Perlen der Informatik I

Jan Křetínský

Technische Universität München
Winter 2020/2021
Overview

- language: English/German
- voluntary course
- lecture on Tuesday, in the slot 10 a.m. – 12 p.m.
- https://www7.in.tum.de/~kretinsk/teaching/perlen.html
- Gödel, Escher, Bach: an Eternal Golden Braid by Douglas R. Hofstadter
Bach

- Frederick the Great
- Leonhard Euler, ..., J.S. Bach
- improvised 6-part fugue
- canons
Frederick the Great
Leonhard Euler, . . . , J.S. Bach
improvised 6-part fugue
canons
Bach

- Frederick the Great
- Leonhard Euler, . . . , J.S. Bach
- improvised 6-part fugue
- canons
 - copies differing in time, pitch, speed, direction (upside down, crab)
 - isomorphic
 - canon endlessly rising in 6 steps – “strange loop”
“Waterfall”
6-step endlessly falling loop
“Ascending and Descending”
illusion by Roger Penrose
Penrose triangle
Faculty of Informatics, Brno
“Drawing hands”
his first strange loop
“Metamorphosis”
copies of one theme
Gödel

- Brno
- Epimenides paradox: “All Cretans are liars”
Brno

Epimenides paradox: “All Cretans are liars”

mathematical reasoning in exploring mathematical reasoning

Incompleteness theorem:

All consistent axiomatic formulations of number theory include undecidable propositions.

strange loop in the proof
Gödel

- Brno
- Epimenides paradox: “All Cretans are liars”
- mathematical reasoning in exploring mathematical reasoning
- Incompleteness theorem:

 All consistent axiomatic formulations of number theory include undecidable propositions.

- strange loop in the proof
- statement about numbers can talk about itself
 “This statement of number theory does not have any proof”
Brno

Epimenides paradox: “All Cretans are liars”

mathematical reasoning in exploring mathematical reasoning

Incompleteness theorem:

All consistent axiomatic formulations of number theory include undecidable propositions.

strange loop in the proof

statement about numbers can talk about itself

“This statement of number theory does not have any proof”

numbers code ↔ statements
Brno

Epimenides paradox: “All Cretans are liars”

mathematical reasoning in exploring mathematical reasoning

Incompleteness theorem:

All consistent axiomatic formulations of number theory include undecidable propositions.

strange loop in the proof

statement about numbers can talk about itself

“This statement of number theory does not have any proof”

numbers \(\leftrightarrow\) statements

215473077557
Epimenides paradox: “All Cretans are liars”

mathematical reasoning in exploring mathematical reasoning

Incompleteness theorem:

All consistent axiomatic formulations of number theory include undecidable propositions.

strange loop in the proof

statement about numbers can talk about itself

“This statement of number theory does not have any proof”

numbers encode statements

215473077557 is in binary
0011001000101011001100100011110100110101
Epimenides paradox: “All Cretans are liars”

mathematical reasoning in exploring mathematical reasoning

Incompleteness theorem:

All consistent axiomatic formulations of number theory include undecidable propositions.

Strange loop in the proof

Statement about numbers can talk about itself

“This statement of number theory does not have any proof”

Numbers \leftrightarrow statements

215473077557 is in binary

0011001000101011001100100011110100110101 read as ASCII

2+2=5

Homework:

34723379178930453204433293597543819411782291432109326918654063662
different geometries, equally valid
real world?
proof?
Russel’s paradox
 ▶ “ordinary” sets: \(x \notin x \)
 ▶ “self-swallowing” sets: \(x \in x \)
 ▶ \(R = \) set of all ordinary sets
Grelling’s paradox
 ▶ self-descriptive adjectives (“pentasyllabic”) vs non-self-descriptive
 ▶ what about “non-self-descriptive”?
self-reference
drawing hands
The following sentence is false. The preceding sentence is true.
Way out?

- prohibition (Principia mathematica)
- types, metalanguage
- “In this lecture, I criticize the theory of types”
 cannot discuss the type theory
- David Hilbert: consistency and completeness
Babbage

The course through which I arrived at it was the most entangled and perplexed which probably ever occupied the human mind.

Ada Lovelace (daughter of Lord Byron)
Mechanized intelligence
“Eating its own tail” (altering own program)

- axiomatic reasoning, mechanical computation, psychology of intelligence
- Alan Turing ~ Gödel’s counterpart in computation theory
 Halting problem is undecidable.
 Can intelligent behaviour be programmed? Rules for inventing new rules...
 Strange loops in the core of intelligence
- materialism, de la Mettrie: L’homme machine
Example (over alphabet M, I, U)

- initial string ("axiom"): MI
- rules ("inference/production rules") to enlarge your collection (of "theorems")
 - requirement of formality: not outside the rules
 - last letter I ⇒ put U at the end
 - Mx ⇒ Mxx where x can be any string
 - replace III by U
 - drop UU

Homework: Can you produce/derive/prove MU?

