Fundamental Algorithms

Chapter 5: Hash Tables

Jan Křetínský

Winter 2017/18
Generalised Search Problem

Definition (Search Problem)

Input: a sequence or set A of n elements $\in A$, and an $x \in A$.

Output: Index $i \in \{1, \ldots, n\}$ with $x = A[i]$, or NIL, if $x \not\in A$.

- complexity depends on data structure
- complexity of operations to set up data structure? (insert/delete)
Generalised Search Problem

Definition (Search Problem)

Input: a sequence or set A of n elements $\in A$, and an $x \in A$.
Output: Index $i \in \{1, \ldots, n\}$ with $x = A[i]$, or NIL, if $x \not\in A$.

- complexity depends on data structure
- complexity of operations to set up data structure? (insert/delete)

Definition (Generalised Search Problem)

- Store a set of objects consisting of a key and additional data:

\[
\text{Object} := (\text{key} : \text{Integer}, \text{record} : \text{Data});
\]

- search/insert/delete objects in this set
Direct-Address Tables

Definition (table as data structure)

- similar to array: access element via index
- usually contains elements only for some of the indices
Direct-Address Tables

Definition (table as data structure)

- similar to array: access element via index
- usually contains elements only for some of the indices

Direct-Address Table:

- assume: limited number of values for the keys:
 \[U = \{0, 1, \ldots, m - 1\} \]
- allocate table of size \(m \)
- use keys directly as index
Direct-Address Tables (2)

\[
\text{DirAddrInsert}(T: \text{Table}, x: \text{Object}) \{
 T[x.key] := x;
\}
\]
Direct-Address Tables (2)

DirAddrInsert(T:Table, x:Object) {
 T[x.key] := x;
}

DirAddrDelete(T:Table, x:Object) {
 T[x.key] := NIL;
}
Direct-Address Tables (2)

DirAddrInsert (T: Table, x: Object) {
 T[x.key] := x;
}

DirAddrDelete (T: Table, x: Object) {
 T[x.key] := NIL;
}

DirAddrSearch (T: Table, key: Integer) {
 return T[key];
}
Direct-Address Tables (3)

Advantage:
- very fast: search/delete/insert is $\Theta(1)$
Direct-Address Tables (3)

Advantage:
- very fast: search/delete/insert is $\Theta(1)$

Disadvantages:
- m has to be small, or otherwise, the table has to be very large!
- if only few elements are stored, lots of table elements are unused (waste of memory)
- all keys need to be distinct (they should be, anyway)
Hash Tables

Idea: compute index from key

Wanted: function h that

- maps a given key to an index,
- has a relatively small range of values, and
- can be computed efficiently,
Hash Tables

Idea: compute index from key

Wanted: function h that

- maps a given key to an index,
- has a relatively small range of values, and
- can be computed efficiently,

Definition (hash function, hash table)

Such a function h is called a hash function. The respective table is called a hash table.
Hash Tables – Insert, Delete, Search

HashInsert(T: Table, x: Object) {
 T[h(x.key)] := x;
}

HashDelete(T: Table, x: Object) {
 T[h(x.key)] := NIL;
}

HashSearch(T: Table, x: Object) {
 return T[h(x.key)];
}
Hash Functions – Insert, Delete, Search

HashInsert(T:Table, x:Object) {
 T[h(x.key)] := x;
}

HashDelete(T:Table, x:Object) {
 T[h(x.key)] := NIL;
}

HashSearch(T:Table, x:Object) {
 return T[h(x.key)];
}
Hash Tables – Insert, Delete, Search

HashInsert(T:Table, x:Object) {
 T[h(x.key)] := x;
}

HashDelete(T:Table, x:Object) {
 T[h(x.key)]:= NIL;
}

HashSearch(T:Table, x:Object) {
 return T[h(x.key)];
}
So Far: Naive Hashing

Advantages:

- still very fast: search/delete/insert is $\Theta(1)$, if h is $\Theta(1)$
- size of the table can be chosen freely, provided there is an appropriate hash function h
So Far: Naive Hashing

Advantages:

- still very fast: search/delete/insert is $\Theta(1)$, if h is $\Theta(1)$
- size of the table can be chosen freely, provided there is an appropriate hash function h

Disadvantages:

- values of h have to be distinct for all keys
- however: impossible to find a hash function that produces distinct values for any set of stored data
So Far: Naive Hashing

Advantages:
- still very fast: search/delete/insert is $\Theta(1)$, if h is $\Theta(1)$
- size of the table can be chosen freely, provided there is an appropriate hash function h

Disadvantages:
- values of h have to be distinct for all keys
- however: impossible to find a hash function that produces distinct values for any set of stored data

ToDo: deal with collisions:
objects with different keys that share a common hash value have to be stored in the same table element
Resolve Collisions by Chaining

Idea:

- use a table of containers
- containers can hold an arbitrarily large amount of data
- using (linked) lists as containers: chaining
Resolve Collisions by Chaining

Idea:

- use a table of containers
- containers can hold an arbitrarily large amount of data
- using (linked) lists as containers: chaining

```c
ChainHashInsert(T:Table, x:Object) {
    insert x into T[h(x.key)];
}
```
Resolve Collisions by Chaining

Idea:

