irreducible DTMC are all of the same type, i.e.,
 - all periodic or
 - all aperiodic and transient or
 - all aperiodic and recurrent null or
 - all aperiodic and recurrent non-null.
Definition: Ergodicity
A DTMC is \textit{ergodic} if all its states are \textit{irreducible}, \textit{aperiodic} and \textit{recurrent} non-null.

Theorem
\textit{In an ergodic} Markov chain, the \textit{limiting distribution exists, does not depend on} π_0, \textit{and equals the unique stationary distribution.}

As a consequence, the steady-state distribution can be computed by solving the equation system

$$\pi = \pi P, \sum_{x \in S} \pi_s = 1.$$

Note: The Lemma for finite DTMC follows from the theorem as \textit{every irreducible finite DTMC is positive recurrent.}
The DTMC is only ergodic for $p \in [0, 0.5)$.

Example: Unbounded Gambling with House Edge
DTMC - Rewards
Definition
A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \rightarrow \mathbb{Z}$ is a reward function.
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as

\[
\text{total reward} = \sum_{i=1}^{T} r(s_i)
\]

But what if \(T = \infty\)?

\[
\text{discounted reward} = \sum_{i=1}^{\infty} \lambda^i r(s_i)
\]

for some \(0 < \lambda < 1\)

Average reward

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)
\]

also called long-run average or mean payoff

Definition
The expected average reward is \(\text{EAR} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} E[r(X_i)]\)
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as

total reward

\[
\sum_{i=1}^{T} r(s_i)
\]
Definition
A **reward Markov chain** is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \to \mathbb{Z}\) is a **reward function**.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\).

Value of the whole run can be defined as
- **total reward**
 \[
 \sum_{i=1}^{T} r(s_i)
 \]
- But what if \(T = \infty\)?

Discounted reward
\[
\sum_{i=1}^{\infty} \lambda^i r(s_i)
\]
for some \(0 < \lambda < 1\)

Average reward
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} r(s_i)
\]
also called long-run average or mean payoff

Definition
The expected average reward is \(\text{EAR} := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E}[r(X_i)]\)
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as
- total reward
 \[\sum_{i=1}^{T} r(s_i) \]
 But what if \(T = \infty\)?
- discounted reward
 \[\sum_{i=1}^{\infty} \lambda^i r(s_i) \]
 for some \(0 < \lambda < 1\)
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \to \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as
- total reward \(\sum_{i=1}^{T} r(s_i)\)
- discounted reward \(\sum_{i=1}^{\infty} \lambda^i r(s_i)\) for some \(0 < \lambda < 1\)
- average reward \(\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)\)
 also called long-run average or mean payoff
Definition

A **reward Markov chain** is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \to \mathbb{Z}\) is a **reward function**.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as

- **total reward**
 \[\sum_{i=1}^{T} r(s_i)\]
 But what if \(T = \infty\)?

- **discounted reward**
 \[\sum_{i=1}^{\infty} \lambda^i r(s_i)\]
 for some \(0 < \lambda < 1\)

- **average reward**
 \[\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)\]
 also called long-run average or mean payoff

Definition

The **expected average reward** is

\[\text{EAR} := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \mathbb{E}[r(X_i)]\]
Definition: Time-average Distribution

$$\hat{\pi} = \lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i.$$

$$\hat{\pi}(s)$$ expresses the ratio of time spent in $$s$$ on the long run.

\(^1\)More details later for Markov decision processes.
Definition: Time-average Distribution

\[\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i. \]

\(\hat{\pi}(s) \) expresses the ratio of time spent in \(s \) on the long run.

Lemma

1. \(\mathbb{E}[r(X_i)] = \sum_{s \in S} \pi_i(s) \cdot r(s). \)
2. If \(\hat{\pi} \) exists then \(EAR = \sum_{s \in S} \hat{\pi}(s) \cdot r(s). \)
3. If limiting distribution exists, it coincides with \(\hat{\pi}. \)

\(^1\)More details later for Markov decision processes.
Definition: Time-average Distribution

\[\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i. \]

\(\hat{\pi}(s) \) expresses the ratio of time spent in \(s \) on the long run.

Lemma

1. \(\mathbb{E}[r(X_i)] = \sum_{s \in S} \pi_i(s) \cdot r(s). \)
2. If \(\hat{\pi} \) exists then \(EAR = \sum_{s \in S} \hat{\pi}(s) \cdot r(s). \)
3. If limiting distribution exists, it coincides with \(\hat{\pi} \).

Algorithm

1. Compute \(\hat{\pi} \) (or limiting distribution if possible).\(^1\)
2. Return \(\sum_{s \in S} \hat{\pi}(s) \cdot r(s). \)

\(^1\)More details later for Markov decision processes.
DTMC – Reachability
Definition: Reachability

Given a DTMC \((S, P, \pi_0)\), what is the probability of eventually reaching a set of goal states \(B \subseteq S\)?

Let \(x(s)\) denote \(P_s(\Diamond B)\) where \(\Diamond B = \{s_0s_1\cdots | \exists i : s_i \in B\}\). Then

- \(s \in B: \quad x(s) = \)
- \(s \in S \setminus B: \quad x(s) = \)
Definition: Reachability

Given a DTMC \((S, P, \pi_0)\), what is the probability of eventually reaching a set of goal states \(B \subseteq S\)?