- Which rule to use? That’s the art.
Theorems of MIU system

Axiom: MI
Rules:
1. xI ⇒ xIU
2. Mx ⇒ Mxx
3. xIIIy ⇒ xUy
4. xUUy ⇒ xy
Working in the system / observing the system

- human intelligence \Rightarrow notice properties of theorems
- machine *can* act unobservant, people cannot

Perfect test ("decision procedure") for theorems

- tree of all theorems?
- finite time!
Another formal system

- alphabet \{p, q, \} for any \(x\) composed from hyphens

- production rules:

\[
xpqz \Rightarrow xpyqz-
\]

for any \(x, y, z\) composed from hyphens
Decision procedure

- only lengthening rules
 ⇒ reduce to shorter ones (top-down)
 ⇒ dovetailing longer axioms and rule application (bottom-up)
- hereditary properties of theorems
Isomorphism

- information-preserving transformation
- creates meaning
- interpretation + correspondence between true statements and interpreted theorems
- like cracking a code
- meaningless interpretations possible
- “well-formed” strings should produce “gramatical” sentences
Meaning is passive in formal systems

- it seems the system cannot avoid taking on meaning
- is \(p \implies p \implies q \implies \) a theorem?
- subtraction
- does not add new additions, but we learn about nature of addition
- (is reality a formal system? is universe deterministic?)
Is our formal system accurate?

- 12×12: counting vs proof
- basic properties to be believed, e.g. commutativity and associativity
- in reality not always: raindrop, cloud, trinity, languages in India
- ideal numbers
- counting cannot check Euclid’s Theorem
Is our formal system accurate?

- 12×12: counting vs proof
- basic properties to be believed, e.g. commutativity and associativity
- in reality not always: raindrop, cloud, trinity, languages in India
- ideal numbers
- counting cannot check Euclid’s Theorem
 - reasoning
 - non-obvious result from obvious steps
 - belief in reasoning
 - overcoming infinity (“all” N)
 - patterned structure binding statements
 - can thinking be achieved by a formal system?
Escher: Liberation
1 3 7 12 18 26 35 45 56 ?
Can we distinguish primes from composites?

Formal systems ~ typographical operations:

- read, write, copy, erase, and compare symbols
- keep generated theorems
Can we distinguish primes from composites?

Formal systems ~ typographical operations:
- read, write, copy, erase, and compare symbols
- keep generated theorems

Multiplication:
- axiom \(xt \rightarrow qx \) for every hyphen-string \(x \)
- rule \(xtyqz \Rightarrow xtyqzx \) for hyphen-strings \(x, y, z \)

Composites:
- rule \(x \rightarrow ty \rightarrow qz \Rightarrow Cz \) for hyphen-strings \(x, y, z \)
Can we distinguish primes from composites?

Formal systems ~ typographical operations:
- read, write, copy, erase, and compare symbols
- keep generated theorems

Multiplication:
- axiom \(xt - qx \) for every hyphen-string \(x \)
- rule \(xtyqz \Rightarrow xty - qzx \) for hyphen-strings \(x, y, z \)

Composites:
- rule \(x - ty - qz \Rightarrow Cz \) for hyphen-strings \(x, y, z \)

Primes:
- rule: \(Cx \) is not a theorem \(\Rightarrow Px \) for every hyphen-string \(x \)
Can we distinguish primes from composites?

Formal systems \sim\ typographical operations:
- read, write, copy, erase, and compare symbols
- keep generated theorems

Multiplication:
- axiom \(xt-qx \) for every hyphen-string \(x \)
- rule \(xtyqz \Rightarrow xty-qzx \) for hyphen-strings \(x, y, z \)

Composites:
- rule \(x-ty-qz \Rightarrow Cz \) for hyphen-strings \(x, y, z \)

Primes:
- rule: \(Cx \) is not a theorem \(\Rightarrow Px \) for every hyphen-string \(x \)
- reasoning what cannot be generated is outside of system, requirement of formality
Negative definitions: figure and ground
Negative definitions: figure and ground
Sets

- recursive: decision procedure
- recursively enumerable (r.e.): can be generated
- non-r.e.
Negative definitions: figure and ground

Characterize false statements

▶ negative space of theorems
▶ altered copy of theorems

Impossible!
some negative spaces cannot be positive

⇒ there are formal systems with no decision procedure
Primes are recursive
Primes are recursive

- **axiom** \(xy \text{DND} x \) for hyphen-strings \(x, y \)
- **rules**
 \(x \text{DND} y \Rightarrow x \text{DND} xy \)
 \(--\text{DND} z \Rightarrow z \text{DF} -- \)
 \(z \text{DF} x \) and \(x - \text{DND} z \Rightarrow z \text{DF} x - \)
 \(z - \text{DF} z \Rightarrow P z - \)
Primes are recursive

- axiom \(xy \mathrm{DND} x \) for hyphen-strings \(x, y \)
- rules
 \[x \mathrm{DND} y \Rightarrow x \mathrm{DND} xy \]
 \[-- \mathrm{DND} z \Rightarrow z \mathrm{DF}-- \]
 \[z \mathrm{DF} x \text{ and } x \mathrm{DND} z \Rightarrow z \mathrm{DF} x-- \]
 \[z \mathrm{DF} z \Rightarrow P z-- \]
- axiom \(P-- \)
- if a set is generatable in increasing order then so is its complement
- lengthening interleaved with shortening causes Gödel’s Theorem, Turing’s Halting Problem etc.
Diagonalisation: Cantor

