Quantitative Verification
Chapter 3: Markov chains

Jan Křetínský

Technical University of Munich

Winter 2017/18
Motivation
Example: Simulation of a die by coins

Knuth & Yao die

Question:

- What is the probability of obtaining 2?
Definition:
A discrete-time Markov chain (DTMC) is a tuple \((S, P, \pi_0)\) where

- \(S\) is the set of states,
- \(P : S \times S \to [0, 1]\) with \(\sum_{s' \in S} P(s, s') = 1\) is the transitions matrix, and
- \(\pi_0 \in [0, 1]^{|S|}\) with \(\sum_{s \in S} \pi_0(s) = 1\) is the initial distribution.
Example: Craps

Two dice game:

- First: \(\sum \in \{7, 11\} \Rightarrow \text{win} \), \(\sum \in \{2, 3, 12\} \Rightarrow \text{lose} \), else \(s = \sum \)
- Next rolls: \(\sum = s \Rightarrow \text{win} \), \(\sum = 7 \Rightarrow \text{lose} \), else iterate
Example: Craps

Two dice game:

- First: \(\sum \in \{7, 11\} \Rightarrow \text{win}, \sum \in \{2, 3, 12\} \Rightarrow \text{lose} \), else \(s = \sum \)
- Next rolls: \(\sum = s \Rightarrow \text{win}, \sum = 7 \Rightarrow \text{lose} \), else iterate
Example: Craps

Two dice game:

- First: $\sum \in \{7, 11\} \Rightarrow$ win, $\sum \in \{2, 3, 12\} \Rightarrow$ lose, else $s = \sum$
- Next rolls: $\sum = s \Rightarrow$ win, $\sum = 7 \Rightarrow$ lose, else iterate
Example: Zero Configuration Networking (Zeroconf)

- Previously: **Manual** assignment of IP addresses
- Zeroconf: **Dynamic** configuration of local IPv4 addresses
- Advantage: **Simple** devices able to communicate automatically

Automatic Private IP Addressing (APIPA) – RFC 3927

- Used when DHCP is **configured** but **unavailable**
- Pick randomly an address from 169.254.1.0 – 169.254.254.255
- Find out whether anybody else uses this address (by sending several ARP requests)

Model:

- Randomly pick an address among the K (65024) addresses.
- With m hosts in the network, collision probability is $q = \frac{m}{K}$.
- Send 4 ARP requests.
- In case of collision, the probability of no answer to the ARP request is p (due to the lossy channel)
Example: Zero Configuration Networking (Zeroconf)

For 100 hosts and $p = 0.001$, the probability of error is $\approx 1.55 \cdot 10^{-15}$.
What is probabilistic model checking?

- **Probabilistic** specifications, e.g. probability of reaching bad states shall be smaller than 0.01.
- Probabilistic model checking is an automatic verification technique for this purpose.

Why quantities?

- **Randomized** algorithms
- **Faults** e.g. due to the environment, lossy channels
- **Performance** analysis, e.g. reliability, availability
Basics of Probability Theory
(Recap)
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But ... [Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?
Throwing a fair coin:

- The outcome **head** has a probability of 0.5.
- The outcome **tail** has a probability of 0.5.

But … [Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?
What are probabilities? - Intuition

Throwing a fair coin:

- The outcome head has a probability of 0.5.
- The outcome tail has a probability of 0.5.

But …[Bertrand’s Paradox]

Draw a random chord on the unit circle. What is the probability that its length exceeds the length of a side of the equilateral triangle in the circle?
Probability Theory - Probability Space

Definition: Probability Function
Given sample space Ω and σ-algebra \mathcal{F}, a probability function $P : \mathcal{F} \rightarrow [0, 1]$ satisfies:
- $P(A) \geq 0$ for $A \in \mathcal{F}$,
- $P(\Omega) = 1$, and
- $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ for pairwise disjoint $A_i \in \mathcal{F}$

Definition: Probability Space
A probability space is a tuple (Ω, \mathcal{F}, P) with a sample space Ω, σ-algebra $\mathcal{F} \subseteq 2^\Omega$ and probability function P.

Example
A random real number taken uniformly from the interval $[0, 1]$.
- Sample space: $\Omega = [0, 1]$.
Definition: Probability Function
Given sample space \(\Omega \) and \(\sigma \)-algebra \(\mathcal{F} \), a probability function \(P : \mathcal{F} \rightarrow [0, 1] \) satisfies:

- \(P(A) \geq 0 \) for \(A \in \mathcal{F} \),
- \(P(\Omega) = 1 \), and
- \(P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) \) for pairwise disjoint \(A_i \in \mathcal{F} \)

Definition: Probability Space
A probability space is a tuple \((\Omega, \mathcal{F}, P) \) with a sample space \(\Omega \), \(\sigma \)-algebra \(\mathcal{F} \subseteq 2^\Omega \) and probability function \(P \).

Example
A random real number taken uniformly from the interval \([0, 1]\).
- Sample space: \(\Omega = [0, 1] \).
- \(\sigma \)-algebra: \(\mathcal{F} \) is the minimal superset of \(\{[a, b] \mid 0 \leq a \leq b \leq 1\} \) closed under complementation and countable union.
- Probability function: \(P([a, b]) = (b - a) \), by Carathéodory’s extension theorem there is a unique way how to extend it to all elements of \(\mathcal{F} \).
Random Variables

```c
int getRandomNumber()
{
    return 4;  // chosen by fair dice roll.
            // guaranteed to be random.
}
```
Definition: Random Variable

A random variable X is a measurable function $X : \Omega \rightarrow I$ to some I. Elements of I are called **random elements**. Often $I = \mathbb{R}$:

![Diagram showing a random variable X mapping from Ω to \mathbb{R}]

Example (Bernoulli Trials)

Throwing a coin 3 times: $\Omega_3 = \{hhh, hht, hth, htt, thh, tht, tth, ttt\}$. We define 3 random variables $X_i : \Omega \rightarrow \{h, t\}$. For all $x, y, z \in \{h, t\}$,

- $X_1(\text{xyz}) = x$,
- $X_2(\text{xyz}) = y$,
- $X_3(\text{xyz}) = z$.

15 / 84
Stochastic Processes and Markov Chains
Definition:
Given a probability space \((\Omega, \mathcal{F}, P)\), a stochastic process is a family of random variables

\[\{X_t \mid t \in T\} \]

declared on \((\Omega, \mathcal{F}, P)\). For each \(X_t\) we assume

\[X_t : \Omega \rightarrow S \]

where \(S = \{s_1, s_2, \ldots\}\) is a finite or countable set called state space.

A stochastic process \(\{X_t \mid t \in T\}\) is called

- discrete-time if \(T = \mathbb{N}\) or
- continuous-time if \(T = \mathbb{R}_{\geq 0}\).

For the following lectures we focus on discrete time.
Example: Weather Forecast

- $S = \{\text{sun, rain}\}$,
- we model time as discrete – a random variable for each day:
 - X_0 is the weather today,
 - X_i is the weather in i days.
- how can we set up the probability space to measure e.g. $P(X_i = \text{sun})$?
Let us fix a state space S. How can we construct the probability space (Ω, \mathcal{F}, P)?

Definition: Sample Space Ω

We define $\Omega = S^\infty$. Then, each X_n maps a sample $\omega = \omega_0 \omega_1 \ldots$ onto the respective state at time n, i.e.,

$$(X_n)(\omega) = \omega_n \in S.$$
Definition: Cylinder Set

For \(s_0 \cdots s_n \in S^{n+1} \), we set the cylinder \(C(s_0 \cdots s_n) = \{s_0 \cdots s_n \omega \in \Omega\} \).