Let \(x(s)\) denote \(P_s(\Diamond B)\) where \(\Diamond B = \{s_0s_1 \cdots | \exists i : s_i \in B\}\). Then

\[
\begin{align*}
\begin{cases}
 s \in B: & x(s) = 1 \\
 s \in S \setminus B: & x(s) = \sum_{t \in S \setminus B} P(s, t)x(t) + \sum_{u \in B} P(s, u).
\end{cases}
\end{align*}
\]
Lemma (Reachability Matrix Form)

Given a DTMC \((S, P, \pi_0)\), the column vector \(x = (x(s))_{s \in S \setminus B}\) of probabilities \(x(s) = P_s(\diamond B)\) satisfies the constraint

\[x = Ax + b, \]

where matrix \(A\) is the submatrix of \(P\) for states \(S \setminus B\) and \(b = (b(s))_{s \in S \setminus B}\) is the column vector with \(b(s) = \sum_{u \in B} P(s, u)\).
Example:

The vector $x = \begin{bmatrix} x_0 & x_1 & x_2 \end{bmatrix}^T = \begin{bmatrix} 0.25 & 0.5 & 0 \end{bmatrix}^T$ satisfies the equation system $x = Ax + b$.

$P =$

$A =$

$b =$

$B = \{s_3\}$
The vector $x = [x_0 \ x_1 \ x_2]^T = [0.25 \ 0.5 \ 0]^T$ satisfies the equation system $x = Ax + b$.

Is it the only solution?
DTMC - Reachability

Example:

\[P = \begin{pmatrix} 0 & 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.25 & 0.25 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[B = \{s_3\} \]

The vector \(x = [x_0 \ x_1 \ x_2]^T = [0.25 \ 0.5 \ 0]^T \) satisfies the equation system \(x = Ax + b \).

Is it the only solution?

- **No!** Consider, e.g., \([0.55 \ 0.7 \ 0.4] \) or \([1 \ 1 \ 1]^T \).

- While reaching the goal, such **bad** states need to be avoided.

- We first generalise such “avoiding”.
Definition:
Let $B, C \subseteq S$. The (unbounded) probability of reaching B from state s under the condition that C is not left before is defined as $P_s(C \cup B)$ where

$$C \cup B = \{s_0s_1\cdots \mid \exists i : s_i \in B \land \forall j < i : s_j \in C\}.$$
Definition:
Let $B, C \subseteq S$. The (unbounded) probability of reaching B from state s under the condition that C is not left before is defined as $P_s(C \cup B)$ where
\[C \cup B = \{s_0s_1\cdots \mid \exists i : s_i \in B \land \forall j < i : s_j \in C\}. \]

The probability of reaching B from state s within n steps under the condition that C is not left before is defined as $P_s(C \cup \leq n B)$ where
\[C \cup \leq n B = \{s_0s_1\cdots \mid \exists i \leq n : s_i \in B \land \forall j < i : s_j \in C\}. \]

What is the equation system for these probabilities?
Let $S_0 = \{ s \mid P_s (C \cup B) = 0 \}$ and $S? = S \setminus (S_0 \cup B)$.
Let $S_0 = \{ s \mid P_s(C \cup B) = 0 \}$ and $S? = S \setminus (S_0 \cup B)$.

Theorem:
The column vector $x = (x(s))_{s \in S?}$ of probabilities $x(s) = P_s(C \cup B)$ is the unique solution of the equation system

$$x = Ax + b,$$

where $A = (P(s, t))_{s, t \in S?}$, $b = (b(s))_{s \in S?}$ with $b(s) = \sum_{u \in B} P(s, u)$.

Furthermore, for $x_0 = (0)_{s \in S?}$ and $x_i = Ax_{i-1} + b$ for any $i \geq 1$,

1. $x_n(s) = P_s(C \cup \leq^*_n B)$ for $s \in S?$,
2. x_i is increasing, and
3. $x = \lim_{n \to \infty} x_n$.
Proof Sketch:

▶ $(x_s)_{x \in S}$ is a solution: by inserting into definition.

▶ Unique solution: By contradiction. Assume y is another solution, then $x - y = A(x - y)$. One can show that $A - I$ is invertible, thus $(A - I)(x - y) = 0$ yields $x - y = (A - I)^{-1}0 = 0$ and finally $x = y$.\(^2\)

Furthermore,

1. From the definitions, by straightforward induction.
2. From 1. since $C \cup \leq_n B \subseteq C \cup \leq_{n+1} B$.
3. Since $C \cup B = \bigcup_{n \in \mathbb{N}} C \cup \leq_n B$.