\[
\begin{align*}
 s_1 &= 0 0 0 0 0 0 0 0 0 0 0 0
 \\
 s_2 &= 1 1 1 1 1 1 1 1 1 1 1
 \\
 s_3 &= 0 1 0 1 0 1 0 1 0 1 0
 \\
 s_4 &= 1 0 1 0 1 0 1 0 1 0 1
 \\
 s_5 &= 1 1 0 1 0 1 1 0 1 0 1
 \\
 s_6 &= 0 0 1 1 0 1 1 0 1 1 0
 \\
 s_7 &= 1 0 0 0 1 0 0 1 0 0 0
 \\
 s_8 &= 0 0 1 1 0 0 1 1 0 0 1
 \\
 s_9 &= 1 1 0 0 1 1 0 0 1 1 0
 \\
 s_{10} &= 1 1 0 1 1 1 0 0 1 0 1
 \\
 s_{11} &= 1 1 0 1 0 1 0 0 1 0 0 \\
 \vdots & \vdots \\
 s &= 1 0 1 1 1 0 1 0 0 1 1
\end{align*}
\]
Diagonalisation: Cantor

\[f : S \rightarrow \mathcal{P}(S) \]

\[
\begin{align*}
 s_1 &= 0 0 0 0 0 0 0 0 0 0 0 \ldots \\
 s_2 &= 1 1 1 1 1 1 1 1 1 1 1 \ldots \\
 s_3 &= 0 1 0 1 0 1 0 1 0 1 0 \ldots \\
 s_4 &= 1 0 1 0 1 0 1 0 1 0 1 \ldots \\
 s_5 &= 1 1 0 1 0 1 1 0 1 0 1 \ldots \\
 s_6 &= 0 0 1 1 0 1 1 0 1 1 0 \ldots \\
 s_7 &= 1 0 0 0 1 0 0 0 1 0 0 \ldots \\
 s_8 &= 0 0 1 1 0 0 1 1 0 0 1 \ldots \\
 s_9 &= 1 1 0 0 1 1 0 0 1 1 0 \ldots \\
 s_{10} &= 1 1 0 1 1 1 0 0 1 0 1 \ldots \\
 s_{11} &= 1 1 0 1 0 1 0 0 1 0 0 \ldots \\
 \vdots & \vdots \\
 s &= 1 0 1 1 1 0 1 0 0 1 1 \ldots \\
\end{align*}
\]

\[
 T = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, \ldots \}
\]

\[
 C = \{ s \in S \mid s \notin f(s) \}
\]
\[R = \{ x \mid x \notin x \} \]

Then \(R \in R \iff R \notin R \)
Diagonalisation: Turing

<table>
<thead>
<tr>
<th>$f(i,j)$</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>1</td>
<td>1 0 0 1 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 1 0 0</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0 1 0 1</td>
</tr>
<tr>
<td>4</td>
<td>1 0 0 1 0 0</td>
</tr>
<tr>
<td>5</td>
<td>0 0 0 1 1 1</td>
</tr>
<tr>
<td>6</td>
<td>1 1 0 0 1 0</td>
</tr>
</tbody>
</table>

- $f(i,i)$ = 1 0 0 1 1 0
- $g(i)$ = U 0 0 U U 0

Program e: if $f(i,i) = 0$ then return 0 else loop forever

- $f(e,e) = 0 \implies g(e) = 0 \implies$ program e halts on input e
 \[\implies f(e,e) = 1 \]

- $f(e,e) \neq 0 \implies g(e)$ undefined. \(\implies \) program e doesn’t halt on input e
 \[\implies f(e,e) = 0 \]
"", when preceded by itself in quotes, is unprovable."", when preceded by itself in quotes, is unprovable.
For any player, there is a record which it cannot play because it will cause its indirect destruction.

Bach – self-reference in the Art of the Fugue
Phonograph \(\iff \) axiomatic system for number theory

low-fidelity phonograph \(\iff \) "weak" axiomatic system

high-fidelity phonograph \(\iff \) "strong" axiomatic system

"Perfect" phonograph" \(\iff \) complete system for number theory'

Blueprint" of phonograph \(\iff \) axioms and rules of formal system

record \(\iff \) string of the formal system

playable record\(\iff \) theorem of the axiomatic system

unplayable record \(\iff \) nontheorem of the axiomatic system

sound \(\iff \) true statement of number theory

reproducible sound \(\iff \) 'interpreted theorem of the system

unreproducible sound \(\iff \) true statement which isn't a theorem:

song title \(\iff \) implicit meaning of Gödel’s string:

"I Cannot Be Played on Record Player X" \(\iff \) "I Cannot Be Derived in Formal System X"
Example: pq-system

- Axiom schema II: $xp - qx$ for every hyphen-string x
- inconsistent with external world
Example: \(pq \)-system

- Axiom schema II: \(xp-qx \) for every hyphen-string \(x \)
- inconsistent with external world
- reinterpret: \(\geq \)
- consistency depends on interpretation
- consistency = Every theorem, when interpreted, becomes a true statement.
Example: non-Euclid geometry

- Elements
- rigor
- axiomatic system
- fifth postulate not a consequence
- Saccheri, Lambert, Bolyai, Lobachevskiy
- elliptical/spherical (no parallel) and hyperbolical (≥ 2 parallels) geometry (4 geometrical postulates remain, “absolute geometry” included)
- real points and lines vs. explicit definitions vs. implicit propositions
Consistency

- internal consistency: theorems mutually compatible holds in some “imaginable” world
- logical, mathematical, physical, biological etc. consistency
- Is number theory/geometry the same in all conceivable worlds?
 - Peano arithmetic \(\sim\) absolute (core) geometry
 - number theories are the same for practical purposes
 - Gauss attempted to measure angles between three mountains
 general relativity
 more geometries in mathematics and even physics
Relativity
Completeness

Consistency: minimal condition for passive meaning

Completeness: maximal confirmation of passive meanings

“Every true statement which can be expressed in the notation of the system is a theorem”

▶ Example: $2+3+4=9$ in pq

▶ Example: pq with Axiom schema II
 (1) add rules or (2) tighten the interpretation
Theorem

There are true arithmetical formulae unprovable in PA (or other consistent formal systems).