Example:
\(S = \{s_1, s_2, s_3\} \) and \(C(s_1s_3) \)

Definition: \(\sigma \)-algebra \(\mathcal{F} \)

We define \(\mathcal{F} \) to be the smallest \(\sigma \)-Algebra that contains all cylinder sets, i.e.,

\[\{C(s_0 \cdots s_n) \mid n \in \mathbb{N}, s_i \in S\} \subseteq \mathcal{F}. \]

Check: Is each \(X_i \) measurable?
(on the discrete set \(S \) we assume the full \(\sigma \)-algebra \(2^S \)).
How to specify the probability Function P?

We only need to specify for each $s_0 \cdots s_n \in S^n$

$$P(C(s_0 \cdots s_n)).$$

This amounts to specifying

1. $P(C(s_0))$ for each $s_0 \in S$, and
2. $P(C(s_0 \cdots s_i) | C(s_0 \cdots s_{i-1}))$ for each $s_0 \cdots s_i \in S^i$

since

$$P(C(s_0 \cdots s_n)) = P(C(s_0 \cdots s_n) | C(s_0 \cdots s_{n-1})) \cdot P(C(s_0 \cdots s_{n-1})) = P(C(s_0)) \cdot \prod_{i=1}^{n} P(C(s_0 \cdots s_i) | C(s_0 \cdots s_{i-1}))$$
How to specify the probability function P?
We only need to specify for each $s_0 \cdots s_n \in S^n$

$$P(C(s_0 \cdots s_n)).$$

This amounts to specifying

1. $P(C(s_0))$ for each $s_0 \in S$, and
2. $P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1}))$ for each $s_0 \cdots s_i \in S^i$

since

$$P(C(s_0 \cdots s_n)) = P(C(s_0 \cdots s_n) \mid C(s_0 \cdots s_{n-1})) \cdot P(C(s_0 \cdots s_{n-1}))$$

$$= P(C(s_0)) \cdot \prod_{i=1}^{n} P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1}))$$

Still, lots of possibilities...
Weather Example: Option 1 - statistics of days of a year

- the forecast starts on Jan 01,
- a distribution \(p_j \) over \(\{\text{sun, rain}\} \) for each \(1 \leq j \leq 365 \),
- for each \(i \in \mathbb{N} \) and \(s_0 \ldots s_i \in S^{i+1} \)

\[
P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1})) = p_i \% 365(s_i)
\]

Weather Example: Option 2 - two past days

- a distribution \(p_{s's''} \) over \(\{\text{sun, rain}\} \) for each \(s', s'' \in S \),
- for each \(i \geq 2 \) and \(s_0 \ldots s_i \in S^{i+1} \)

\[
P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1})) = p_{s_i-2s_{i-1}}(s_i)
\]
Weather Example: Option 1 - statistics of days of a year

- the forecast starts on Jan 01,
- a distribution p_j over $\{\text{sun, rain}\}$ for each $1 \leq j \leq 365$,
- for each $i \in \mathbb{N}$ and $s_0 \ldots s_i \in S_i^{i+1}$,

$$P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1})) = p_i \% 365(s_i)$$

Weather Example: Option 2 - two past days

- a distribution $p_{s' s''}$ over $\{\text{sun, rain}\}$ for each $s', s'' \in S$,
- for each $i \geq 2$ and $s_0 \ldots s_i \in S_i^{i+1}$,

$$P(C(s_0 \ldots s_i) \mid C(s_0 \ldots s_{i-1})) = p_{s_{i-2}s_{i-1}}(s_i)$$

Here: time-homogeneous Markovian stochastic processes
Definition: Markov
A discrete-time stochastic process \(\{X_n \mid n \in \mathbb{N}\} \) is Markov if
\[
P(X_n = s_n \mid X_{n-1} = s_{n-1}, \ldots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1})
\]
for all \(n > 1 \) and \(s_0, \ldots, s_n \in S \) with \(P(X_{n-1} = s_{n-1}) > 0 \).

Definition: Time-homogeneous
A discrete-time Markov process \(\{X_n \mid n \in \mathbb{N}\} \) is time-homogeneous if
\[
P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)
\]
for all \(n > 1 \) and \(s, s' \in S \) with \(P(X_0 = s) > 0 \).
Definition: Markov
A discrete-time stochastic process \(\{X_n \mid n \in \mathbb{N}\} \) is Markov if

\[
P(X_n = s_n \mid X_{n-1} = s_{n-1}, \ldots, X_0 = s_0) = P(X_n = s_n \mid X_{n-1} = s_{n-1})
\]

for all \(n > 1 \) and \(s_0, \ldots, s_n \in S \) with \(P(X_{n-1} = s_{n-1}) > 0 \).

Definition: Time-homogeneous
A discrete-time Markov process \(\{X_n \mid n \in \mathbb{N}\} \) is time-homogeneous if

\[
P(X_{n+1} = s' \mid X_n = s) = P(X_1 = s' \mid X_0 = s)
\]

for all \(n > 1 \) and \(s, s' \in S \) with \(P(X_0 = s) > 0 \).

Stochastic Processes - Restrictions
Weather Example: Option 3 - one past day

- a distribution $p_{s'}$ over $\{\text{sun}, \text{rain}\}$ for each $s' \in S$,
- for each $i \geq 1$ and $s_0 \cdots s_i \in S^{i+1}$

$$P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_{s_{i-1}}(s_i)$$

- a distribution π over $\{\text{sun}, \text{rain}\}$ such that $P(C(s_0)) = \pi(s_0)$.
Weather Example: Option 3 - one past day

- a distribution \(p_{s'} \) over \(\{sun, rain\} \) for each \(s' \in S \),
- for each \(i \geq 1 \) and \(s_0 \cdots s_i \in S^{i+1} \)
 \[P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_{s_{i-1}}(s_i) \]
- a distribution \(\pi \) over \(\{sun, rain\} \) such that \(P(C(s_0)) = \pi(s_0) \).

Overly restrictive, isn’t it?
Weather Example: Option 3 - one past day

- a distribution $p_{s'}$ over $\{\text{sun, rain}\}$ for each $s' \in S$,

- for each $i \geq 1$ and $s_0 \cdots s_i \in S^{i+1}$

\[
P(C(s_0 \cdots s_i) \mid C(s_0 \cdots s_{i-1})) = p_{s_{i-1}}(s_i)
\]

- a distribution π over $\{\text{sun, rain}\}$ such that $P(C(s_0)) = \pi(s_0)$.

Overly restrictive, isn’t it?

Not really – one only needs to extend the state space

- $S = \{1, \ldots, 365\} \times \{\text{sun, rain}\} \times \{\text{sun, rain}\}$,

- now each state encodes current day of the year, current weather, and weather yesterday,

- we can define over S a time–homogeneous Markov process based on both Options 1 & 2 given earlier.
Discrete-time Markov Chains
DTMC
Stochastic process → Graph based

Given a discrete-time homogeneous Markov process \(\{X(n) \mid n \in \mathbb{N}\} \)

- with state space \(S \),
- defined on a probability space \((\Omega, \mathcal{F}, P)\)

we take over the state space \(S \) and define

- \(P(s, s') = P(X_n = s' \mid X_{n-1} = s) \) for an arbitrary \(n \in \mathbb{N} \) and
- \(\pi_0(s) = P(X_0 = s) \).