\(^2\)cf. page 766 of Principles of Model Checking
Algorithmic aspects
Algorithmic Aspects - Summary of Equation Systems

Equation Systems

- Transient analysis: $\pi_n = \pi_0 P^n = \pi_{n-1} P$
- Steady-state analysis: $\pi P = \pi, \pi \cdot 1 = \sum_{s \in S} \pi(s) = 1$ (ergodic)
- Reachability: $x = Ax + b$ (with $(x(s))_{s \in S}$)

Solution Techniques

1. Analytic solution, e.g. by Gaussian elimination
2. Iterative power method ($\pi_n \to \pi$ and $x_n \to x$ for $n \to \infty$)
3. Iterative methods for solving large systems of linear equations, e.g. Jacobi, Gauss-Seidel

Missing pieces

a. finding out whether a DTMC is ergodic,
b. computing $S? = S \setminus \{s \mid P_s(\diamond B) = 0\}$,
c. efficient representation of P.
Algorithmic Aspects: a. Ergodicity of finite DTMC (1)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states \(i, j \in S \) we have \(p_{ij}^n > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called **aperiodic** if \(\gcd\{n \mid p_{ii}^n > 0\} = 1 \).
- A state \(i \) is called **positive recurrent** if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

How do we tell that a finite DTMC is **ergodic**?
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states \(i, j \in S \) we have \(p^n_{ij} > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called **aperiodic** if \(\gcd\{ n \mid p^n_{ii} > 0 \} = 1 \).
- A state \(i \) is called **positive recurrent** if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

How do we tell that a finite DTMC is ergodic?

By analysis of the induced graph!

For a DTMC \((S, P, \pi(0))\) we define the **induced directed graph** \((S, E)\) with \(E = \{(s, s') \mid P(s, s') > 0\} \).

Recall:

- A directed graph is called **strongly connected** if there is a path from each vertex to every other vertex.
- **Strongly connected components (SCC)** are its maximal strongly connected subgraphs.
- A SCC \(T \) is **bottom (BSCC)** if no \(s \not\in T \) is reachable from \(T \).
Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called irreducible if for all states \(i, j \in S \) we have \(p_{ij}^n > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called aperiodic if \(\gcd\{n \mid p_{ii}^n > 0\} = 1 \).
- A state \(i \) is called positive recurrent if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

Theorem:

For finite DTMCs, it holds that:
Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \geq 1$.
- A state i is called aperiodic if $\gcd\{n \mid p_{ii}^n > 0\} = 1$.
- A state i is called positive recurrent if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem:
For finite DTMCs, it holds that:
- The DTMC is irreducible iff the induced graph is strongly connected.
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states \(i, j \in S \) we have \(p^n_{ij} > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called **aperiodic** if \(\gcd\{ n \mid p^n_{ii} > 0 \} = 1 \).
- A state \(i \) is called **positive recurrent** if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

Theorem:
For finite DTMCs, it holds that:

- The DTMC is **irreducible** iff the induced graph is strongly connected.
- A state in a BSCC is **aperiodic** iff the BSCC is aperiodic, i.e. the greatest common divisor of the lengths of all its cycles is 1.
Algorithmic Aspects: a. Ergodicity of finite DTMC (2)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states $i, j \in S$ we have $p^n_{ij} > 0$ for some $n \geq 1$.
- A state i is called **aperiodic** if $\gcd\{ n \mid p^n_{ii} > 0 \} = 1$.
- A state i is called **positive recurrent** if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem:
For finite DTMCs, it holds that:

- The DTMC is **irreducible** iff the induced graph is strongly connected.
- A state in a BSCC is **aperiodic** iff the BSCC is aperiodic, i.e. the greatest common divisor of the lengths of all its cycles is 1.
- A state is **positive recurrent** iff it belongs to a BSCC otherwise it is **transient**.
Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?
How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

\[\gcd\{ n \geq 1 \mid \exists s : P^n(s, s) > 0 \} = 1 \]
How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

▶ $\gcd\{n \geq 1 \mid \exists s : P^n(s, s) > 0\} = 1$
▶ in time $O(n + m)$?
Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is \(\gcd \) of the lengths of all cycles of a strongly connected graph 1?

\[\gcd \{ n \geq 1 \mid \exists s : P^n(s, s) > 0 \} = 1 \]

\(\text{in time } O(n + m) \)? By the following DFS-based procedure:

Algorithm: PERIOD(vertex \(v \), unsigned \(\text{level} \) : init 0)

1. \(\text{global } \text{period} : \text{init } 0; \)
2. \(\text{if } \text{period} = 1 \text{ then} \)
3. \(\text{return} \)
4. \(\text{end} \)
5. \(\text{if } v \text{ is unmarked then} \)
6. \(\text{mark } v; \)
7. \(v_{\text{level}} = \text{level}; \)
8. \(\text{for } v' \in \text{out}(v) \text{ do} \)
9. \(\text{PERIOD}(v', \text{level} + 1) \)
10. \(\text{end} \)
11. \(\text{else} \)
12. \(\text{period} = \gcd(\text{period}, \text{level} - v_{\text{level}}); \)
13. \(\text{end} \)
We have \(S_? = S \setminus (B \cup S_{=0}) \) where \(S_{=0} = \{ s \mid P_s(\Diamond B) = 0 \} \). Hence,

\[
s \in S_{=0} \iff p_{ss'}^n = 0 \quad \text{for all } n \geq 1 \text{ and } s' \in B.
\]
We have $S_? = S \setminus (B \cup S_{=0})$ where $S_{=0} = \{ s \mid P_s(\Diamond B) = 0 \}$. Hence,

$$s \in S_{=0} \iff p_{ss'}^n = 0 \quad \text{for all } n \geq 1 \text{ and } s' \in B.$$

This can be again easily checked from the induced graph:

Lemma

We have $s \in S_{=0}$ iff there is no path from s to any state from B.