Gödel’s proof (sketch)

- it is possible to construct a PA formula ρ such that

 \[PA \vdash \rho \iff \neg \text{Provable}(\lbrack \rho \rbrack) \]

 i.e. “ρ says “I’m not provable”” is provable in PA

- by consistency of PA this is true in arithmetics

- if $\neg \rho$ then $\text{Provable}(\lbrack \rho \rbrack)$, a contradiction

- if ρ then $\neg \text{Provable}(\lbrack \rho \rbrack)$ hence $PA \nvdash \rho$
Gödel's 1st incompleteness theorem

Recall:
- \(\text{Accept} := \{ i \mid M_i \text{ accepts } i \} \)
- \(\text{Accept} \) is r.e., but not recursive
- \(\text{Accept} \) is not r.e.

Alternative proof: Provable \(\subseteq \) Valid

- Provable is r.e. (for PA and similar)
- Provable \(\subseteq \) Valid by consistency
- we prove Valid is not r.e., hence \(\subsetneq \)
 - construct a program transforming \(n \in \mathbb{N} \) into a formula \(\varphi \):
 \[
 \varphi \in \text{Valid} \iff n \in \text{Accept}
 \]
 it computes the formula “\(M_n \) does not accept \(n \)”
- computation is a sequence of configurations (numbers)
- one can encode that a configuration \(c \) follows a given configuration \(d \)
- every finite sequence can be encoded by a formula \(\beta \):
 For every \(n_1, \ldots, n_k \) there are \(a, b \in \mathbb{N} \) such that
 \[
 \beta(a, b, i, x) \iff x = n_i
 \]
Gödel’s 1st incompleteness theorem

Let $\beta(a, b, i, x)$ be true iff $x = a \mod (1 + b(1 + i))$

▶ expressible in simple arithmetics:

\[
a \geq 0 \land b \geq 0 \land \exists k \left(k \geq 0 \land k \cdot c \leq a \land (k + 1) \cdot c > a \land x = a - (k \cdot c) \right)
\]

where c is a shortcut for $(1 + b \cdot (1 + i))$

▶ for every a, b the predicate β induces a unique sequence, where the ith element is $a \mod (1 + b(1 + i))$

▶ every finite sequence can be encoded by β for some a, b:

Theorem

For every n_1, \ldots, n_k there are $a, b \in \mathbb{N}$ such that

\[
\beta(a, b, i, x) \text{ iff } x = n_i
\]
Gödel’s 1st incompleteness theorem

\[\beta(a, b, i, x) \text{ iff } x = a \mod (1 + b(1 + i)) \]

Theorem

For every \(n_1, \ldots, n_k \) there are \(a, b \in \mathbb{N} \) such that

\[\beta(a, b, i, x) \text{ iff } x = n_i \]

Proof.

- \(b := (\max\{k, n_1, \ldots, n_k\})! \)
- \(p_i := 1 + b(1 + i) \text{ is } \geq n_i \text{ and are co-prime (gcd of each pair is 1)} \)
- \(c_i := \prod_{j \neq i} p_j \)
- \(\exists! \quad 0 \leq d_i \leq p_i : c_i \cdot d_i \mod p_i = 1 \)
- \(a := \sum_{i=1}^{k} c_i \cdot d_i \cdot n_i \)
- hence \(n_i = a \mod p_i \)
Recursion

Examples

- recursive definitions
 - in terms of *simpler* versions of itself
 - some part avoids self-reference (vs. circular definitions)
- pushdown systems
- music: tonic and pseudo-tonic
- language: verb at the end
- indirect recursion in Epimenides
- $\text{Fib}(n) = \text{Fib}(n-1) + \text{Fib}(n-2)$
- computer programs
- fractals
- Cantor set
Mandelbrot set
Mandelbrot set
energies of electrons in a crystal in a magnetic field

Cantor set
is meaning of a message an inherent property of the message?

meaning is part of an object to the extent that it acts upon intelligence in a predictable way

levels of information
 ▸ frame message: “this bears information”
 ▸ outer message: “this is in Japanese”
 ▸ inner message: “this says ...

if all juke-boxes would play the same song on “A-5”, it wouldn’t be just a trigger but a meaning of “A-5”

mass is intrinsic, weight is not; or yes, but at the cost of geocentricity
Propositional calculus: Definition

- purely typographic
- alphabet: $< > P Q R' \land \lor \supset \sim []$
- well-formed strings:
 - atoms: $P, Q, R +$ adding primes
 - formation rules: if x and y are well-formed then so are
 $\sim x, < x \land y >, < x \lor y >, < x \supset y >$
- rules
 - joining: x and $y \Rightarrow < x \land y >$
 - separation: $< x \land y > \Rightarrow x$ and y
 - double-tilde: $\sim \sim$ can be deleted or inserted
 - contrapositive: $< x \supset y >$ and $< \sim y \supset \sim x >$ interchangable
 - De Morgan: $\sim < x \lor y >$ and $< \sim x \land \sim y >$ interchangable
 - Switcheroo: $< x \lor y >$ and $< \sim x \supset y >$ interchangable
 - no axioms
Propositional calculus: Definition