Graph based → stochastic process

Given a DTMC \((S, P, \pi_0)\), we set \(\Omega \) to \(S^\infty \), \(\mathcal{F} \) to the smallest \(\sigma \)-Algebra containing all cylinder sets and

\[
P(C(s_0 \ldots s_n)) = \pi_0(s_0) \cdot \prod_{1 \leq i \leq n} P(s_{i-1}, s_i)
\]

which uniquely defines the probability function \(P \) on \(\mathcal{F} \).
Let \((S, P, \pi_0)\) be a DTMC. We denote by
- \(P_s\) the probability function of DTMC \((S, P, \delta_s)\) where
 \[
 \delta_s(s') = \begin{cases}
 1 & \text{if } s' = s \\
 0 & \text{otherwise}
 \end{cases}
 \]
- \(E_s\) the expectation with respect to \(P_s\)
Analysis questions

- Transient analysis
- Steady-state analysis
- Rewards
- Reachability
- Probabilistic logics
DTMC - Transient Analysis
Example: Gambling with a Limit

What is the probability of being in state 0 after 3 steps?
Definition:
Given a DTMC \((S, P, \pi_0) \), we assume w.l.o.g. \(S = \{0, 1, \ldots\} \) and write \(p_{ij} = P(i, j) \). Further, we have

- \(P^{(1)} = P = (p_{ij}) \) is the 1-step transition matrix
- \(P^{(n)} = (p^{(n)}_{ij}) \) denotes the \(n \)-step transition matrix with

\[
p^{(n)}_{ij} = P(X_n = j \mid X_0 = i) \quad (= P(X_{k+n} = j \mid X_k = i)).
\]

How can we compute these probabilities?
Definition: Chapman-Kolmogorov Equation

Application of the law of total probability to the n-step transition probabilities $p^{(n)}_{ij}$ results in the Chapman-Kolmogorov Equation

\[p^{(n)}_{ij} = \sum_{h \in S} p^{(m)}_{ih} p^{(n-m)}_{hj} \quad \forall 0 < m < n. \]

Consequently, we have $P^{(n)} = PP^{(n-1)} = \ldots = P^n$.
Definition: Chapman-Kolmogorov Equation

Application of the law of total probability to the n-step transition probabilities $p_{ij}^{(n)}$ results in the Chapman-Kolmogorov Equation

$$p_{ij}^{(n)} = \sum_{h \in S} p_{ih}^{(m)} p_{hj}^{(n-m)} \quad \forall 0 < m < n.$$

Consequently, we have $P^{(n)} = PP^{(n-1)} = \ldots = P^n$.

Definition: Transient Probability Distribution

The transient probability distribution at time $n > 0$ is defined by

$$\pi_n = \pi_0 P^n = \pi_{n-1} P.$$
Example:

\[
P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
P^2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.25 & 0 & 0.25 & 0 & 0 \\
0.25 & 0 & 0.5 & 0 & 0.25 & 0 \\
0 & 0.25 & 0 & 0.25 & 0 & 0.25 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

For \(\pi_0 = [0 \ 0 \ 1 \ 0 \ 0] \), \(\pi_2 = \pi_0 P^2 = [0.25 \ 0 \ 0.5 \ 0 \ 0.25] \).

For, \(\pi_0 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \), \(\pi_2 = \pi_0 P^2 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \).

Actually, \(\pi_n = [0.4 \ 0 \ 0 \ 0 \ 0.6] \) for all \(n \in \mathbb{N} \)!
Example:

\[
P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
P^2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.25 & 0 & 0.25 & 0 & 0 \\
0.25 & 0 & 0.5 & 0 & 0.25 & 0 \\
0 & 0.25 & 0 & 0.25 & 0 & 0.5 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

- For \(\pi_0 = [0 \ 0 \ 1 \ 0 \ 0] \), \(\pi_2 = \pi_0 P^2 = [0.25 \ 0 \ 0.5 \ 0 \ 0.25] \).
- For, \(\pi_0 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \), \(\pi_2 = \pi_0 P^2 = [0.4 \ 0 \ 0 \ 0 \ 0.6] \).
 Actually, \(\pi_n = [0.4 \ 0 \ 0 \ 0 \ 0.6] \) for all \(n \in \mathbb{N} \)!
DTMC - Steady State Analysis
Definition: Stationary Distribution
A distribution π is stationary if

$$\pi = \pi P.$$

Stationary distribution is generally not unique.
Definition: Stationary Distribution
A distribution π is stationary if

$$\pi = \pi P.$$

Stationary distribution is generally not unique.

Definition: Limiting Distribution

$$\pi^* := \lim_{n \to \infty} \pi_n = \lim_{n \to \infty} \pi_0 P^n = \pi_0 \lim_{n \to \infty} P^n = \pi_0 P^*.$$

The limit can depend on π_0 and does not need to exist.
Definition: Stationary Distribution
A distribution π is stationary if

$$\pi = \pi P.$$

Stationary distribution is generally not unique.

Definition: Limiting Distribution

$$\pi^* := \lim_{n \to \infty} \pi_n = \lim_{n \to \infty} \pi_0 P^n = \pi_0 \lim_{n \to \infty} P^n = \pi_0 P^*.$$

The limit can depend on π_0 and does not need to exist.

Connection between stationary and limiting?
What are the stationary and limiting distributions?
Example: Gambling with Social Guarantees

What are the stationary and limiting distributions?

Definition: Periodicity

The period of a state i is defined as

$$d_i = \gcd\{n \mid p_{ii}^n > 0\}.$$

A state i is called aperiodic if $d_i = 1$ and periodic with period d_i otherwise. A Markov chain is aperiodic if all states are aperiodic.

Lemma

In a finite aperiodic Markov chain, the limiting distribution exists.
Example
Definition:
A DTMC is called \textit{irreducible} if for all states $i, j \in S$ we have $p^n_{ij} > 0$ for some $n \geq 1$.

Lemma
\textit{In an aperiodic and irreducible} Markov chain, the limiting distribution exists and does not depend on π_0.
What is the stationary / limiting distribution?

Lemma
In a finite aperiodic and irreducible Markov chain, the limiting distribution exists, does not depend on π_0, and equals the unique stationary distribution.
What is the stationary / limiting distribution?
What is the stationary / limiting distribution?

Lemma

In a finite aperiodic and irreducible Markov chain, the limiting distribution exists, does not depend on π_0, and equals the unique stationary distribution.
Definition:
Let \(f_{ij}^{(n)} = P(X_n = j \land \forall 1 \leq k < n : X_k \neq j \mid X_0 = i) \) for \(n \geq 1 \) be the \(n \)-step hitting probability. The hitting probability is defined as

\[
f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}
\]

and a state \(i \) is called

- **transient** if \(f_{ii} < 1 \) and
- **recurrent** if \(f_{ii} = 1 \).
Definition:
Let expectation $m_{ij} = \sum_{n=1}^{\infty} n \cdot f_{ij}^{(n)}$, a recurrent state i is called
- positive recurrent or recurrent non-null if $m_{ii} < \infty$ and
- recurrent null if $m_{ii} = \infty$.

Lemma
The states of an irreducible DTMC are all of the same type, i.e.,
- all periodic or
- all aperiodic and transient or
- all aperiodic and recurrent null or
- all aperiodic and recurrent non-null.
Definition: Ergodicity
A DTMC is ergodic if all its states are irreducible, aperiodic and recurrent non-null.

Theorem
In an ergodic Markov chain, the limiting distribution exists, does not depend on π_0, and equals the unique stationary distribution.

As a consequence, the steady-state distribution can be computed by solving the equation system

$$\pi = \pi P, \sum_{x \in S} \pi_s = 1.$$

Note: The Lemma for finite DTMC follows from the theorem as every irreducible finite DTMC is positive recurrent.
Example: Unbounded Gambling with House Edge

The DTMC is only ergodic for $p \in [0, 0.5)$.

$$
\begin{align*}
0 & \xrightarrow{1-p} 10 \xrightarrow{1-p} 20 \xrightarrow{1-p} 30 \xrightarrow{1-p} \ldots \\
& \xrightarrow{p} 10 \xrightarrow{p} 20 \xrightarrow{p} 30 \xrightarrow{1}
\end{align*}
$$
DTMC - Rewards
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r \colon S \to \mathbb{Z}\) is a reward function.
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as

\[
\sum_{i=1}^{T} r(s_i)
\]
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as
- total reward
 \[\sum_{i=1}^{T} r(s_i) \]
- But what if \(T = \infty\)?
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \to \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as

- total reward
 \[
 \sum_{i=1}^{T} r(s_i)
 \]

- discounted reward
 \[
 \sum_{i=1}^{\infty} \lambda^i r(s_i) \quad \text{for some } 0 < \lambda < 1
 \]

But what if \(T = \infty\)?
Definition

A reward Markov chain is a tuple (S, P, π_0, r) where (S, P, π_0) is a Markov chain and $r : S \to \mathbb{Z}$ is a reward function.

