Fundamental Algorithms

Chapter 7: Parallel Sorting

Jan Křetínský
Winter 2017/18
Sequential MergeSort

MergeSort(A: Array[1..n]) {
 if n > 1 then {
 m := floor(n/2);
 create array L[1..m];
 for i from 1 to m do { L[i] := A[i]; }

 create array R[1..n-m];
 for i from 1 to n-m do { R[i] := A[m+i]; }

 MergeSort(L);
 MergeSort(R);

 Merge(L, R, A);
 }
}

(How) can we parallelise MergeSort?
MergeSort in Parallel?

\[
\text{MergeSortPar}(A : \text{Array}[1..n]) \{ \\
\text{if } n > 1 \text{ then } \{ \\
\text{m := floor}(n/2); \\
\text{do in parallel } \{ \\
\text{create array } L[1..m]; \\
\text{for } i \text{ from } 1 \text{ to } m \text{ do } \{ \text{L}[i] := A[i]; \} \\
\text{MergeSort}(L); \quad \text{// even better: MergeSortPar}(L) \\
\mid \\
\text{create array } R[1..n-m]; \\
\text{for } i \text{ from } 1 \text{ to } n-m \text{ do } \{ \text{R}[i] := A[m+i]; \} \\
\text{MergeSort}(R); \quad \text{// even better: MergeSortPar}(R) \\
\} \\
\}; \\
\text{Merge}(L,R,A); \quad \text{// desired: MergePRAM(L,R,A)} \\
\}
\]
Parallel MergeSort

Idea:

- parallelise “divide-and-conquer”: recursive calls can be done in parallel
- use \(p/2 \) processors for each of the recursive calls (if \(p \) processors are available)
Parallel MergeSort

Idea:

- parallelise “divide-and-conquer”: recursive calls can be done in parallel
- use $p/2$ processors for each of the recursive calls (if p processors are available)

Merging in Parallel?

- can Merge be executed in parallel?
- by how many processors?
Can Merge be Parallelised?

```plaintext
Merge (L: Array[1..p], R: Array[1..q], A: Array[1..n]) {
    // merge the sorted arrays L and R into A (sorted)
    // we presume that n=p+q
    i := 1; j := 1;
    for k from 1 to n do {
        if i > p
            then { A[k] := R[j]; j := j + 1; }
        else if j > q
            then { A[k] := L[i]; i := i + 1; }
        else if L[i] < R[j]
            then { A[k] := L[i]; i := i + 1; }
        else { A[k] := R[j]; j := j + 1; }
    }
}
```

Problem: inherently sequential progress through arrays A, L, R
Can Merge be Parallelised?

Merge (L: Array [1..p], R: Array [1..q], A: Array [1..n]) {
// merge the sorted arrays L and R into A (sorted)
// we presume that n=p+q
 i:=1; j:=1:
 for k from 1 to n do {
 if i > p
 then { A[k]:=R[j]; j:=j+1; }
 else if j > q
 then { A[k]:=L[i]; i:=i+1; }
 else if L[i] < R[j]
 then { A[k]:=L[i]; i:=i+1; }
 else { A[k]:=R[j]; j:=j+1; }
 }
}

Problem: inherently sequential progress through arrays A, L, R
Odd-Even Merge

Ideas:

- start with a two sorted lists of length $n/2$:

 2 3 4 7 1 5 6 8

Observations

- final sequence is nearly sorted (only pairwise exchange required)
- odd- and even-indexed elements can be processed in parallel
Odd-Even Merge

Ideas:

• start with a two sorted lists of length \(n/2 \):

\[
\begin{array}{cccccccc}
2 & 3 & 4 & 7 & 1 & 5 & 6 & 8 \\
\end{array}
\]

• consider elements with odd and even index:

\[
\begin{array}{cccccccc}
2 & 3 & 4 & 7 & 1 & 5 & 6 & 8 \\
\end{array}
\]
Odd-Even Merge

Ideas:

- start with a two sorted lists of length \(n/2 \):

 \[
 \begin{array}{cccccc}
 2 & 3 & 4 & 7 & 1 & 5 & 6 & 8
 \end{array}
 \]

- consider elements with odd and even index:

 \[
 \begin{array}{cccccc}
 2 & 3 & 4 & 7 & 1 & 5 & 6 & 8
 \end{array}
 \]

- sort odd- and even-indexed elements separately:

 \[
 \begin{array}{cccccc}
 1 & 3 & 2 & 5 & 4 & 7 & 6 & 8
 \end{array}
 \]