- purely typographic
- alphabet: \(< > P Q R \)' \(\wedge \vee \supset \sim \) []
- well-formed strings:
 - atoms: P, Q, R + adding primes
 - formation rules: if x and y are well-formed then so are
 \(\sim x, < x \wedge y >, < x \lor y >, < x \supset y >\)
- rules
 - joining: x and y \(\Rightarrow < x \wedge y >\)
 - separation: < x \wedge y > \(\Rightarrow x\) and y
 - double-tilde: \(\sim\sim\) can be deleted or inserted
 - contrapositive: < x \supset y > and <\sim y \supset \sim x > interchangable
 - De Morgan: \(\sim < x \lor y >\) and <\sim x \wedge \sim y > interchangable
 - Switcheroo: < x \lor y > and <\sim x \supset y > interchangable
 - no axioms
 - fantasy rule (Deduction Theorem): y derived from x \(\Rightarrow < x \supset y >\)
 - carry-over theorems into fantasy
 - detachment (Modus Ponens): x and < x \supset y > \(\Rightarrow y\)
Propositional calculus: Properties

- decision procedure:
Propositional calculus: Properties

- decision procedure: truth tables
- simplicity, precision
- other versions (axiom schemata + detachment)
 extensions (valid propositional inferences, incompleteness/inconsistency only due to embedding system)
Propositional calculus: Properties

- decision procedure: truth tables
- simplicity, precision
- other versions (axiom schemata + detachment)
 extensions (valid propositional inferences, incompleteness/inconsistency only due to embedding system)

Informal
- proof: normal thought
- simplicity: sounds right
- complexity: human language

Formal
- derivation: artificial, explicit
- simplicity: trivial
- astronomical size
Propositional calculus: Contradictions

- \(\langle \langle P \land \neg P \rangle \supset Q \rangle \)
- infection vs. mental break-down
- \(1 - 1 + 1 - 1 + 1 \cdots \)
- relevant implication
natural-numbers theory $\mathbb{N} \rightarrow \text{TNT}$

1. 2 is not a square.
2. 5 is a prime.
3. There are infinitely many primes.
natural-numbers theory $\mathbb{N} \rightarrow$ TNT

1. 2 is not a square.
2. 5 is a prime.
3. There are infinitely many primes.

primitives: for all numbers, there exists a number, equals, greater than, times, plus, 0, 1, 2, \ldots

variables: a, b, a'

terms: $(a \cdot b), (a + b), 0, S0, SS0$

atoms: $S0 + S0 = SS0$

quantifiers: $\exists b : (b + S0) = SS0$, similarly \forall
natural-numbers theory N → TNT

1. 2 is not a square.
2. 5 is a prime.
3. There are infinitely many primes.

primitives: for all numbers, there exists a number, equals, greater than, times, plus, 0, 1, 2, …

variables: \(a, b, a'\)

terms: \((a \cdot b), (a + b), 0, S0, SS0\)

atoms: \(S0 + S0 = SS0\)

quantifiers: \(\exists b : (b + S0) = SS0\), similarly \(\forall\)

Puzzle: encode the following

- \(b\) is a power of 2
- \(b\) is a power of 10
Propositional calculus: Examples

- $\sim \forall c : \exists b : (SS0 \cdot b) = c$
- $\forall c : \sim \exists b : (SS0 \cdot b) = c$
- $\forall c : \exists b : \sim (SS0 \cdot b) = c$
- $\sim \exists b : \forall c : (SS0 \cdot b) = c$
- $\exists b : \sim \forall c : (SS0 \cdot b) = c$
- $\exists b : \forall c : \sim (SS0 \cdot b) = c$
Propositional calculus: Derivations

Axioms:

1. \(\forall a : \sim Sa = 0 \)
2. \(\forall a : (a + 0) = a \)
3. \(\forall a : \forall b : (a + Sb) = S(a + b) \)
4. \(\forall a : (a \cdot 0) = 0 \)
5. \(\forall a : \forall b : (a \cdot Sb) = ((a \cdot b) + a) \)
Propositional calculus: Derivations

Axioms:

1. $\forall a : \sim Sa = 0$
2. $\forall a : (a + 0) = a$
3. $\forall a : \forall b : (a + Sb) = S(a + b)$
4. $\forall a : (a \cdot 0) = 0$
5. $\forall a : \forall b : (a \cdot Sb) = ((a \cdot b) + a)$

Rules:

1. specification: $\forall u : x \Rightarrow x[u'/u]$ for any term u'
2. generalization: $x \Rightarrow \forall u : x$ for a free variable u
3. interchange: $\forall u : \sim$ and $\sim \exists u :$ are interchangeable
4. existence: $x[u'/u] \Rightarrow \exists u : x$
5. symmetry: $r = s \Rightarrow s = r$
6. transitivity: $r = s$ and $s = t \Rightarrow r = t$
7. successorship: $r = t \iff Sr = St$
Propositional calculus: Derivations

Axioms:
1. $\forall a : \neg Sa = 0$
2. $\forall a : (a + 0) = a$
3. $\forall a : \forall b : (a + Sb) = S(a + b)$
4. $\forall a : (a \cdot 0) = 0$
5. $\forall a : \forall b : (a \cdot Sb) = ((a \cdot b) + a)$

