Fundamental Algorithms 8 - Solution Examples

Exercise 1 (Parallel Scalar)

Write a parallel program that computes the scalar product of two vectors (stored in two arrays). Discuss the runtime complexity on the EREW PRAM model. How many processors can be used?

Solution:

Algorithm 1: SCALARSEQ

\textbf{Input:} \(A \) : Array[1..n], \(B \) : Array[1..n]

\textbf{Result:} Scalar product of \(A \) and \(B \)

\(res \leftarrow 0 \);

\textbf{for} \(i = 1 \) \textbf{to} \(n \) \textbf{do} \(res \leftarrow res + A[i] \cdot B[i] \);

\textbf{return} \(res \);

Algorithm 2: SCALARPRAM

\textbf{Input:} \(A \) : Array[1..2^k], \(B \) : Array[1..2^k]

\textbf{Result:} Scalar product of \(A \) and \(B \)

\(C \leftarrow \text{Array}[1..2^k] \);

\textbf{for} \(i = 1 \) \textbf{to} \(n \) \textbf{in parallel} \textbf{do} \(C[i] \leftarrow A[i] \cdot B[i] \);

\textbf{for} \(l = 1 \) \textbf{to} \(k \) \textbf{do}

\textbf{for} \(j = 1 \) \textbf{to} \(2^{k-l} \) \textbf{in parallel} \textbf{do} \(C[2^l j] \leftarrow C[2^l j] + C[2^l j + 2^{l-1}] \);

\textbf{end}

\textbf{return} \(C[1] \);

In the first loop, \(n \) processors can be used, in the second one only at most \(\frac{1}{2}n \). The time complexity thus is \(\Theta(\log n) \), as \(k = \log n \) on \(n \) processors. The complexity remains \(\Theta(\log n) \) on \(\frac{1}{2}n \) processors, since the first loop could also be executed on \(\frac{1}{2}n \) processors in \(\Theta(1) \) runtime (with each processor executing two multiplications).

Exercise 2 (Parallel Vector)

Extend the program of exercise 1 to compute a matrix-vector product. Again, discuss the runtime complexity on the EREW PRAM and state the number of processors that are used.

Solution:

Using \(n^2 \) processors, the complexity of MATVECPRAM is \(\Theta(\log n) \) due to the complexity of SCALARPRAM. Unfortunately, this implementation causes concurrent reads to \(X \) in SCALARPRAM, which works only on CREW PRAM, not on EREW PRAM. Instead, one has to replicate \(X \) for each of the \(n \) calls to SCALARPRAM, and then call SCALARPRAM for each copy.

For the first loop, MATVECEREW uses \(n \) processors in parallel to achieve \(\Theta(1) \) runtime. The second one is \(\Theta(\log n) \), using up to \(\frac{1}{2}n^2 \) processors and \(n \) parallel calls to SCALARPRAM (\(\Theta(\log n) \) each). Together, we obtain an overall time complexity of \(\Theta(\log n) \) using at most \(n^2 \) processors.
Algorithm 3: MATVecSEQ

Input: M: Array[1..n,1..n]
 X: Array[1..n]

Result: Matrix-Vector-product of M and X

$C \leftarrow$ Array[1..n];
for $i = 1$ to n do
 $C[i] \leftarrow 0$;
 for $j = 1$ to n do
 $C[i] \leftarrow C[i] + M[i,j] \cdot X[i]$;
 end
end
return C;

Algorithm 4: MATVecPRAM

Input: M: Array[1..2^k,1..2^k]
 X: Array[1..2^k]

Result: Matrix-Vector-product of M and X

$C \leftarrow$ Array[1..2^k];
for $i = 1$ to n in parallel do
 $C[i] \leftarrow$ ScalarPRAM($M[i,1..2^k]$, $X[1..2^k]$);
end
return C;

Algorithm 5: MATVecEREW

Input: M: Array[1..2^k,1..2^k]
 X: Array[1..2^k]

Result: Matrix-Vector-product of M and X

$C \leftarrow$ Array[1..2^k];
$X' \leftarrow$ Array[1..2^k][1..2^k];
for $i = 1$ to n in parallel do
 $X'[1,i] \leftarrow X[i]$;
for $l = 1$ to k do
 for $j = 1$ to 2^{k-l} in parallel do
 for $i = 1$ to n in parallel do
 $X'[2^lj, i] \leftarrow X'[2^lj-2^{l-1}, i]$;
 end
 end
for $i = 1$ to n in parallel do
 $C[i] \leftarrow$ ScalarPRAM($M[i,1..2^k]$, $X[1..n]$);
end
return C;

Exercise 3 (Parallel Optimization)

Given the following parallel algorithm PREFIXPRAM for prefix multiplication (with EREW-PRAM).

Assume that the j-loop of the above program is changed to a sequential loop. State why the resulting algorithm is no longer correct, and suggest how to change the j-loop to obtain a correct sequential implementation. Also, state why the parallel loop works correctly.

Solution:

When the j-loop of the program is changed to a sequential loop, then $A[j - 2^l]$ is already changed to its new value, when $A[j]$ is updated. We obtain a correct implementation, if the j-loop is executed in reverse order, or if the j-loop is split into two loops: the first loop to compute all $tmp[j]$, and the second loop to update the $A[j]$. The parallel loop works correctly, because all $tmp[j]$ are assigned their value at the same time, i.e. before these values are copied to the $A[j]$.
Algorithm 6: PrefixPRAM

Input: A: Array[1..2^k]

$\text{tmp} \leftarrow \text{Array}[1..2^k]$;

\textbf{for} $l = 0 \text{ to } k−1 \textbf{ do}

\hspace{1em} \textbf{for } j = 2^l + 1 \text{ to } n \text{ in parallel do}

\hspace{2em} \text{tmp}[j] \leftarrow A[j - 2^l];

\hspace{2em} A[j] \leftarrow \text{tmp}[j] \cdot A[j];

\hspace{1em} \textbf{end}

\textbf{end}