Proof.

Easy from the fact that $p_{ss'}^n > 0$ iff there is a path of length n to s'. □
1. There are many zero entries in the transition matrix. Sparse matrices offer a more concise storage.
2. There are many similar entries in the transition matrix. Multi-terminal binary decision diagrams offer a more concise storage, using automata theory.
1. There are many 0 entries in the transition matrix. Sparse matrices offer a more concise storage.
1. There are many 0 entries in the transition matrix.
Sparse matrices offer a more concise storage.

2. There are many similar entries in the transition matrix.
Multi-terminal binary decision diagrams offer a more concise storage, using automata theory.
DTMC - Probabilistic Temporal Logics for Specifying Complex Properties
Definition:
A labeled DTMC is a tuple $\mathcal{D} = (S, P, \pi_0, L)$ with $L : S \rightarrow 2^{AP}$, where

- AP is a set of atomic propositions and
- L is a labeling function, where $L(s)$ specifies which properties hold in state $s \in S$.
States and transitions
state = configuration of the game;
transition = rolling the dice and acting (randomly) based on the result.

State labels
- init, rwin, bwin, rkicked, bkicked, ...
- r30, r21, ...
- b30, b21, ...

Examples of Properties
- the game cannot return back to start
- at any time, the game eventually ends with prob. \(1\)
- at any time, the game ends within 100 dice rolls with prob. \(\geq 0.5\)
- the probability of winning without ever being kicked out is \(\leq 0.3\)

How to specify them formally?
Linear-time view

- corresponds to our (human) perception of time
- can specify properties of one concrete linear execution of the system

Example: eventually red player is kicked out followed immediately by blue player being kicked out.

Branching-time view

- views future as a set of all possibilities
- can specify properties of all executions from a given state – specifies execution trees

Example: in every computation it is always possible to return to the initial state.
Linear Temporal Logic (LTL)
Syntax for formulae specifying executions:

\[\psi = \text{true} | a | \psi \land \psi | \neg \psi | X \psi | \psi U \psi | F \psi | G \psi \]

Example: eventually red player is kicked out followed immediately by blue player being kicked out: \(F (rkicked \land X bkicked) \)
Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)
Syntax for specifying states: Syntax for specifying executions:

\[\phi = \text{true} | a | \phi \land \phi | \neg \phi | A \phi | E \phi \quad \psi = X \phi | \phi U \phi | F \phi | G \phi \]

Example: in all computations it is always possible to return to initial state: \(A G E F \text{ init} \)
Question: does the given state satisfy the given CTL state formula?
Logics - LTL

Syntax

$$\psi = true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi.$$

Semantics (for a path $$\omega = s_0s_1 \cdots$$)

- $$\omega \models true$$ (always),
- $$\omega \models a$$ iff $$a \in L(s_0),$$
- $$\omega \models \psi_1 \land \psi_2$$ iff $$\omega \models \psi_1$$ and $$\omega \models \psi_2,$$
- $$\omega \models \neg \psi$$ iff $$\omega \not\models \psi,$$
- $$\omega \models X \psi$$ iff $$s_1s_2 \cdots \models \psi,$$

$$\psi$$

- $$\omega \models \psi_1 U \psi_2$$ iff $$\exists i \geq 0 : s_is_{i+1} \cdots \models \psi_2$$ and $$\forall j < i : s/js_{j+1} \cdots \models \psi_1.$$

$$\psi_1 \cdot \cdot \cdot \psi_1 \psi_2$$

Syntactic sugar

- $$\mathcal{F} \psi \equiv$$
- $$\mathcal{G} \psi \equiv$$
Logics - LTL

Syntax

\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi. \]

Semantics (for a path \(\omega = s_0 s_1 \cdots \))

- \(\omega \models \text{true} \) (always),
- \(\omega \models a \) iff \(a \in L(s_0) \),
- \(\omega \models \psi_1 \land \psi_2 \) iff \(\omega \models \psi_1 \) and \(\omega \models \psi_2 \),
- \(\omega \models \neg \psi \) iff \(\omega \not\models \psi \),
- \(\omega \models X \psi \) iff \(s_1 s_2 \cdots \models \psi \),
- \(\omega \models \psi_1 U \psi_2 \) iff \(\exists i \geq 0 : s_is_{i+1} \cdots \models \psi_2 \) and \(\forall j < i : s_js_{j+1} \cdots \models \psi_1 \).

Syntactic sugar

- \(F \psi \equiv \text{true} U \psi \)
- \(G \psi \equiv \neg(\text{true} U \neg \psi) \) (\(\equiv \neg F \neg \psi \))
Syntax
State formulae:

\[\phi = true \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \]

where \(\psi \) is a path formula.