Every run $\rho = s_0, s_1, \ldots$ induces a sequence of values $r(s_0), r(s_1), \ldots$

Value of the whole run can be defined as

- total reward
 $$\sum_{i=1}^{T} r(s_i)$$
 But what if $T = \infty$?

- discounted reward
 $$\sum_{i=1}^{\infty} \lambda^i r(s_i)$$
 for some $0 < \lambda < 1$

- average reward
 $$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)$$
 also called long-run average or mean payoff
Definition
A reward Markov chain is a tuple \((S, P, \pi_0, r)\) where \((S, P, \pi_0)\) is a Markov chain and \(r : S \rightarrow \mathbb{Z}\) is a reward function.

Every run \(\rho = s_0, s_1, \ldots\) induces a sequence of values \(r(s_0), r(s_1), \ldots\)

Value of the whole run can be defined as
- total reward \(\sum_{i=1}^{T} r(s_i)\)
- discounted reward \(\sum_{i=1}^{\infty} \lambda^i r(s_i)\) for some \(0 < \lambda < 1\)
- average reward \(\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} r(s_i)\)
 also called long-run average or mean payoff

Definition
The expected average reward is

\[
\text{EAR} := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \mathbb{E}[r(X_i)]
\]
Definition: Time-average Distribution

\[\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i. \]

\(\hat{\pi}(s) \) expresses the ratio of time spent in \(s \) on the long run.

1 More details later for Markov decision processes.
Definition: Time-average Distribution

\[\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i. \]

\(\hat{\pi}(s) \) expresses the ratio of time spent in \(s \) on the long run.

Lemma

1. \(\mathbb{E}[r(X_i)] = \sum_{s \in S} \pi_i(s) \cdot r(s) = \hat{\pi} \cdot r \)
2. If \(\hat{\pi} \) exists then \(\text{EAR} = \sum_{s \in S} \hat{\pi}(s) \cdot r(s) = \hat{\pi} \cdot r \)
3. If limiting distribution exists, it coincides with \(\hat{\pi} \).

\(^1\)More details later for Markov decision processes.
Definition: Time-average Distribution

\[\hat{\pi} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \pi_i. \]

\(\hat{\pi}(s) \) expresses the ratio of time spent in \(s \) on the long run.

Lemma

1. \(\mathbb{E}[r(X_i)] = \sum_{s \in S} \pi_i(s) \cdot r(s). \)
2. If \(\hat{\pi} \) exists then \(EAR = \sum_{s \in S} \hat{\pi}(s) \cdot r(s). \)
3. If limiting distribution exists, it coincides with \(\hat{\pi} \).

Algorithm

1. Compute \(\hat{\pi} \) (or limiting distribution if possible).\(^1\)
2. Return \(\sum_{s \in S} \hat{\pi}(s) \cdot r(s). \)

\(^{1}\)More details later for Markov decision processes.
DTMC – Reachability
Definition: Reachability

Given a DTMC \((S, P, \pi_0)\), what is the probability of eventually reaching a set of goal states \(B \subseteq S\)?

Let \(x(s)\) denote \(P_s(\Diamond B)\) where \(\Diamond B = \{s_0s_1\cdots | \exists i : s_i \in B\}\). Then

- \(s \in B: \ x(s) = \top\)
- \(s \in S \setminus B: \ x(s) = \)

\(\text{DTMC - Reachability}\)
Definition: Reachability

Given a DTMC \((S, P, \pi_0)\), what is the probability of eventually reaching a set of goal states \(B \subseteq S\)?

Let \(x(s)\) denote \(P_s(\diamond B)\) where \(\diamond B = \{s_0s_1 \cdots | \exists i : s_i \in B\}\). Then

- \(s \in B\): \(x(s) = 1\)
- \(s \in S \setminus B\): \(x(s) = \sum_{t \in S \setminus B} P(s, t)x(t) + \sum_{u \in B} P(s, u)\).
Lemma (Reachability Matrix Form)

Given a DTMC \((S, P, \pi_0)\), the column vector \(x = (x(s))_{s \in S \setminus B}\) of probabilities \(x(s) = P_s(\diamond B)\) satisfies the constraint

\[
x = Ax + b,
\]

where matrix \(A\) is the submatrix of \(P\) for states \(S \setminus B\) and \(b = (b(s))_{s \in S \setminus B}\) is the column vector with \(b(s) = \sum_{u \in B} P(s, u)\).
Example:

The vector $x = [x_0 \ x_1 \ x_2]^T = [0.25 \ 0.5 \ 0]^T$ satisfies the equation system $x = Ax + b$.

While reaching the goal, such bad states need to be avoided.

We first generalise such “avoiding”.
Example:

The vector \(x = [x_0 \ x_1 \ x_2]^T = [0.25 \ 0.5 \ 0]^T \) satisfies the equation system \(x = Ax + b \).

Is it the only solution?
DTMC - Reachability

Example:

The vector \(x = [x_0 \ x_1 \ x_2]^T = [0.25 \ 0.5 \ 0]^T \) satisfies the equation system \(x = Ax + b \).

Is it the only solution?

- No! Consider, e.g., \([0.55 \ 0.7 \ 0.4]\) or \([1 \ 1 \ 1]^T\).
- While reaching the goal, such bad states need to be avoided.
- We first generalise such “avoiding”.
Definition:
Let $B, C \subseteq S$. The (unbounded) probability of reaching B from state s under the condition that C is not left before is defined as $P_s(C \cup B)$ where

$$C \cup B = \{s_0s_1\cdots | \exists i : s_i \in B \land \forall j < i : s_j \in C\}.$$
Definition:
Let $B, C \subseteq S$. The (unbounded) probability of reaching B from state s under the condition that C is not left before is defined as $P_s(C \cup B)$ where

$$C \cup B = \{s_0s_1\cdots | \exists i : s_i \in B \land \forall j < i : s_j \in C\}.$$

The probability of reaching B from state s within n steps under the condition that C is not left before is defined as $P_s(C \cup \leq^n B)$ where

$$C \cup \leq^n B = \{s_0s_1\cdots | \exists i \leq n : s_i \in B \land \forall j < i : s_j \in C\}.$$

What is the equation system for these probabilities?
Let $S_{=0} = \{ s \mid P_s(C \cup B) = 0 \}$ and $S? = S \setminus (S_{=0} \cup B)$.
Let $S_{=0} = \{s \mid P_s(C \cup B) = 0\}$ and $S^? = S \setminus (S_{=0} \cup B)$.

Theorem:
The column vector $x = (x(s))_{s \in S^?}$ of probabilities $x(s) = P_s(C \cup B)$ is the unique solution of the equation system

$$x = Ax + b,$$

where $A = (P(s, t))_{s, t \in S^?}$, $b = (b(s))_{s \in S^?}$ with $b(s) = \sum_{u \in B} P(s, u)$.

Furthermore, for $x_0 = (0)_{s \in S^?}$ and $x_i = Ax_{i-1} + b$ for any $i \geq 1$,

1. $x_n(s) = P_s(C \cup B^\leq_n B)$ for $s \in S^?$,
2. x_i is increasing, and
3. $x = \lim_{n \to \infty} x_n$.

Furthermore, for $x_0 = (0)_{s \in S^?}$ and $x_i = Ax_{i-1} + b$ for any $i \geq 1$,
Proof Sketch:

- \((x_s)_{x \in S}\) is a solution: by inserting into definition.
- Unique solution: By contradiction. Assume \(y\) is another solution, then \(x - y = A(x - y)\). One can show that \(A - I\) is invertible, thus \((A - I)(x - y) = 0\) yields \(x - y = (A - I)^{-1}0 = 0\) and finally \(x = y\).

Furthermore,

1. From the definitions, by straightforward induction.
2. From 1. since \(C \cup B \subseteq C \cup B \subseteq n + 1 B\).
3. Since \(C \cup B = \bigcup_{n \in \mathbb{N}} C \cup B \leq n B\).