Rules:
1. specification: $\forall u : x \Rightarrow x[u'/u]$ for any term u'
2. generalization: $x \Rightarrow \forall u : x$ for a free variable u
3. interchange: $\forall u : \neg$ and $\neg \exists u :$ are interchangeable
4. existence: $x[u'/u] \Rightarrow \exists u : x$
5. symmetry: $r = s \Rightarrow s = r$
6. transitivity: $r = s$ and $s = t \Rightarrow r = t$
7. successorship: $r = t \iff Sr = St$

Example: $S0 + S0 = SS0$
can derive

\[(0 + 0) = 0 \]
\[(0 + S0) = S0 \]
\[(0 + SS0) = SS0 \]

\[\vdots \]

can derive \(\forall a : (0 + a) = a \)
can derive

\[(0 + 0) = 0 \]
\[(0 + S0) = S0 \]
\[(0 + SS0) = SS0 \]
\[\vdots \]

can derive \(\forall a : (0 + a) = a \)

nor its negation
undecidable in TNT (like Euclid’s 5th postulate in absolute geometry)

rule of induction: \(u \) variable, \(X\{u\} \) well-formed formula with \(u \) free,
\[X\{0/u\}, \forall u : \langle X\{u\} \supset X\{Su/u\} \rangle \Rightarrow \forall u : X\{u\} \]
we believe in each rule
are natural numbers a coherent construct??
we believe in each rule

are natural numbers a coherent construct??

Peano’s axioms:

1. zero is a number
2. every number has a successor (which is a number)
3. zero is not a successor of any number
4. different numbers have different successors
5. if zero has X and every number relays X to its successor, then all numbers have X
we believe in each rule

are natural numbers a coherent construct??

Peano’s axioms:
1. zero is a number
2. every number has a successor (which is a number)
3. zero is not a successor of any number
4. different numbers have different successors
5. if zero has X and every number relays X to its successor, then all numbers have X

want to convince of consistency of TNT using a weaker system
we believe in each rule

are natural numbers a coherent construct??

Peano’s axioms:

1. zero is a number
2. every number has a successor (which is a number)
3. zero is not a successor of any number
4. different numbers have different successors
5. if zero has X and every number relays X to its successor, then all numbers have X

want to convince of consistency of TNT using a weaker system

Gödel’s 2nd Theorem: Any system that is strong enough to prove TNT’s consistency is at least as strong as TNT itself.
Recall: MIU system

- alphabet M, I, U
- initial string ("axiom"): MI
- rules
 1. xI ⇒ xIU
 2. Mx ⇒ Mxx
 3. xIIIy ⇒ xUy
 4. xUUy ⇒ xy

- Can you produce MU?
Recall: MIU system

- alphabet M, I, U
- initial string ("axiom"): MI
- rules
 1. xI ⇒ xIU
 2. Mx ⇒ Mxx
 3. xIIIy ⇒ xUy
 4. xUUy ⇒ xy
- Can you produce MU?
- No:
 - I-count starts at 1 (not multiple of 3)
 - I-count is a multiple of 3 only if it was before applying the most recent rule
Gödel numbering

- All problems about any formal system can be encoded into number theory!
- define arithmetization on symbols (Gödel number):
 - $M \leftrightarrow 3$
 - $I \leftrightarrow 1$
 - $U \leftrightarrow 0$
- extend it to all strings
 1. $MI \leftrightarrow 31$
 2. $MIU \leftrightarrow 310$

Example: Rule 1
 1. $xI \Rightarrow xIU$
 2. $x1 \Rightarrow x10$
 3. $x \Rightarrow 10 \cdot x$ for any $x \mod 10 = 1$

Typographical rules on numerals are actually arithmetical rules on numbers.

- Is MU a theorem of the MIU-system?
- Is 30 a MIU-number?
Gödel numbering

- All problems about any formal system can be encoded into number theory!
- define arithmetization on symbols (Gödel number):
 - M ↔ 3
 - I ↔ 1
 - U ↔ 0
- extend it to all strings
 1. MI ↔ 31
 2. MIU ↔ 310

Example: Rule 1
1. xI ⇒ xIU
2. x1 ⇒ x10
3. x ⇒ 10 · x for any x mod 10 = 1

Typographical rules on numerals are actually arithmetical rules on numbers.
- Is MU a theorem of the MIU-system?
- Is 30 a MIU-number?

1. “MU is a theorem” into number theory
2. number theory into TNT
1 Gödel-number TNT:
 ▶ $S0 = 0$ is a theorem of TNT $\rightarrow 123, 666, 111, 666$ is a TNT-number
1 Gödel-number TNT:
 ▶ $S0 = 0$ is a theorem of TNT $\rightarrow 123, 666, 111, 666$ is a TNT-number
 ▶ thus for any formalization of number theory, its metalanguage is embedded in it
1 Gödel-number TNT:
 ▶ $S0 = 0$ is a theorem of TNT \rightarrow 123, 666, 111, 666 is a TNT-number
 ▶ thus for any formalization of number theory, its metalanguage is embedded in it
2 self-reference:
 ▶ find a string G that says “G is not a theorem”
 ▶ theorem \implies truth \implies not a theorem \implies truth, but unprovable
Self-swallowing TNT