Semantics
For a state \(s \):

- \(s \models true \) (always),
- \(s \models a \iff a \in L(s) \),
- \(s \models \phi_1 \land \phi_2 \iff s \models \phi_1 \) and \(s \models \phi_2 \),
- \(s \models \neg \phi \iff s \not\models \phi \),
- \(s \models A \psi \iff \omega \models \psi \) for all paths \(\omega = s_0s_1\cdots \) with \(s_0 = s \),
- \(s \models E \psi \iff \omega \models \psi \) for some path \(\omega = s_0s_1\cdots \) with \(s_0 = s \).

Path formulae:

\[\psi = X \phi \mid \phi \cup \phi \]

where \(\phi \) is a state formula.

For a path \(\omega = s_0s_1\cdots \):

- \(\omega \models X \phi \iff s_1s_2\cdots \) satisfies \(\phi \),
- \(\omega \models \phi_1 \cup \phi_2 \iff \exists i : s_is_{i+1}\cdots \models \phi_2 \) and \(\forall j < i : s_js_{j+1}\cdots \models \phi_1 \).
Linear Temporal Logic (LTL)

Syntax for formulae specifying executions:

\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid \Box \psi \mid \psi U \psi \mid F \psi \mid G \psi \]

Example: eventually red player is kicked out followed immediately by blue player being kicked out: \(F (r \text{kicked} \land \Box b \text{kicked}) \)

Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)

Syntax for specifying states:

\[\phi = \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \]

Syntax for specifying executions:

\[\psi = \Box \phi \mid \phi U \phi \mid F \phi \mid G \phi \]

Example: in all computations it is always possible to return to initial state: \(A G E F \text{ init} \)

Question: does the given state satisfy the given CTL state formula?
Linear Temporal Logic (LTL) + probabilities

Syntax for formulae specifying executions:

\[\psi = \text{true} | a | \psi \land \psi | \neg \psi | X \psi | \psi U \psi | F \psi | G \psi \]

Example: with prob. \(\geq 0.8 \), eventually red player is kicked out followed immediately by blue player being kicked out:

\[P(F (rkicked \land X bkicked)) \geq 0.8 \]

Question: is the formula satisfied by executions of given probability?
Linear Temporal Logic (LTL) + probabilities
Syntax for formulae specifying executions:

\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi \]

Example: with prob. \(\geq 0.8 \), eventually red player is kicked out followed immediately by blue player being kicked out:

\[P(F (rkicked \land X bkicked)) \geq 0.8 \]

Question: is the formula satisfied by executions of given probability?

Probabilistic Computation Tree Logic (PCTL)
Syntax for specifying states:

\[\phi = \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_J \psi \]

Syntax for specifying executions:

\[\psi = X \phi \mid \phi U \phi \mid \phi U \leq^k \phi \mid F \phi \mid G \phi \]

Example: with prob. at least 0.5 the probability to return to initial state is always at least 0.1: \(P \geq 0.5 \) \(G \) \(P \geq 0.1 \) \(F \) \textit{init}

Question: does the given state satisfy the given PCTL state formula?
Syntactic sugar:

- \(\phi_1 \lor \phi_2 \equiv \neg(\neg \phi_1 \land \neg \phi_2) \), \(\phi_1 \Rightarrow \phi_2 \equiv \neg \phi_1 \lor \phi_2 \), etc.
- \(\leq 0.5 \) denotes the interval \([0, 0.5]\), \(= 1 \) denotes \([1, 1]\), etc.

Examples:

- A fair die:

 \[\bigwedge_{i \in \{1, \ldots, 6\}} P_{\frac{1}{6}}(F_i). \]

- The probability of winning "Who wants to be a millionaire" without using any joker should be negligible:

 \[P_{<1e^{-10}}(\neg(J_{50\%} \lor J_{audience} \lor J_{telephone}) \cup \text{win}). \]
Logics - PCTL - Semantics

Semantics

For a state s:

- $s \models \text{true}$ (always),
- $s \models a$ iff $a \in L(s)$,
- $s \models \phi_1 \land \phi_2$ iff $s \models \phi_1$ and $s \models \phi_2$,
- $s \models \neg \phi$ iff $s \not\models \phi$,
- $s \models \mathcal{P}_J(\psi)$ iff $P_s(\text{Paths}(\psi)) \in J$

For a path $\omega = s_0s_1 \cdots$:

- $\omega \models \mathcal{X} \phi$ iff $s_1s_2 \cdots$ satisfies ϕ,
- $\omega \models \phi_1 \mathcal{U} \phi_2$ iff $\exists i : s_is_{i+1} \cdots \models \phi_2$ and $\forall j < i : s_js_{j+1} \cdots \models \phi_1$.
- $\omega \models \phi_1 \mathcal{U} \leq^n \phi_2$ iff $\exists i \leq n : s_is_{i+1} \cdots \models \phi_2$ and $\forall j < i : s_js_{j+1} \cdots \models \phi_1$.
Examples of Properties

1. the game cannot return back to start
2. at any time, the game eventually ends with prob. 1
3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
4. the probability of winning without ever being kicked out is ≤ 0.3

