Fundamental Algorithms 8 - Solution Examples

Exercise 1 (Parallel Scalar)

Write a parallel program that computes the scalar product of two vectors (stored in two arrays). Discuss the runtime complexity on the EREW PRAM model. How many processors can be used?

Solution:

Algorithm 1: \texttt{SCALARSEQ}

\begin{verbatim}
Input: A: Array[1..n]
 B: Array[1..n]
Result: Scalar product of A and B
res ← 0;
for i = 1 to n do res ← res + A[i] · B[i];
return res;
\end{verbatim}

Algorithm 2: \texttt{SCALARPRAM}

\begin{verbatim}
Input: A: Array[1..2^k]
 B: Array[1..2^k]
Result: Scalar product of A and B
C ← Array[1..2^k];
for i = 1 to 2^k in parallel do C[i] ← A[i] · B[i];
for l = 1 to k do
 for j = 1 to k − l in parallel do C[2^l j] ← C[2^l j] + C[2^l j + 2^{l−1}];
end
return C[1];
\end{verbatim}

In the first loop, \(n\) processors can be used, in the second one only at most \(\frac{1}{2}n\). The time complexity thus is \(\Theta(\log n)\), as \(k = \log n\) on \(n\) processors. The complexity remains \(\Theta(\log n)\) on \(\frac{1}{2}n\) processors, since the first loop could also be executed on \(\frac{1}{2}n\) processors in \(\Theta(1)\) runtime (with each processor executing two multiplications).

Exercise 2 (Parallel Vector)

Extend the program of exercise 1 to compute a matrix-vector product. Again, discuss the runtime complexity on the EREW PRAM and state the number of processors that are used.

Solution:

Using \(n^2\) processors, the complexity of \texttt{MATVECPARAM} is \(\Theta(\log n)\) due to the complexity of \texttt{SCALARPRAM}. Unfortunately, this implementation causes concurrent reads to \(X\) in \texttt{SCALARPRAM}, which works only on CREW PRAM, not on EREW PRAM. Instead, one has to replicate \(X\) for each of the \(n\) calls to \texttt{SCALARPRAM}, and then call \texttt{SCALARPRAM} for each copy.

For the first loop, \texttt{MATVECEREW} uses \(n\) processors in parallel to achieve \(\Theta(1)\) runtime. The second one is \(\Theta(\log n)\), using up to \(\frac{1}{2}n^2\) processors and \(n\) parallel calls to \texttt{SCALARPRAM} (\(\Theta(\log n)\) each). Together, we obtain an overall time complexity of \(\Theta(\log n)\) using at most \(n^2\) processors.
Algorithm 3: MatVecSeq

Input: \(M\): Array[1..n, 1..n]
\(X\): Array[1..n]

Result: Matrix-Vector-product of \(M\) and \(X\)
\(C ← \text{Array}[1..n]\):
for \(i = 1\) to \(n\) do
 \(C[i] ← 0\);
 for \(j = 1\) to \(n\) do
 \(C[i] ← C[i] + M[i, j] \cdot X[i]\);
end
return \(C\);

Algorithm 4: MatVecPRAM

Input: \(M\): Array[1..2^k, 1..2^k]
\(X\): Array[1..2^k]

Result: Matrix-Vector-product of \(M\) and \(X\)
\(C ← \text{Array}[1..2^k];\)
for \(i = 1\) to \(n\) in parallel do
 \(C[i] ← \text{ScalarPRAM}(M[i, 1..2^k], X[1..2^k]);\)
return \(C\);

Algorithm 5: MatVecEREW

Input: \(M\): Array[1..2^k, 1..2^k]
\(X\): Array[1..2^k]

Result: Matrix-Vector-product of \(M\) and \(X\)
\(C ← \text{Array}[1..2^k];\)
\(X' ← \text{Array}[1..2^k][1..2^k];\)
for \(i = 1\) to \(2^k\) in parallel do
 \(X'[1, i] ← X[i];\)
for \(l = 1\) to \(k\) do
 for \(j = 1\) to \(k - l\) in parallel do
 for \(i = 1\) to \(n\) in parallel do
 \(X'[2^l j, i] ← X'[2^l j - 2^{l-1}, i];\)
 end
end
for \(i = 1\) to \(n\) in parallel do
 \(C[i] ← \text{ScalarPRAM}(M[i, 1..2^k], X[1..2^k]);\)
return \(C\);

Exercise 3 (Parallel Optimization)

Given the following parallel algorithm PrefixPRAM for prefix multiplication (with EREW-PRAM). First, argue why the algorithm is correct. Then, assume that the \(j\)-loop is changed to a sequential loop. State why the resulting algorithm now no longer is correct and suggest how to change the \(j\)-loop to obtain a correct sequential implementation.

Solution:
The parallel loop works correctly, because all \(tmp[j]\) are assigned their value at the same time, i.e. before these values are copied to the \(A[j]\). When the \(j\)-loop of the program is changed to a sequential loop, then \(A[j - 2^l]\) is already changed to its new value when \(A[j]\) is updated. We obtain a correct implementation if the \(j\)-loop is executed in reverse order, or if the \(j\)-loop is split into two loops: the first loop to compute all \(tmp[j]\), and the second loop to update the \(A[j]\).
Algorithm 6: PrefixPRAM

Input: A: Array[1..2^k]

tmp ← Array[1..2^k];

for $l = 0$ to $k - 1$ do

 for $j = 2^l + 1$ to n in parallel do

 end

end