Observations

- final sequence is nearly sorted (only pairwise exchange required)
- odd- and even-indexed elements can be processed in parallel
Odd-Even Merge

Ideas:

- start with a two sorted lists of length $n/2$:

 2 3 4 7 1 5 6 8

- consider elements with odd and even index:

 2 3 4 7 1 5 6 8

- sort odd- and even-indexed elements separately:

 1 3 2 5 4 7 6 8

Observations

- final sequence is nearly sorted (only pairwise exchange required)
- odd- and even-indexed elements can be processed in parallel
Odd-Even Merge

Ideas:

- start with a two sorted lists of length $n/2$:

 \[
 \begin{array}{cccccccc}
 2 & 3 & 4 & 7 & 1 & 5 & 6 & 8 \\
 \end{array}
 \]

- consider elements with odd and even index:

 \[
 \begin{array}{cccccccc}
 2 & 3 & 4 & 7 & 1 & 5 & 6 & 8 \\
 \end{array}
 \]

- sort odd- and even-indexed elements separately:

 \[
 \begin{array}{cccccccc}
 1 & 3 & 2 & 5 & 4 & 7 & 6 & 8 \\
 \end{array}
 \]

Observations

- final sequence is nearly sorted (only pairwise exchange required)
- odd- and even-indexed elements can be processed in parallel
Correctness of the Final Exchange Step

Claim (after odd/even sort):

- exchanges of a_{2i} and a_{2i+1} are sufficient for sorting

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
-\infty & 1 & 3 & 2 & 5 & 4 & 7 & 6 & \infty
\end{array}
\]

Proof:

- let O and E be sorted odd and even sequence, respectively; let A be sorted sequence
- add $E_0 = -\infty$ and $O_{n/2+1} = \infty$.
- for $i \in 0, \ldots, n/2$

\[
\begin{align*}
A_{2i} &= \min\{E_i, O_{i+1}\} \\
A_{2i+1} &= \max\{E_i, O_{i+1}\}
\end{align*}
\]

note that A contains elements $A_0 = -\infty$ and $A_{n+1} = \infty$.
Correctness of the Final Exchange Step

\(i = 0 \) the first two elements in \(A \) are clearly \(A_0 = -\infty \) and \(A_1 = O_1 \);

\(i \geq 1 \) using the induction hypothesis for \(i' = 0, \ldots, i - 1 \) gives that the positions \(A_0, \ldots, A_{2i-1} \) are composed from \(i \) even and \(i \) odd elements; hence, the next element is

\[
A_{2i} = \min\{E_i, O_{i+1}\}
\]

(note that \(E \) is indexed starting from 0 and \(O \) starting from 1)

now, we either have more odd or more even elements; however the number of even/odd elements within a prefix of \(A \) can at most differ by 1; therefore if the last element was odd we now have to choose the smallest even element (and vice versa); this gives

\[
A_{2i+1} = \max\{E_i, O_{i+1}\}
\]
Correctness of the Final Exchange Step

Claim (after odd/even sort):
- exchanges of a_{2i} and a_{2i+1} are sufficient for sorting

```
1 3 2 5 4 7 6 8
```
Correctness of the Final Exchange Step

Claim (after odd/even sort):

- exchanges of a_{2i} and a_{2i+1} are sufficient for sorting

Counting Argument: x an odd-indexed element: $x = a_{2i+1}$

- exactly i odd-indexed elements are smaller than x (sorted lists)
- $d_l, d_r =$ number of odd-indexed elements $< x$ in left/right half
 \[i = d_l + d_r \]
- $v_l, v_r =$ number of even-indexed elements $< x$ in left/right half
- x in left half: $v_l = d_l, v_r \in \{d_r, d_r - 1\}$
- x in right half: $v_l \in \{d_l, d_l - 1\}, v_r = d_r$
- consequence: $v_l + v_r \in \{d_l + d_r, d_l + d_r - 1\} = \{i, i - 1\}$
Correctness of the Final Exchange Step (2)

Counting Argument:
- count even- and odd-indexed elements < x in both halves
- \(v_l + v_r \in \{d_l + d_r, d_l + d_r - 1\} = \{i, i-1\} \)