Formally
Examples of Properties

1. the game cannot return back to start
2. at any time, the game eventually ends with prob. 1
3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
4. the probability of winning without ever being kicked out is ≤ 0.3

Formally

1. \(P(\mathcal{X} \mathcal{G} \neg \text{init}) = 1 \) (LTL + prob.)
 \[P_{\leq 1}(\mathcal{X} P_{=0}(\mathcal{G} \neg \text{init})) \] (PCTL)
2. \(P_{=1}(\mathcal{G} P_{=1}(\mathcal{F} (\text{rwin} \lor \text{bwin}))) \) (PCTL)
3. \(P_{=1}(\mathcal{G} P_{\geq 0.5}(\mathcal{F} \leq 100(\text{rwin} \lor \text{bwin}))) \) (PCTL)
4. \(P((\neg \text{rkicked} \land \neg \text{bkicked}) \mathcal{U} (\text{rwin} \lor \text{bwin}) \leq 0.3 \) (LTL + prob.)
PCTL Model Checking Algorithm
Definition: PCTL Model Checking

Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Φ a PCTL state formula and $s \in S$. The model checking problem is to decide whether $s \models \Phi$.

Theorem

The PCTL model checking problem can be decided in time polynomial in $|\mathcal{D}|$, linear in $|\Phi|$, and linear in the maximum step bound n.
Algorithm:
Consider the bottom-up traversal of the parse tree of Φ:

- The leaves are $a \in AP$ or $true$ and
- the inner nodes are:
 - unary – labelled with the operator \neg or $P_J(X)$;
 - binary – labelled with an operator \land, $P_J(U)$, or $P_J(U \leq n)$.

Example: $\neg a \land P_{\leq 0.2}(\neg b \lor P_{\geq 0.9}(\Diamond c))$

Compute $Sat(\Psi) = \{s \in S \mid s \models \Psi\}$ for each node Ψ of the tree in a bottom-up fashion. Then $s \models \Phi$ iff $s \in Sat(\Phi)$.
“Base” of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ of the form a or $true$:
“Base” of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ of the form a or $true$:

Lemma

- $Sat(true) = S$,
- $Sat(a) = \{s \mid a \in L(s)\}$
“Base” of the algorithm:
We need a procedure to compute $\text{Sat}(\Psi)$ for Ψ of the form a or true:

Lemma

- $\text{Sat}(\text{true}) = S$,
- $\text{Sat}(a) = \{s \mid a \in L(s)\}$

“Induction” step of the algorithm:
We need a procedure to compute $\text{Sat}(\Psi)$ for Ψ given the sets $\text{Sat}(\Psi')$ for all state sub-formulas Ψ' of Ψ:

Lemma

- $\text{Sat}(\Phi_1 \land \Phi_2) =$
- $\text{Sat}(\neg \Phi) =$
“Base” of the algorithm:
We need a procedure to compute \(\text{Sat}(\Psi) \) for \(\Psi \) of the form \(a \) or \(\text{true} \):

Lemma

\[
\begin{align*}
\text{Sat}(\text{true}) &= S, \\
\text{Sat}(a) &= \{s \mid a \in L(s)\}
\end{align*}
\]

“Induction” step of the algorithm:
We need a procedure to compute \(\text{Sat}(\Psi) \) for \(\Psi \) given the sets \(\text{Sat}(\Psi') \) for all state sub-formulas \(\Psi' \) of \(\Psi \):

Lemma

\[
\begin{align*}
\text{Sat}(\Phi_1 \land \Phi_2) &= \text{Sat}(\Phi_1) \cap \text{Sat}(\Phi_2) \\
\text{Sat}(\neg \Phi) &= S \setminus \text{Sat}(\Phi)
\end{align*}
\]

\(\text{Sat}(\mathcal{P}_J(\Phi)) = \{s \mid P_s(\text{Paths}(\Phi)) \in J\} \) discussed on the next slide.
Lemma

- **Next:**
 \[P_s(\text{Paths}(\mathcal{X} \ \Phi)) = \]

- **Bounded Until:**
 \[P_s(\text{Paths}(\Phi_1 \ \mathcal{U} \ \leq^n \ \Phi_2)) = \]

- **Unbounded Until:**
 \[P_s(\text{Paths}(\Phi_1 \ \mathcal{U} \ \Phi_2)) = \]

As before: can be reduced to transient analysis and to unbounded reachability.
Lemma

- **Next:**
 \[P_s(Paths(\mathcal{X} \Phi)) = \sum_{s' \in \text{Sat}(\Phi)} P(s, s') \]

- **Bounded Until:**
 \[P_s(Paths(\Phi_1 \mathcal{U} \leq^n \Phi_2)) = P_s(\text{Sat}(\Phi_1) \mathcal{U} \leq^n \text{Sat}(\Phi_2)) \]

- **Unbounded Until:**
 \[P_s(Paths(\Phi_1 \mathcal{U} \Phi_2)) = P_s(\text{Sat}(\Phi_1) \mathcal{U} \text{Sat}(\Phi_2)) \]
Lemma

- **Next:**

\[P_s(Paths(\mathcal{X} \Phi)) = \sum_{s' \in Sat(\Phi)} P(s, s') \]