\(^2\text{cf. page 766 of Principles of Model Checking}\)
Algorithmic aspects
Algorithmic Aspects - Summary of Equation Systems

Equation Systems

- Transient analysis: \(\pi_n = \pi_0 P^n = \pi_{n-1} P \)

- Steady-state analysis: \(\pi P = \pi, \pi \cdot 1 = \sum_{s \in S} \pi(s) = 1 \) (ergodic)

- Reachability: \(x = Ax + b \)
 \[
 (with \ (x(s))_{s \in S})
 \]

Solution Techniques

1. Analytic solution, e.g. by Gaussian elimination
2. Iterative power method (\(\pi_n \to \pi \) and \(x_n \to x \) for \(n \to \infty \))
3. Iterative methods for solving large systems of linear equations, e.g. Jacobi, Gauss-Seidel

Missing pieces

a. finding out whether a DTMC is ergodic,

b. computing \(S = S \setminus \{s \mid P_s(\diamond B) = 0\} \)

c. efficient representation of \(P \).
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called irreducible if for all states $i, j \in S$ we have $p_{ij}^n > 0$ for some $n \geq 1$.
- A state i is called aperiodic if $\gcd\{n \mid p_{ii}^n > 0\} = 1$.
- A state i is called positive recurrent if $f_{ii} = 1$ and $m_{ii} < \infty$.

How do we tell that a finite DTMC is ergodic?
Algorithmic Aspects: a. Ergodicity of finite DTMC (1)

Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states \(i, j \in S \) we have \(p^n_{ij} > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called **aperiodic** if \(\gcd\{n \mid p^n_{ii} > 0\} = 1 \).
- A state \(i \) is called **positive recurrent** if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

How do we tell that a finite DTMC is **ergodic**?

By analysis of the induced graph!

For a DTMC \((S, P, \pi(0))\) we define the **induced directed graph** \((S, E)\) with \(E = \{(s, s') \mid P(s, s') > 0\} \).

Recall:

- A directed graph is called **strongly connected** if there is a path from each vertex to every other vertex.
- **Strongly connected components (SCC)** are its maximal strongly connected subgraphs.
- A SCC \(T \) is **bottom (BSCC)** if no \(s \not\in T \) is reachable from \(T \).
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states \(i, j \in S \) we have \(p^n_{ij} > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called **aperiodic** if \(\gcd\{n \mid p^n_{ii} > 0\} = 1 \).
- A state \(i \) is called **positive recurrent** if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

Theorem:
For **finite** DTMCs, it holds that:

\(f_{ii} \) and \(m_{ii} \) denote the expected time to return to state \(i \) and the expected number of visits to state \(i \) before returning to it.
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called **irreducible** if for all states \(i, j \in S \) we have \(p_{ij}^n > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called **aperiodic** if \(\gcd\{n \mid p_{ii}^n > 0\} = 1 \).
- A state \(i \) is called **positive recurrent** if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

Theorem:
For finite DTMCs, it holds that:
- The DTMC is **irreducible** iff the induced graph is strongly connected.
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called irreducible if for all states $i, j \in S$ we have $p^n_{ij} > 0$ for some $n \geq 1$.
- A state i is called aperiodic if $\gcd\{n | p^n_{ii} > 0\} = 1$.
- A state i is called positive recurrent if $f_{ii} = 1$ and $m_{ii} < \infty$.

Theorem:
For finite DTMCs, it holds that:
- The DTMC is irreducible iff the induced graph is strongly connected.
- A state in a BSCC is aperiodic iff the BSCC is aperiodic, i.e. the greatest common divisor of the lengths of all its cycles is 1.
Ergodicity = Irreducibility + Aperiodicity + P. Recurrence

- A DTMC is called irreducible if for all states \(i, j \in S \) we have \(p^n_{ij} > 0 \) for some \(n \geq 1 \).
- A state \(i \) is called aperiodic if \(\gcd \{ n \mid p^n_{ii} > 0 \} = 1 \).
- A state \(i \) is called positive recurrent if \(f_{ii} = 1 \) and \(m_{ii} < \infty \).

Theorem:
For finite DTMCs, it holds that:
- The DTMC is irreducible iff the induced graph is strongly connected.
- A state in a BSCC is aperiodic iff the BSCC is aperiodic, i.e. the greatest common divisor of the lengths of all its cycles is 1.
- A state is positive recurrent iff it belongs to a BSCC otherwise it is transient.
Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is \text{gcd} of the lengths of all cycles of a strongly connected graph 1?
Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

\[\gcd \{n \geq 1 \mid \exists s : P^n(s, s) > 0\} = 1 \]
Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is gcd of the lengths of all cycles of a strongly connected graph 1?

- \(\gcd \{ n \geq 1 \mid \exists s : P^n(s, s) > 0 \} = 1 \)
- in time \(\mathcal{O}(n + m) \)?
Algorithmic Aspects: a. Ergodicity of finite DTMC (3)

How to check: is \gcd of the lengths of all cycles of a strongly connected graph 1?

- $\gcd\{n \geq 1 \mid \exists s : P^n(s, s) > 0\} = 1$
- in time $O(n + m)$? By the following DFS-based procedure:

Algorithm: PERIOD(vertex v, unsigned $level$: init 0)

1. global $period$: init 0;
2. if $period = 1$ then
 3. return
3. end
4. if v is unmarked then
 5. mark v;
 6. $v_{level} = level$;
 7. for v' ∈ $out(v)$ do
 8. PERIOD(v', $level + 1$)
 9. end
10. else
11. $period = \gcd(period, level - v_{level})$;
12. end
Algorithmic Aspects: b. Computing the set $S_?$

We have $S_? = S \setminus (B \cup S_{=0})$ where $S_{=0} = \{ s \mid P_s(\diamond B) = 0 \}$. Hence,

$$s \in S_{=0} \iff p^n_{ss'} = 0 \quad \text{for all } n \geq 1 \text{ and } s' \in B.$$
We have $S? = S \setminus (B \cup S_{=0})$ where $S_{=0} = \{ s \mid P_s(\diamond B) = 0 \}$. Hence,

$$s \in S_{=0} \iff p_{ss'}^n = 0 \quad \text{for all } n \geq 1 \text{ and } s' \in B.$$

This can be again easily checked from the induced graph:

Lemma

We have $s \in S_{=0}$ iff there is no path from s to any state from B.

Proof.

Easy from the fact that $p_{ss'}^n > 0$ iff there is a path of length n to s'. \(\square\)
1. There are many entries in the transition matrix.
2. There are many similar entries in the transition matrix.

Sparse matrices offer a more concise storage.

Multi-terminal binary decision diagrams offer a more concise storage, using automata theory.
1. There are many 0 entries in the transition matrix. Sparse matrices offer a more concise storage.
1. There are many 0 entries in the transition matrix. **Sparse matrices** offer a more concise storage.

2. There are many similar entries in the transition matrix. **Multi-terminal binary decision diagrams** offer a more concise storage, using automata theory.
DTMC - Probabilistic Temporal Logics for Specifying Complex Properties
Definition:
A labeled DTMC is a tuple $\mathcal{D} = (S, P, \pi_0, L)$ with $L : S \rightarrow 2^{AP}$, where

- AP is a set of atomic propositions and
- L is a labeling function, where $L(s)$ specifies which properties hold in state $s \in S$.

States and transitions
state = configuration of the game;
transition = rolling the dice and acting (randomly) based on the result.

State labels
▶ init, rwin, bwin, rkicked, bkicked, ...
▶ r30, r21, ...,
▶ b30, b21, ...

Examples of Properties
▶ the game cannot return back to start
▶ at any time, the game eventually ends with prob. 1
▶ at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
▶ the probability of winning without ever being kicked out is ≤ 0.3

How to specify them formally?
Linear-time view

▶ corresponds to our (human) perception of time
▶ can specify properties of one concrete linear execution of the system

Example: eventually red player is kicked out followed immediately by blue player being kicked out.

