Definition (Graph)

A **graph** \(G = (V, E) \) consists of a set \(V \) of vertices (nodes) and a set \(E \) of edges between the vertices.

- **undirected graph**: \((i, j) \in E\) an unordered pair – \((i, j) = (j, i)\)
- **directed graph** (or shorter: “digraph”):
 \((i, j) \in E\) an ordered tuple, i.e. \((i, j) \in E\) independent of \((j, i) \in E\)
Graphs

Definition (Graph)

A graph $G = (V, E)$ consists of a set V of vertices (nodes) and a set E of edges between the vertices.

- **undirected graph**: $(i, j) \in E$ an unordered pair – $(i, j) = (j, i)$
- **directed graph** (or shorter: “digraph”): $(i, j) \in E$ an ordered tuple, i.e. $(i, j) \in E$ independent of $(j, i) \in E$

Some Terms

- two vertices V_0 and V_n are connected by a **path** (of length n), if there is a sequence of edges $(V_0, V_1), (V_1, V_2), \ldots, (V_{n-1}, V_n)$
- a graph is **connected**, if there is a path between any two vertices
- a vertex V has **degree** d, if V has d (outgoing) edges
Graphs in CSE – Unstructured Grids:

- in blue: $V =$ grid cells, $E =$ neighbours (“dual graph”)
- in black: $V =$ grid vertices, $E =$ cell edges
Trees

Definition (Tree)

A tree is a connected graph without cycles.
Trees

Definition (Tree)

A tree is a connected graph without cycles.

→ Question: is this consistent with our “naive” image of a tree?
Trees

Definition (Tree)

A tree is a connected graph without cycles.

→ Question: is this consistent with our “naive” image of a tree?

Theorem

A graph T is a tree, if and only if there is a unique path between any two distinct vertices of T.
Trees

Definition (Tree)

A tree is a connected graph without cycles.

→ Question: is this consistent with our “naive” image of a tree?

Theorem

A graph T is a tree, if and only if there is a unique path between any two distinct vertices of T.

Implications:

- there is only one connection from the root to any of the nodes
- any path between two nodes will run through the root of the resp. subtree
- actually: which node is the “root”?
Theorem

A connected graph \((V, E)\) is a tree, if and only if \(|E| = |V| - 1\)
Trees (2)

Theorem

A connected graph \((V, E)\) is a tree, if and only if \(|E| = |V| - 1\)

Implications:

- if you “cut” one edge, a tree is no longer connected (child becomes an orphan)
- building a tree incrementally requires a root (one node, no edge) and one additional edge per added node
Theorem

A connected graph \((V, E)\) is a tree, if and only if \(|E| = |V| - 1\)

Implications:

- if you “cut” one edge, a tree is no longer connected (child becomes an orphan)
- building a tree incrementally requires a root (one node, no edge) and one additional edge per added node

Definition (Spanning Tree)

\(T = (V, E)\) is called a **spanning tree** for the graph \(G = (V, E')\), if \(T\) is a tree, and \(E \subset E'\).

Note: \(T\) has the same vertices as \(G\).
Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

Node := (
 key: Integer,
 edges: List of Node);
}
Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

Node := (
 key: Integer,
 edges: List of Node);
}

Adjacency Matrix:

- $n \times n$ matrix A, where $n = |V|$
- $a_{ij} = 1$, if $(i, j) \in E$
- A is symmetric for undirected graphs
Data Structures for Graphs

Pointer-Based Data Structure: (esp. for directed graphs)

```plaintext
Node := (  
    key: Integer,  
    edges: List of Node );
```

Adjacency Matrix:

- $n \times n$ matrix A, where $n = |V|$
- $a_{ij} = 1$, if $(i, j) \in E$
- A is symmetric for undirected graphs

Note: to store an adjacency matrix as an $n \times n$ array is a good idea, only if $|E| \in \Theta(n^2)$
Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph \((V, E)\), and a node \(x \in V\).

Task: Starting from \(x\), “visit” all vertices in \(V\) (following edges only)

Examples:
- modify the key values of all vertices
- search a specific key value in a graph

Two main variants:
- depth-first traversal (depth-first search)
- breadth-first traversal (breadth-first search)
Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph \((V, E)\), and a node \(x \in V\).
Task: Starting from \(x\), “visit” all vertices in \(V\) (following edges only)

Examples:
- modify the key values of all vertices
- search a specific key value in a graph
Graph Traversals

Definition (Graph Traversal:)

Input: a (connected!) directed or undirected graph \((V, E)\), and a node \(x \in V\).