- **Bounded Until:**

\[P_s(Paths(\Phi_1 \mathcal{U} \leq^n \Phi_2)) = P_s(Sat(\Phi_1) \mathcal{U} \leq^n Sat(\Phi_2)) \]

- **Unbounded Until:**

\[P_s(Paths(\Phi_1 \mathcal{U} \Phi_2)) = P_s(Sat(\Phi_1) \mathcal{U} Sat(\Phi_2)) \]

As before:

can be reduced to transient analysis and to unbounded reachability.
PCTL Model Checking - Algorithm - Complexity

Precise algorithm
Computation for every node in the parse tree and for every state:

- All node types except for path operator – trivial.
- Next: Trivial.
- Until: Solving equation systems can be done by polynomially many elementary arithmetic operations.
- Bounded until: Matrix vector multiplications can be done by polynomial many elementary arithmetic operations as well.

Overall complexity:
Polynomial in $|D|$, linear in $|\Phi|$ and the maximum step bound n.

In practice
The until and bounded until probabilities computed approximatively:
- rounding off probabilities in matrix-vector multiplication,
- using approximative iterative methods without error guarantees.
pLTL Model Checking Algorithm
Definition: LTL Model Checking
Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P_s^D(Paths(\Psi)) \geq p$.

Theorem
The LTL model checking can be decided in time $O(|\mathcal{D}| \cdot 2^{|\Psi|})$.
Definition: LTL Model Checking

Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P^D_s(\text{Paths}(\Psi)) \geq p$.

Theorem

The LTL model checking can be decided in time $O(|\mathcal{D}| \cdot 2^{|\Psi|})$.

Algorithm Outline

1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $\text{Paths}(\Psi) := \{ L(\omega) \in (2^A)^\infty \mid \omega \models \Psi \}$
Definition: LTL Model Checking

Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P^D_s(Paths(\Psi)) \geq p$.

Theorem

The LTL model checking can be decided in time $O(|\mathcal{D}| \cdot 2^{|\Psi|})$.

Algorithm Outline

1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $Paths(\Psi) := \{L(\omega) \in (2^A)^\infty \mid \omega \models \Psi\}$

2. Construct a product DTMC $\mathcal{D} \times A$ that “embeds” the deterministic execution of A into the Markov chain.
Definition: LTL Model Checking

Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P^D_s(\text{Paths}(\Psi)) \geq p$.

Theorem

The LTL model checking can be decided in time $O(|\mathcal{D}| \cdot 2|\Psi|)$.

Algorithm Outline

1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $\text{Paths}(\Psi) := \{L(\omega) \in (2^A)^\infty \mid \omega \models \Psi\}$
2. Construct a product DTMC $\mathcal{D} \times A$ that “embeds” the deterministic execution of A into the Markov chain.
3. Compute in $\mathcal{D} \times A$ the probability of paths where A satisfies the acceptance condition.
Deterministic Rabin automaton (DRA): \((Q, \Sigma, \delta, q_0, \text{Acc})\)
- a DFA with a different acceptance condition,
- \(\text{Acc} = \{(E_i, F_i) \mid 1 \leq i \leq k\}\)
- each accepting infinite path must visit for some \(i\)
 - all states of \(E_i\) at most finitely often and
 - some state of \(F_i\) infinitely often.
Deterministic Rabin automaton (DRA): \((Q, \Sigma, \delta, q_0, \text{Acc})\)
- a DFA with a different acceptance condition,
- \(\text{Acc} = \{(E_i, F_i) \mid 1 \leq i \leq k\}\)
- each accepting infinite path must visit for some \(i\)
 - all states of \(E_i\) at most finitely often and
 - some state of \(F_i\) infinitely often.

Example
Give some automata recognizing the language of formulas
- \((a \land X' b) \lor aUc\)
- \(FGa\)
- \(GFa\)
Deterministic Rabin automaton (DRA): $(Q, \Sigma, \delta, q_0, \text{Acc})$

- a DFA with a different acceptance condition,
- $\text{Acc} = \{(E_i, F_i) \mid 1 \leq i \leq k\}$
- each accepting infinite path must visit for some i
 - all states of E_i at most finitely often and
 - some state of F_i infinitely often.

Example

Give some automata recognizing the language of formulas

- $(a \land X b) \lor aUc$
- FGa
- GFa

Lemma (Vardi&Wolper’86, Safra’88)

For any LTL formula Ψ there is a DRA A recognizing $\text{Paths}(\Psi)$ with $|A| \in 2^{O(|\Psi|)}$.