Branching-time view

▶ views future as a set of all possibilities
▶ can specify properties of all executions from a given state – specifies execution trees

Example: in every computation it is always possible to return to the initial state.
Linear Temporal Logic (LTL)
Syntax for formulae specifying executions:

\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi \]

Example: eventually red player is kicked out followed immediately by blue player being kicked out: \(F (rkicked \land X bkicked) \)

Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)
Syntax for specifying states:

\[\phi = \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \]

Syntax for specifying executions:

\[\psi = X \phi \mid \phi U \phi \mid F \phi \mid G \phi \]

Example: in all computations it is always possible to return to initial state: \(A G E F \text{ init} \)

Question: does the given state satisfy the given CTL state formula?
Logics - LTL

Syntax: \(\psi = true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \).

Semantics (for a path \(\omega = s_0 s_1 \cdots \))

- \(\omega \models true \) (always),
- \(\omega \models a \) iff \(a \in L(s_0) \),
- \(\omega \models \psi_1 \land \psi_2 \) iff \(\omega \models \psi_1 \) and \(\omega \models \psi_2 \),
- \(\omega \models \neg \psi \) iff \(\omega \not\models \psi \),
- \(\omega \models X \psi \) iff \(s_1 s_2 \cdots \models \psi \),
- \(\omega \models \psi_1 U \psi_2 \) iff \(\exists i \geq 0: s_i s_{i+1} \cdots \models \psi_2 \) and \(\forall j < i: s_j s_{j+1} \cdots \models \psi_1 \).

Syntactic sugar

- \(F \psi \equiv \)
- \(G \psi \equiv \)
Logics - LTL

Syntax
\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \ \psi \mid \psi \ U \ \psi. \]

Semantics (for a path \(\omega = s_0 s_1 \cdots \))

- \(\omega \models true \) (always),
- \(\omega \models a \) \iff \(a \in L(s_0) \),
- \(\omega \models \psi_1 \land \psi_2 \) \iff \(\omega \models \psi_1 \) and \(\omega \models \psi_2 \),
- \(\omega \models \neg \psi \) \iff \(\omega \not\models \psi \),
- \(\omega \models X \ \psi \) \iff \(s_1 s_2 \cdots \models \psi \),

Syntactic sugar

- \(\mathcal{F} \ \psi \equiv true \ U \ \psi \)
- \(\mathcal{G} \ \psi \equiv \neg (true \ U \ \neg \psi) \quad (\equiv \neg \mathcal{F} \ \neg \psi) \)
Syntax

State formulae:

\[\phi = \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \]

where \(\psi \) is a path formula.

Semantics

For a state \(s \):

- \(s \models \text{true} \) (always),
- \(s \models a \) iff \(a \in L(s) \),
- \(s \models \phi_1 \land \phi_2 \) iff \(s \models \phi_1 \) and \(s \models \phi_2 \),
- \(s \models \neg \phi \) iff \(s \not\models \phi \),
- \(s \models A\psi \) iff \(\omega \models \psi \) for all paths \(\omega = s_0 s_1 \cdots \) with \(s_0 = s \),
- \(s \models E\psi \) iff \(\omega \models \psi \) for some path \(\omega = s_0 s_1 \cdots \) with \(s_0 = s \).

Path formulae:

\[\psi = X \phi \mid \phi U \phi \]

where \(\phi \) is a state formula.

For a path \(\omega = s_0 s_1 \cdots \):

- \(\omega \models X \phi \) iff \(s_1 s_2 \cdots \) satisfies \(\phi \),
- \(\omega \models \phi_1 U \phi_2 \) iff \(\exists i : s_i s_{i+1} \cdots \models \phi_2 \) and \(\forall j < i : s_j s_{j+1} \cdots \models \phi_1 \).
Linear Temporal Logic (LTL)
Syntax for formulae specifying executions:

\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi \]

Example: eventually red player is kicked out followed immediately by blue player being kicked out: \(F (rkicked \land X bkicked) \)
Question: do all executions satisfy the given LTL formula?

Computation Tree Logic (CTL)
Syntax for specifying states:

\[\phi = \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid A \psi \mid E \psi \]

Syntax for specifying executions:

\[\psi = X \phi \mid \phi U \phi \mid F \phi \mid G \phi \]

Example: in all computations it is always possible to return to initial state: \(A G E F \text{ init} \)
Question: does the given state satisfy the given CTL state formula?
Linear Temporal Logic (LTL) + probabilities

Syntax for formulae specifying executions:

$$\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi$$

Example: with prob. \(\geq 0.8\), eventually red player is kicked out followed immediately by blue player being kicked out:

$$P(F (rkicked \land X bkicked)) \geq 0.8$$

Question: is the formula satisfied by executions of given probability?
Logics - Temporal Logics - probabilistic

Linear Temporal Logic (LTL) + probabilities
Syntax for formulae specifying executions:

\[\psi = \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi \mid F \psi \mid G \psi \]

Example: with prob. \(\geq 0.8 \), eventually red player is kicked out followed immediately by blue player being kicked out:

\[P(F (rkicked \land X bkicked)) \geq 0.8 \]

Question: is the formula satisfied by executions of given probability?

Probabilistic Computation Tree Logic (PCTL)
Syntax for specifying states:

\[\phi = \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_j \psi \]

Syntax for specifying executions:

\[\psi = X \phi \mid \phi U \phi \mid \phi U \leq^k \phi \mid F \phi \mid G \phi \]

Example: with prob. at least 0.5 the probability to return to initial state is always at least 0.1: \(P_{\geq 0.5} G P_{\geq 0.1} F \text{init} \)

Question: does the given state satisfy the given PCTL state formula?
Logics - PCTL - Examples

Syntactic sugar:

- $\phi_1 \lor \phi_2 \equiv \neg(\neg\phi_1 \land \neg\phi_2)$, $\phi_1 \Rightarrow \phi_2 \equiv \neg\phi_1 \lor \phi_2$, etc.
- ≤ 0.5 denotes the interval $[0, 0.5]$, $= 1$ denotes $[1, 1]$, etc.

Examples:

- A fair die:

\[
\bigwedge_{i \in \{1, \ldots, 6\}} P_{\frac{1}{6}}(\mathcal{F} \ i).
\]

- The probability of winning "Who wants to be a millionaire" without using any joker should be negligible:

\[
P_{<1e^{-10}}(\neg(J_{50\%} \lor J_{audience} \lor J_{telephone}) \cup \text{win}).
\]
Semantics

For a state s:

- $s \models true$ (always),
- $s \models a$ iff $a \in L(s)$,
- $s \models \phi_1 \land \phi_2$ iff $s \models \phi_1$ and $s \models \phi_2$,
- $s \models \neg \phi$ iff $s \not\models \phi$,
- $s \models P_J(\psi)$ iff $P_s(\text{Paths}(\psi)) \in J$

For a path $\omega = s_0s_1 \cdots$:

- $\omega \models X\phi$ iff $s_1s_2 \cdots$ satisfies ϕ,
- $\omega \models \phi_1 U \phi_2$ iff $\exists i : s_is_{i+1} \cdots \models \phi_2$ and $\forall j < i : s_js_{j+1} \cdots \models \phi_1$.
- $\omega \models \phi_1 U \leq^n \phi_2$ iff $\exists i \leq n : s_is_{i+1} \cdots \models \phi_2$ and $\forall j < i : s_js_{j+1} \cdots \models \phi_1$.
Examples of Properties

1. the game cannot return back to start
2. at any time, the game eventually ends with prob. 1
3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
4. the probability of winning without ever being kicked out is ≤ 0.3
Examples of Properties

1. the game cannot return back to start
2. at any time, the game eventually ends with prob. 1
3. at any time, the game ends within 100 dice rolls with prob. ≥ 0.5
4. the probability of winning without ever being kicked out is ≤ 0.3

Formally

1. $P(\forall X \ G \neg \text{init}) = 1$ (LTL + prob.)
 $P_{=1}(\forall X \ P_{=0}(G \neg \text{init}))$ (PCTL)
2. $P_{=1}(G \ P_{=1}(F (rwin \lor bwin)))$ (PCTL)
3. $P_{=1}(G \ P_{\geq 0.5}(F \leq_{100} (rwin \lor bwin)))$ (PCTL)
4. $P((\neg r\text{kicked} \land \neg b\text{kicked}) \ U (rwin \lor bwin) \leq 0.3$ (LTL + prob.)
PCTL Model Checking Algorithm
Definition: PCTL Model Checking

Let $D = (S, P, \pi_0, L)$ be a DTMC, Φ a PCTL state formula and $s \in S$. The model checking problem is to decide whether $s \models \Phi$.