1 Gödel-number TNT:
 ▶ $S0 = 0$ is a theorem of TNT $\rightarrow 123, 666, 111, 666$ is a TNT-number
 ▶ thus for any formalization of number theory, its metalanguage is embedded in it

2 self-reference:
 ▶ find a string G that says “G is not a theorem”
 ▶ theorem \implies truth \implies not a theorem \implies truth, but unprovable

Summary:
There is a string of TNT expressing a statement about numbers (interpretable as “I am not a theorem of TNT”). By reasoning outside of the system, we can show it is true. But still it is not a theorem of TNT (TNT says neither true nor false).
Gödel’s Proof I/IV

Proof pairs:

- (MI MII MIII MUI, MUI)
 (31 311 31111 301, 301)

- recognizing is primitive recursive, hence there is a formula $\text{MIU-PP}(a, a')$ expressing “a is a proof of a'”

- $\exists a : \text{TNT-PP}(a, \underbrace{SS\cdots S}_{666\ 111\ 666\times} 0/a')$
Proof pairs:

- \((\text{MI MII MI} \text{III MI} \text{IU, MIU})\)
 \((31 311 31111 301, 301)\)

- recognizing is primitive recursive, hence there is a formula
 \(\text{MIU-PP}(a, a')\) expressing “a is a proof of \(a'\)”

- \(\exists a : \text{TNT-PP}(a, \underbrace{SS \cdots S}_666 111 666} 0/a')\)

Substitution:

- \(\text{SUB}(a, a', a'')\) for replacing all free variables in \(a\) by \(a'\) yields \(a''\)

- \(a = a\) with \(2/a\) yields \(2 = 2\)

- \(\text{SUB}(\underbrace{S \cdots S}_666 0/a, \underbrace{SS0/a'}_123 123 666\underbrace{111 666}_123 123 666)}\)
Arithmoquining

▶ Quine ___ is one.: “is one” is one.
▶ Arithmoquine $a = S0$: $\underbrace{S \cdots S}_0 = S0$

262 111 123 666×
Gödel’s Proof II/IV

Arithmoquining

▶ Quine ___ is one.: “is one” is one.
▶ Arithmoquine $a = S0$: $S \cdots S 0 = S0$

▶ $AQ(a'', a')$ abbreviation for $\text{SUB}(a'', a'', a')$
 (use the same number in two different ways: diagonalization+coding)

▶ Arithmoquinification of $a = S0$: $\underbrace{123 \cdots 123}_{262 \ 111 \ 123 \ 666} \ 666 \ 111 \ 123 \ 666$

▶ now, quine a quine-mentioning sentence
Gödel’s Proof III/IV

- G’s uncle $\neg \exists a \exists a' : TNT-PP(a, a') \land AQ(a'', a')$ has number u
Gödel’s Proof III/IV

- G’s uncle: $\neg \exists a \exists a': \text{TNT-PP}(a, a') \land \text{AQ}(a'', a')$ has number u
- Arithmoquine(uncle): $\neg \exists a \exists a': \text{TNT-PP}(a, a') \land \text{AQ}(\underbrace{S \cdots S 0}_{u \times}, a')$
Gödel’s Proof III/IV

- G’s uncle: $\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(a'', a')$ has number u
- Arithmoquine(uncle): $\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(\underbrace{S \cdots S}_u 0, a')$
 is Gödel’s formula G
- its Gödel’s number is $\text{Arithmoquinification}(u)$
Gödel’s Proof III/IV

- G’s uncle $\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(a'', a')$ has number u
- Arithmoquine(uncle): $\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(\overbrace{S \cdots S 0}^{u \times}, a')$

is Gödel’s formula G

- its Gödel’s number is Arithmoquinification(u)
- What does G mean?

There is no number a forming a proof pair with arithmoquinification of u

The formula whose number is arithmoquinification of u is not a theorem.

G is not a theorem.

I am not a theorem of TNT.

TNT sentence with low-level interpretation has high-level interpretation (a sentence of meta-TNT)
Gödel’s Proof III/IV

- G’s uncle $\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(a'', a')$ has number u
- Arithmoquine(uncle): $\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(\underbrace{S \cdots S 0}_u, a')$

 is Gödel’s formula G
- its Gödel’s number is Arithmoquinification(u)
- What does G mean?
 - There is no number a forming a proof pair with arithmoquinification of u
Gödel’s Proof III/IV

- G’s uncle $\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(a'', a')$ has number u
- Arithmoquine(uncle): $\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(\overbrace{S \cdots S 0}^u, a')$

 is Gödel’s formula G

- its Gödel’s number is Arithmoquinification(u)

- What does G mean?
 - There is no number a forming a proof pair with arithmoquinification of u
 - The formula whose number is arithmoquinification of u is not a theorem.
Gödel’s Proof III/IV

- G’s uncle: \(\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(a'', a') \) has number \(u \)
- Arithmoquine(uncle): \(\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(\underbrace{S \cdots S}_{u \times} 0, a') \)

is Gödel’s formula \(G \)
- its Gödel’s number is Arithmoquinification\((u) \)
- What does \(G \) mean?
 - There is no number \(a \) forming a proof pair with arithmoquinification of \(u \)
 - The formula whose number is arithmoquinification of \(u \) is not a theorem.
 - \(G \) is not a theorem.
Gödel’s Proof III/IV