For a labelled DTMC \(\mathcal{D} = (S, P, \pi_0, L) \) and a DRA \(A = (Q, 2^{Ap}, \delta, q_0, \{(E_i, F_i) \mid 1 \leq i \leq k\}) \) we define

1. a DTMC \(\mathcal{D} \times A = (S \times Q, P', \pi'_0) \):
 - \(P'((s, q), (s', q')) = P(s, s') \) if \(\delta(q, L(s')) = q' \) and 0, otherwise;
 - \(\pi'_0((s, q_s)) = \pi_0(s) \) if \(\delta(q_0, L(s)) = q_s \) and 0, otherwise; and
For a labelled DTMC $\mathcal{D} = (S, P, \pi_0, L)$ and a DRA $A = (Q, 2^{A_p}, \delta, q_0, \{(E_i, F_i) \mid 1 \leq i \leq k\})$ we define

1. a DTMC $\mathcal{D} \times A = (S \times Q, P', \pi'_0)$:
 - $P'((s, q), (s', q')) = P(s, s')$ if $\delta(q, L(s')) = q'$ and 0, otherwise;
 - $\pi'_0((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and

2. $\{(E'_i, F'_i) \mid 1 \leq i \leq k\}$ where for each i:
 - $E'_i = \{(s, q) \mid q \in E_i, s \in S\}$,
 - $F'_i = \{(s, q) \mid q \in F_i, s \in S\}$,
For a labelled DTMC $\mathcal{D} = (S, P, \pi_0, L)$ and a DRA $A = (Q, 2^{2^A}, \delta, q_0, \{(E_i, F_i) \mid 1 \leq i \leq k\})$ we define

1. a DTMC $\mathcal{D} \times A = (S \times Q, P', \pi'_0)$:
 - $P'((s, q), (s', q')) = P(s, s')$ if $\delta(q, L(s')) = q'$ and 0, otherwise;
 - $\pi'_0((s, q)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and

2. $\{(E'_i, F'_i) \mid 1 \leq i \leq k\}$ where for each i:
 - $E'_i = \{(s, q) \mid q \in E_i, s \in S\}$,
 - $F'_i = \{(s, q) \mid q \in F_i, s \in S\}$,

Lemma

The construction preserves probability of accepting as

$$P^D_s(\text{Lang}(A)) = P^{\mathcal{D} \times A}_{(s,q_s)}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\})$$

where $\inf(\omega)$ is the set of states visited in ω infinitely often.

Proof sketch.

We have a one-to-one correspondence between executions of \mathcal{D} and $\mathcal{D} \times A$ (as A is deterministic), mapping $\text{Lang}(A)$ to $\{\cdots\}$, and preserving probabilities.
How to check the probability of accepting in $D \times A$?

Identify the BSCCs (C_j) of $D \times A$ that for some $1 \leq i \leq k$,
1. contain no state from E_i' and
2. contain some state from F_i'.

Lemma

$P_{D \times A}(s, q_s)(\{\omega | \exists i : \text{inf}(\omega) \cap E_i' = \emptyset, \text{inf}(\omega) \cap F_i' \neq \emptyset\}) = P_{D \times A}(s, q_s)(\Diamond \bigcup_j C_j)$.

Proof sketch.

$\text{Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below),}$
$\text{Rabin acceptance condition does not depend on any finite prefix of the infinite word,}$
$\text{every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.}$

Corollary

$P_{Ds}(\text{Lang}(A)) = P_{D \times A}(s, q_s)(\Diamond \bigcup_j C_j)$.

83 / 84
How to check the probability of accepting in $\mathcal{D} \times \mathcal{A}$?

Identify the BSCCs $(C_j)_j$ of $\mathcal{D} \times \mathcal{A}$ that for some $1 \leq i \leq k$,

1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma

$P_{(s,q_s)}^{\mathcal{D} \times \mathcal{A}}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = P_{(s,q_s)}^{\mathcal{D} \times \mathcal{A}}(\Diamond \bigcup_j C_j)$.

Proof sketch.

Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below), Rabin acceptance condition does not depend on any finite prefix of the infinite word, every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.
How to check the probability of accepting in $D \times A$?
Identify the BSCCs $(C_j)_j$ of $D \times A$ that for some $1 \leq i \leq k$,
1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma

$$P_{(s,q_s)}^{D \times A}(\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset) = P_{(s,q_s)}^{D \times A}(\lozenge \bigcup_j C_j).$$

Proof sketch.

▶ Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below),
▶ Rabin acceptance condition does not depend on any finite prefix of the infinite word,
▶ every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.
How to check the probability of accepting in $D \times A$?

Identify the BSCCs $(C_j)_j$ of $D \times A$ that for some $1 \leq i \leq k$,

1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma

$$P_{(s,q_s)}^{D \times A} \left(\{ \omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset \} \right) = P_{(s,q_s)}^{D \times A} (\diamond \bigcup j C_j).$$

Proof sketch.

- Note that some BSCC of each finite DTMC is reached with probability 1 (*short paths with prob. bounded from below*),
- Rabin acceptance condition does not depend on any finite prefix of the infinite word,
- every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.

Corollary

$$P_s^D (\text{Lang}(A)) = P_{(s,q_s)}^{D \times A} (\diamond \bigcup j C_j).$$
Doubly exponential in Ψ and polynomial in D
(for the algorithm presented here):

1. $|A|$ and hence also $|D \times A|$ is of size $2^{2^{O(|\Psi|)}}$
2. BSCC computation: Tarjan algorithm - linear in $|D \times A|$
 (number of states + transitions)
3. Unbounded reachability: system of linear equations ($\leq |D \times A|$):
 - exact solution: \approx cubic in the size of the system
 - approximative solution: efficient in practice