Theorem

The PCTL model checking problem can be decided in time polynomial in $|D|$, linear in $|\Phi|$, and linear in the maximum step bound n.
Algorithm:
Consider the bottom-up traversal of the parse tree of Φ:

- The leaves are $a \in AP$ or $true$ and
- the inner nodes are:
 - unary – labelled with the operator \neg or $P_J(X)$;
 - binary – labelled with an operator \land, $P_J(U)$, or $P_J(U \leq n)$.

Example: $\neg a \land P_{\leq 0.2}(\neg b U P_{\geq 0.9}(\Diamond c))$

Compute $Sat(\Psi) = \{s \in S \mid s \models \Psi\}$ for each node Ψ of the tree in a bottom-up fashion. Then $s \models \Phi$ iff $s \in Sat(\Phi)$.
“Base” of the algorithm:
We need a procedure to compute $Sat(\psi)$ for ψ of the form a or $true$:

Lemma ▶ $Sat(true) = \mathcal{S}$, $Sat(a) = \{s | a \in L(s)\}$

"Induction" step of the algorithm:
We need a procedure to compute $Sat(\psi)$ for ψ given the sets $Sat(\psi')$ for all state sub-formulas ψ' of ψ:

Lemma ▶ $Sat(\Phi_1 \land \Phi_2) = Sat(\neg \Phi) = Sat(P_J(\Phi)) = \{s | P_s(Paths(\Phi)) \in J\}$

discussed on the next slide.
"Base" of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ of the form a or $true$:

Lemma

- $Sat(true) = S$,
- $Sat(a) = \{s \mid a \in L(s)\}$
“Base” of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ of the form a or $true$:

Lemma
- $Sat(true) = S$,
- $Sat(a) = \{s \mid a \in L(s)\}$

“Induction” step of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ given the sets $Sat(\Psi')$ for all state sub-formulas Ψ' of Ψ:

Lemma
- $Sat(\Phi_1 \land \Phi_2) =$
- $Sat(\neg \Phi) =$
“Base” of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ of the form a or $true$:

Lemma
- $Sat(true) = S$
- $Sat(a) = \{s \mid a \in L(s)\}$

“Induction” step of the algorithm:
We need a procedure to compute $Sat(\Psi)$ for Ψ given the sets $Sat(\Psi')$ for all state sub-formulas Ψ' of Ψ:

Lemma
- $Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)$
- $Sat(\neg \Phi) = S \setminus Sat(\Phi)$

$Sat(\mathcal{P}_J(\Phi)) = \{s \mid P_s(Paths(\Phi)) \in J\}$ discussed on the next slide.
Lemma

- **Next:**

\[P_s(Paths(\Delta \Phi)) = \]

- **Bounded Until:**

\[P_s(Paths(\Phi_1 U \leq^n \Phi_2)) = \]

- **Unbounded Until:**

\[P_s(Paths(\Phi_1 U \Phi_2)) = \]
Lemma

- **Next:**

\[Ps(Paths(\mathcal{X} \ \Phi)) = \sum_{s' \in \text{Sat}(\Phi)} P(s, s') \]

- **Bounded Until:**

\[Ps(Paths(\Phi_1 \ \mathcal{U} \ \leq^n \ \Phi_2)) = Ps(\text{Sat}(\Phi_1) \ \mathcal{U} \ \leq^n \ \text{Sat}(\Phi_2)) \]

- **Unbounded Until:**

\[Ps(Paths(\Phi_1 \ \mathcal{U} \ \Phi_2)) = Ps(\text{Sat}(\Phi_1) \ \mathcal{U} \ \text{Sat}(\Phi_2)) \]
Lemma

- **Next:**

 \[P_s(Paths(\mathcal{X}\Phi)) = \sum_{s' \in Sat(\Phi)} P(s, s') \]

- **Bounded Until:**

 \[P_s(Paths(\Phi_1 \mathcal{U} \leq_n \Phi_2)) = P_s(Sat(\Phi_1) \mathcal{U} \leq_n Sat(\Phi_2)) \]

- **Unbounded Until:**

 \[P_s(Paths(\Phi_1 \mathcal{U} \Phi_2)) = P_s(Sat(\Phi_1) \mathcal{U} Sat(\Phi_2)) \]

As before:

can be reduced to transient analysis and to unbounded reachability.
Precise algorithm

Computation for every node in the parse tree and for every state:

- All node types except for path operator – trivial.
- Next: Trivial.
- Until: Solving equation systems can be done by polynomially many elementary arithmetic operations.
- Bounded until: Matrix vector multiplications can be done by polynomial many elementary arithmetic operations as well.

Overall complexity:
Polynomial in $|\mathcal{D}|$, linear in $|\Phi|$ and the maximum step bound n.

In practice

The until and bounded until probabilities computed approximatively:

- rounding off probabilities in matrix-vector multiplication,
- using approximative iterative methods without error guarantees.
pLTL Model Checking Algorithm
Definition: LTL Model Checking
Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P^D_s(\text{Paths}(\Psi)) \geq p$.

Theorem
The LTL model checking can be decided in time $\mathcal{O}(|\mathcal{D}| \cdot 2^{|\Psi|})$.
Definition: LTL Model Checking

Let $D = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P^D_s(\text{Paths}(\Psi)) \geq p$.

Theorem

The LTL model checking can be decided in time $O(|D| \cdot 2^{|\Psi|})$.

Algorithm Outline

1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $\text{Paths}(\Psi) := \{L(\omega) \in (2^A)^{\infty} | \omega \models \Psi\}$
Definition: LTL Model Checking

Let $D = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P^D_s(Paths(\Psi)) \geq p$.

Theorem

The LTL model checking can be decided in time $O(|D| \cdot 2^{2|\Psi|})$.

Algorithm Outline

1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $Paths(\Psi) := \{L(\omega) \in (2^A)^\infty | \omega \models \Psi\}$

2. Construct a product DTMC $D \times A$ that “embeds” the deterministic execution of A into the Markov chain.
Definition: LTL Model Checking

Let $\mathcal{D} = (S, P, \pi_0, L)$ be a DTMC, Ψ a LTL formula, $s \in S$, and $p \in [0, 1]$. The model checking problem is to decide whether $s \models P_s^\mathcal{D}(\text{Paths}(\Psi)) \geq p$.

Theorem

The LTL model checking can be decided in time $O(|\mathcal{D}| \cdot 2^{|\Psi|})$.

Algorithm Outline

1. Construct from Ψ a deterministic Rabin automaton A recognizing words satisfying Ψ, i.e. $\text{Paths}(\Psi) := \{L(\omega) \in (2^AP)^\infty | \omega \models \Psi\}$

2. Construct a product DTMC $\mathcal{D} \times A$ that “embeds” the deterministic execution of A into the Markov chain.

3. Compute in $\mathcal{D} \times A$ the probability of paths where A satisfies the acceptance condition.
Deterministic Rabin automaton (DRA): \((Q, \Sigma, \delta, q_0, \text{Acc})\)

- a DFA with a different acceptance condition,
- \(\text{Acc} = \{(E_i, F_i) \mid 1 \leq i \leq k\}\)
- each accepting infinite path must visit for some \(i\)
 - all states of \(E_i\) at most finitely often and
 - some state of \(F_i\) infinitely often.