- G’s uncle \(\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(a'', a')\) has number \(u\)
- Arithmoquine(uncle): \(\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(\underbrace{S \cdots S \times 0}_u, a')\)
 is Gödel’s formula \(G\)
- its Gödel’s number is Arithmoquinification\((u)\)
- What does \(G\) mean?
 - There is no number \(a\) forming a proof pair with arithmoquinification of \(u\)
 - The formula whose number is arithmoquinification of \(u\) is not a theorem.
 - \(G\) is not a theorem.
 - I am not a theorem of TNT.
Gödel’s Proof III/IV

- G’s uncle \(\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(a'', a') \) has number \(u \)
- Arithmoquine(uncle): \(\neg \exists a \exists a' : \text{TNT-PP}(a, a') \land \text{AQ}(\underbrace{S \cdots S} _{u \times} 0, a') \)

 is Gödel’s formula \(G \)
- its Gödel’s number is Arithmoquinification(\(u \))
- What does \(G \) mean?
 - There is no number \(a \) forming a proof pair with arithmoquinification of \(u \)
 - The formula whose number is arithmoquinification of \(u \) is not a theorem.
 - \(G \) is not a theorem.
 - I am not a theorem of TNT.
- TNT sentence with low-level interpretation has high-level interpretation (a sentence of meta-TNT)
Gödel’s Proof IV/IV

<table>
<thead>
<tr>
<th>Falsehood</th>
<th>nontheoremhood</th>
</tr>
</thead>
<tbody>
<tr>
<td>quotation of a phrase</td>
<td>=⇒ =⇒</td>
</tr>
<tr>
<td>preceding a predicate by a subject</td>
<td>=⇒ =⇒</td>
</tr>
<tr>
<td>preceding a predicate by a quoted phrase</td>
<td>=⇒ =⇒</td>
</tr>
<tr>
<td>preceding a predicate by itself, in quotes ("quining")</td>
<td>=⇒ =⇒</td>
</tr>
<tr>
<td>yields falsehood when quined (a predicate without a subject)</td>
<td>=⇒ "uncle" of G</td>
</tr>
<tr>
<td>"yields falsehood when quined" (the above predicate, quoted)</td>
<td>=⇒ the number a (the Gödel number of the above open formula)</td>
</tr>
<tr>
<td>"yields falsehood when quined" yields falsehood when quined (complete sentence formed by quining the above predicate)</td>
<td>=⇒ G itself (sentence of TNT formed by (\Box) substituting a into the uncle, (\Box) i.e., arithmoquining the uncle)</td>
</tr>
</tbody>
</table>
There is a string of TNT expressing a statement about numbers (interpretable as “I am not a theorem of TNT”).
By reasoning outside of the system, we can show it is true.
But still it is not a theorem of TNT (TNT says neither true nor false).
There is a string of TNT expressing a statement about numbers (interpretable as “I am not a theorem of TNT”).
By reasoning outside of the system, we can show it is true.
But still it is not a theorem of TNT (TNT says neither true nor false).

Monk: Does a dog have Buddha-nature, or not?
Jōshū: MU

Has a dog Buddha-nature?
This is the most serious question of all.
If you say yes or no,
You lose your own Buddha-nature.

(Mumen on Jōshū’s MU)
Consequences

- Gödel's Second Theorem
 - $\neg \exists a : \text{TNT-PP}(a, \underbrace{S \cdots S}_{223,666,111,666 \times} 0/a')$
 - can be proven only if TNT inconsistent
Consequences

- Gödel's Second Theorem
 - \(\neg \exists a : \text{TNT-PP}(a, S \cdots S 0 / a') \)
 - can be proven only if TNT inconsistent
- incomplete, then add \(G \) as axiom or its negation?

\[
\begin{align*}
\exists a : (a + a) &= S0 \\
\exists a : Sa &= 0 \\
\exists a : (a \cdot a) &= SS0 \\
\exists a : S(a \cdot a) &= 0
\end{align*}
\]

- the proof of \(G \) is “infinitely” large (how large is \(i \)?)
- supernatural numbers
 - Heisenberg's uncertainty principle for sum and product
 - also fractions, reals, \(dx, dy \): non-standard analysis
 - are they real? is \(\sqrt{-1} \)?
Last words
Free will, consciousness

- computer vs. human?
- self-design, choosing one’s wants?
- Do words and thoughts follow formal rules?
Free will, consciousness

- computer vs. human?
- self-design, choosing one’s wants?
- Do words and thoughts follow formal rules?
- rules on the lowest level, e.g. neurons
- software rules change, hardware cannot
Strange loops, tangled hierarchies: Examples

- self-modifying game
- Escher’s hands
- symbols in brain (on neuronal substrate)
- ? washing hands, dialogue
- language, Klein bottle
- Watergate
Klein bottle
Dualism

Subject vs Object

- old science
- prelude to modern phase: quantum mechanics, metamathematics, science methodology, AI

Use vs Mention

- symbols vs just be
- John Cage: Imaginary Landscape No.4
- René Magritte: Common Sense, The Two Mysteries
Magritte: Common Sense
► evidence, meta-evidence... → built-in hardware
► limitative theorems (Gödel, Church, Turing, Tarski,...)
► imagine your own non-existence
► cannot be done fully, TNT does not contain its full meta-theory

► “self” necessary for free will
► strange loops necessary
► not non-determinism, but choice-maker: identification with a high-level description of the process when program is running
► Gödel, Escher, Bach