Task: Starting from \(x\), “visit” all vertices in \(V\) (following edges only)

Examples:
- modify the key values of all vertices
- search a specific key value in a graph

Two main variants:
- depth-first traversal (depth-first search)
- breadth-first traversal (breadth-first search)
Depth-First Traversal

DFTraversal(V:Node) {
 ! mark current node V as visited:
 Mark[V.key] = 1;
 ! perform desired work on V:
 Visit(V);
 ! perform traversal from all nodes connected to V
 forall (V,W) in V.edges do
 if Mark[W.key] = 0 then DFTraversal(W);
 end do;
}

Assumptions:
- keys V.key numbered from 1, ..., n = |V|
- Mark: Array[1..n]
- forall loop executed sequentially
DF-Traversal – Stack-Based Implementation

StackDFTrav(X:Node) {

! uses stack of "active" nodes
Stack active = { X }; Mark[X.key] = 1;

while active <> {} do

! remove first node from stack
V = pop(active);
Visit(V);

forall (V,W) in V.edges do

if Mark[W] = 0 then {
 push(active,W); Mark[W.key] = 1;
}

end do;
end while;

}

→ use stack as last-in-first-out (LIFO) data container
Breadth-First-Traversal
Queue-Based Implementation

BFTraversal(X:Node) {
 ! uses queue of "active" nodes
 Queue active = { X }; Mark[X.key] = 1;
 while active <> {} do
 ! remove first node from queue
 V = remove(active);
 Visit(V);
 forall (V,W) in V.edges do
 if Mark[W.key] = 0 then {
 append(active , W); Mark[W.key] = 1;
 }
 end do;
 end while;
}

→ use queue as first-in-first-out (FIFO) data container
Breadth-First Search

\[
\text{BFS}\text{Search}(x: \text{Node}, \ k: \text{Integer}) : \text{Node} \{
 \text{Queue } active = \{x\};
 \text{while } active \neq \{\} \text{ do }
 \quad V = \text{remove}(active);
 \quad \text{if } V.\text{key} = k \text{ then return } V;
 \quad \text{if } \text{Mark}[V.\text{key}] = 0 \text{ then }
 \quad \quad \text{Mark}[V.\text{key}] = 1
 \quad \quad \text{forall } (V,W) \text{ in } V.\text{edges} \text{ do }
 \quad \quad \quad \text{append}(active, W);
 \quad \quad \end{do}
 \quad \text{end if;}
 \text{end while;}
\}
Breadth-First Search

BFS\text{Search}(x: \text{Node}, \ k: \text{Integer}) : \text{Node} \{
 \text{Queue active} = \{ \ x \ \};
 \text{while active} \neq \{ \} \text{ do}
 V = \text{remove}\ (\text{active});
 \text{if} \ V.\text{key} = \ k \ \text{then return} \ V; \\
 \text{if Mark}[V.\text{key}] = 0 \ \text{then}
 \text{Mark}[V.\text{key}] = 1
 \text{forall (V,W) in V.edges do}
 \text{append}\ (\text{active}, \ W);
 \text{end do};
 \text{end if};
 \text{end while};
\}

Breadth-First Search as Shortest-Path Algorithm:
• breadth-first search will return the node with the \textit{shortest path} from x
• requires modification of algorithm to return this path, as well
Breadth-First and Depth-First Traversal

DF/BF-Traversal and Connectivity of Graphs:

- DF- and BF-traversal will visit all nodes of a connected graph.
- If a non-connected graph is traversed, both algorithms can be used to find the (maximum) connected sub-graph that contains the start node.
- Hence, DF- and BF-traversal can be extended to find all connectivity components of a graph.
Breadth-First and Depth-First Traversal

DF/BF-Traversal and Connectivity of Graphs:
- DF- and BF-traversal will visit all nodes of a connected graph.
- If a non-connected graph is traversed, both algorithms can be used to find the (maximum) connected sub-graph that contains the start node.
- Hence, DF- and BF-traversal can be extended to find all connectivity components of a graph.

DF/BF-Traversal and Trees:
- DF- and BF-traversal will compute a spanning tree of a connected graph.
- BF-traversal generates a spanning tree with shortest paths to the root.