Example

Give some automata recognizing the language of formulas

\[(a \land Xb) \lor aUc\]

\(FGa\)

\(GFa\)
Deterministic Rabin automaton (DRA): \((Q, \Sigma, \delta, q_0, Acc)\)

- a DFA with a different acceptance condition,
- \(Acc = \{(E_i, F_i) | 1 \leq i \leq k\}\)
- each accepting infinite path must visit for some \(i\)
 - all states of \(E_i\) at most finitely often and
 - some state of \(F_i\) infinitely often.

Example

Give some automata recognizing the language of formulas

\(\forall (a \land X b) \lor aUc\)

- \(FGa\)

\(GFa\)
Deterministic Rabin automaton (DRA): $(Q, \Sigma, \delta, q_0, Acc)$

- a DFA with a different acceptance condition,
- $Acc = \{(E_i, F_i) \mid 1 \leq i \leq k\}$
- each accepting infinite path must visit for some i
 - all states of E_i at most finitely often and
 - some state of F_i infinitely often.

Example

Give some automata recognizing the language of formulas

- $(a \land X b) \lor aUc$

- FGa

- GFa

Lemma (Vardi&Wolper’86, Safra’88)

For any LTL formula Ψ there is a DRA A recognizing $Paths(\Psi)$ with $|A| \in 2^{\Theta(|\Psi|)}$.
For a labelled DTMC $\mathcal{D} = (S, P, \pi_0, L)$ and a DRA $A = (Q, 2^{2^P}, \delta, q_0, \{(E_i, F_i) \mid 1 \leq i \leq k\})$ we define

1. a DTMC $\mathcal{D} \times A = (S \times Q, P', \pi'_0)$:
 - $P'((s, q), (s', q')) = P(s, s')$ if $\delta(q, L(s')) = q'$ and 0, otherwise;
 - $\pi'_0((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and

Lemma

The construction preserves probability of accepting as $P_{\mathcal{D}}(\text{Lang}(A)) = P_{\mathcal{D} \times A}(s, q_s)(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\})$ where $\inf(\omega)$ is the set of states visited in ω infinitely often.

Proof sketch.

We have a one-to-one correspondence between executions of \mathcal{D} and $\mathcal{D} \times A$ (as A is deterministic), mapping $\text{Lang}(A)$ to $\{\cdots\}$, and preserving probabilities.
For a labelled DTMC \(D = (S, P, \pi_0, L) \) and a DRA \(A = (Q, 2^{Ap}, \delta, q_0, \{(E_i, F_i) | 1 \leq i \leq k\}) \) we define

1. a DTMC \(D \times A = (S \times Q, P', \pi'_0) \):
 - \(P'((s, q), (s', q')) = P(s, s') \) if \(\delta(q, L(s')) = q' \) and 0, otherwise;
 - \(\pi'_0((s, q_s)) = \pi_0(s) \) if \(\delta(q_0, L(s)) = q_s \) and 0, otherwise; and

2. \(\{(E'_i, F'_i) | 1 \leq i \leq k\} \) where for each \(i \):
 - \(E'_i = \{(s, q) | q \in E_i, s \in S\} \),
 - \(F'_i = \{(s, q) | q \in F_i, s \in S\} \),
For a labelled DTMC $\mathcal{D} = (S, P, \pi_0, L)$ and a DRA $A = (Q, 2^{Ap}, \delta, q_0, \{(E_i, F_i) \mid 1 \leq i \leq k\})$ we define

1. a DTMC $\mathcal{D} \times A = (S \times Q, P', \pi'_0)$:
 - $P'((s, q), (s', q')) = P(s, s')$ if $\delta(q, L(s')) = q'$ and 0, otherwise;
 - $\pi'_0((s, q_s)) = \pi_0(s)$ if $\delta(q_0, L(s)) = q_s$ and 0, otherwise; and
2. $\{(E'_i, F'_i) \mid 1 \leq i \leq k\}$ where for each i:
 - $E'_i = \{(s, q) \mid q \in E_i, s \in S\}$,
 - $F'_i = \{(s, q) \mid q \in F_i, s \in S\}$,

Lemma

The construction preserves probability of accepting as

$$P^D_s(\text{Lang}(A)) = P^{D \times A}_{(s, q_s)}(\{\omega \mid \exists i : \text{inf}(\omega) \cap E'_i = \emptyset, \text{inf}(\omega) \cap F'_i \neq \emptyset\})$$

where $\text{inf}(\omega)$ is the set of states visited in ω infinitely often.

Proof sketch.

We have a one-to-one correspondence between executions of \mathcal{D} and $\mathcal{D} \times A$ (as A is deterministic), mapping $\text{Lang}(A)$ to $\{\cdots\}$, and preserving probabilities.
How to check the probability of accepting in \(D \times A \)?

Lemma

\[
P_{D \times A}(s, q_s) \left(\{ \omega | \exists i: \inf(\omega) \cap E'_{i} = \emptyset, \inf(\omega) \cap F'_{i} \neq \emptyset \} \right) = P_{D \times A}(s, q_s) \left(\Diamond \cup \bigcup_{j} C_{j} \right).
\]

Proof sketch.

▶ Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below),
▶ Rabin acceptance condition does not depend on any finite prefix of the infinite word,
▶ every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.

Corollary

\[
P_{D}(\text{Lang}(A)) = P_{D \times A}(s, q_s) \left(\Diamond \cup \bigcup_{j} C_{j} \right).
\]
How to check the probability of accepting in $D \times A$?
Identify the BSCCs $(C_j)_j$ of $D \times A$ that for some $1 \leq i \leq k$,

1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma

$$P_{(s,q_s)}^{D \times A}(\{\omega \mid \exists i : \text{inf}(\omega) \cap E'_i = \emptyset, \text{inf}(\omega) \cap F'_i \neq \emptyset\}) = P_{(s,q_s)}^{D \times A}(\Box \bigcup_j C_j).$$
How to check the probability of accepting in $D \times A$?

Identify the BSCCs $(C_j)_j$ of $D \times A$ that for some $1 \leq i \leq k$,

1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma

$$P_{(s,q_s)}^{D \times A}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = P_{(s,q_s)}^{D \times A}(\Diamond \bigcup_j C_j).$$

Proof sketch.

- Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below),
- Rabin acceptance condition does not depend on any finite prefix of the infinite word,
- every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.
How to check the probability of accepting in $\mathcal{D} \times A$?

Identify the BSCCs $(C_j)_j$ of $\mathcal{D} \times A$ that for some $1 \leq i \leq k$,

1. contain no state from E'_i and
2. contain some state from F'_i.

Lemma

\[
P_{(s,q_s)}^{\mathcal{D} \times A}(\{\omega \mid \exists i : \inf(\omega) \cap E'_i = \emptyset, \inf(\omega) \cap F'_i \neq \emptyset\}) = P_{(s,q_s)}^{\mathcal{D} \times A}(\Diamond \bigcup_j C_j).
\]

Proof sketch.

- Note that some BSCC of each finite DTMC is reached with probability 1 (short paths with prob. bounded from below),
- Rabin acceptance condition does not depend on any finite prefix of the infinite word,
- every state of a finite irreducible DTMC is visited infinitely often with probability 1 regardless of the choice of initial state.

Corollary

\[
P_s^D(\text{Lang}(A)) = P_{(s,q_s)}^{\mathcal{D} \times A}(\Diamond \bigcup_j C_j).
\]
Doubly exponential in ψ and polynomial in D
(for the algorithm presented here):

1. $|A|$ and hence also $|D \times A|$ is of size $2^{2^{O(|\psi|)}}$
2. BSCC computation: Tarjan algorithm – linear in $|D \times A|$
 (number of states + transitions)
3. Unbounded reachability: system of linear equations ($\leq |D \times A|$):
 - exact solution: \approx cubic in the size of the system
 - approximative solution: efficient in practice