Possible Scenarios:
- \(v_l + v_r = i \) \(\Rightarrow \) exactly \(i \) even elements < \(x \)
 \(\Rightarrow \) \(i \)-th even-indexed element \(a_{2i} < x \) \(\rightarrow \) OK
- \(v_l + v_r = i-1 \) \(\Rightarrow \) exactly \(i-1 \) even elements < \(x \)
 therefore: \(a_{2(i-1)} < x \), but \(a_{2i} > x \) \(\rightarrow \) exchange
- in both cases:
 \(a_{2(i+1)} > x \) (at most \(i \) even elements < \(x \)) \(\rightarrow \) OK
 \(a_{2(i-1)} < x \) (at least \(i-1 \) even elements < \(x \)) \(\rightarrow \) OK

\(\Rightarrow \) only the left even-indexed neighbour of \(x \) can be out of place
OddEvenMerge – A First Try

OddEvenMerge_1 (A: Array[1..n]) {
// merge the sorted arrays A[1..n/2] and A[n/2+1..n]
// into A (sorted); n is a power of 2

OddEvenSplit(A, Odd, Even);
Sort(Odd); Sort(Even);
OddEvenJoin(A, Odd, Even);

for i from 1 to n/2−1 do {
 then exchange A[2 i] and A[2 i+1]
}
}
OddEvenSplit and OddEvenJoin (in parallel!)

OddEvenSplit (A: Array [1..n],
Odd: Array [1..n/2], Even: Array [1..n/2]) {
 for i from 1 to n/2 do in parallel {
 Odd[i] := A[2i-1];
 Even[i] := A[2i];
 }
}

OddEvenJoin (A: Array [1..n],
Odd: Array [1..n/2], Even: Array [1..n/2]) {
 for i from 1 to n/2 do in parallel {
 A[2i-1] := Odd[i];
 A[2i] := Even[i];
 }
}
Towards a Better Implementation of OddEvenMerge

After OddEvenSplit:

- Odd consists of two halves that are already sorted
- Even consists of two halves that are already sorted

⇒ Odd and Even can be sorted using OddEvenMerge
Towards a Better Implementation of OddEvenMerge

After OddEvenSplit:
- Odd consists of two halves that are already sorted
- Even consists of two halves that are already sorted

⇒ Odd and Even can be sorted using OddEvenMerge

OddEvenMerge in Parallel:
- OddEvenSplit and OddEvenJoin are already parallel
- calls to OddEvenMerge can be executed in parallel (recursive calls will again issue parallel calls)
- final exchange loop can be parallelised
Parallel OddEvenMerge

\textbf{OddEvenMergePRAM} \((A: \text{Array}[1..n]) \) \{

! add stopping criterion:
\textbf{if} \ n \leq 2 \textbf{then} \{ \textbf{SortTwo}(A); \textbf{return}; \};

\textbf{OddEvenSplit}(A, \text{Odd}, \text{Even});

\textbf{do in parallel} \{ \textbf{OddEvenMergePRAM}(\text{Odd}); \textbf{OddEvenMergePRAM}(\text{Even}); \} \}

\textbf{OddEvenJoin}(A, \text{Odd}, \text{Even});

\textbf{for} \ i \ \textbf{from} \ 1 \ \textbf{to} \ n/2 - 1 \ \textbf{do in parallel} \{
\textbf{then} \text{exchange} \ A[2i] \text{ and } A[2i+1]
\}
\}
Parallelism in OddEvenMerge

(on 4 processors)

(on 2×2 processors)

(on 4×1 processors)

(on 2×2 processors)

(on 4 processors)
OddEvenMergeSort (in Parallel)

OddEvenMergeSortPRAM(A: \textbf{Array} [1..n]) {
! EREW PRAM with \(n/2 \) processors
! \(n \) assumed to be \(2^k \)
\textbf{if} \(n \geq 2 \) \textbf{then} {

\textbf{do in parallel} {
 OddEvenMergeSortPRAM(A[1..n/2]);
 OddEvenMergeSortPRAM(A[n/2+1..n]);
}

OddEvenMergePRAM(A);
}
}
Complexity of Odd-Even MergeSort

Complexity of OddEvenMerge:
- $\Theta(\log n)$ subsequent steps
- each step executed on $\frac{n}{2}$ processors
- total work: $\Theta(n \log n)$

Complexity of Odd-Even MergeSort:
- requires executions of OddEvenMerge on subarrays of lengths $k = 2, 4, \ldots, n$
- each OddEvenMerge step requires $\Theta(\log k)$ steps
- number of subsequent steps:
 \[\log 2 + \log 4 + \cdots + \log n = \Theta((\log n)^2) \]
- total work: $\Theta(n(\log n)^2)$