- use a table of containers
- containers can hold an arbitrarily large amount of data
- using (linked) lists as containers: chaining

```c
ChainHashInsert(T: Table, x: Object) {
    insert x into T[h(x.key)];
}
```

```c
ChainHashDelete(T: Table, x: Object) {
    delete x from T[h(x.key)];
}
```
Resolve Collisions by Chaining

ChainHashSearch(T:Table, x:Object) {
 return ListSearch(x, T[h(x.key)]);
 ! result: reference to x or NIL, if x not found;
}
ChainHashSearch(T:Table, x:Object) {
 return ListSearch(x, T[h(x.key)]);
 ! result: reference to x or NIL, if x not found;
}

Advantages:
• hash function no longer has to return distinct values
• still very fast, if the lists are short
Resolve Collisions by Chaining

ChainHashSearch(T: Table, x: Object) {
 return ListSearch(x, T[h(x.key)]);
 ! result: reference to x or NIL, if x not found;
}

Advantages:

- hash function no longer has to return distinct values
- still very fast, if the lists are short

Disadvantages:

- delete/search is $\Theta(k)$, if k elements are in the accessed list
- worst case: all elements stored in one single list (very unlikely).
Chaining – Average Search Complexity

Assumptions:

- hash table has \(m \) slots (table of \(m \) lists)
- contains \(n \) elements \(\Rightarrow \) load factor: \(\alpha = \frac{n}{m} \)
- \(h(k) \) can be computed in \(O(1) \) for all \(k \)
- all values of \(h \) are equally likely to occur

Search complexity:

- on average, the list corresponding to the requested key will have \(\alpha \) elements
- unsuccessful search: compare the requested key with all objects in the list, i.e. \(O(\alpha) \) operations
- successful search: requested key last in the list; \(\Rightarrow \) also \(O(\alpha) \) operations

Expected: Average complexity: \(O(1 + \alpha) \) operations
Chaining – Average Search Complexity

Assumptions:

- hash table has \(m \) slots (table of \(m \) lists)
- contains \(n \) elements \(\Rightarrow \) load factor: \(\alpha = \frac{n}{m} \)
- \(h(k) \) can be computed in \(O(1) \) for all \(k \)
- all values of \(h \) are equally likely to occur

Search complexity:

- on average, the list corresponding to the requested key will have \(\alpha \) elements
- unsuccessful search: compare the requested key with all objects in the list, i.e. \(O(\alpha) \) operations
- successful search: requested key last in the list; \(\Rightarrow \) also \(O(\alpha) \) operations
Chaining – Average Search Complexity

Assumptions:
- hash table has m slots (table of m lists)
- contains n elements ⇒ load factor: $\alpha = \frac{n}{m}$
- $h(k)$ can be computed in $O(1)$ for all k
- all values of h are equally likely to occur

Search complexity:
- on average, the list corresponding to the requested key will have α elements
- unsuccessful search: compare the requested key with all objects in the list, i.e. $O(\alpha)$ operations
- successful search: requested key last in the list; ⇒ also $O(\alpha)$ operations

Expected: Average complexity: $O(1 + \alpha)$ operations
Hash Functions

A good hash function should:

- satisfy the assumption of even distribution:
 each key is equally likely to be hashed to any of the slots:

\[
\sum_{k: h(k) = j} (P(key = k)) = \frac{1}{m} \quad \text{for all } j = 0, \ldots, m - 1
\]

- be easy to compute

- be “non-smooth”: keys that are close together should not produce hash values that are close together (to avoid clustering)
Hash Functions

A good hash function should:

- satisfy the assumption of even distribution: each key is equally likely to be hashed to any of the slots:
 \[\sum_{k: h(k) = j} (P(key = k)) = \frac{1}{m} \text{ for all } j = 0, \ldots, m - 1 \]

- be easy to compute

- be “non-smooth”: keys that are close together should not produce hash values that are close together (to avoid clustering)

Simplest choice: \(h = k \mod m \) \((m \text{ a prime number})\)

- easy to compute; even distribution if keys evenly distributed

- however: not “non-smooth”
The Multiplication Method for Integer Keys

Two-step method

1. multiply k by constant $0 < \gamma < 1$, and extract fractional part of $k\gamma$
2. multiply by m, and use integer part as hash value:

$$h(k) := \lfloor m(\gamma k \mod 1) \rfloor = \lfloor m(\gamma k - \lfloor \gamma k \rfloor) \rfloor$$
The Multiplication Method for Integer Keys

Two-step method

1. multiply k by constant $0 < \gamma < 1$, and extract fractional part of $k\gamma$
2. multiply by m, and use integer part as hash value:

$$h(k) := \lfloor m(\gamma k \mod 1) \rfloor = \lfloor m(\gamma k - \lfloor \gamma k \rfloor) \rfloor$$

Remarks:

- value of m uncritical; e.g. $m = 2^p$
- value of γ needs to be chosen well
- in practice: use fix-point arithmetics
- non-integer keys: use encoding to integers (ASCII, byte encoding, ...)
Open Addressing

Definition

- no containers: table contains objects
- each slot of the hash table either contains an object or NIL
- to resolve collisions, more than one position is allowed for a specific key
Open Addressing

Definition

- no containers: table contains objects
- each slot of the hash table either contains an object or NIL
- to resolve collisions, more than one position is allowed for a specific key

Hash function: generates sequence of hash table indices:

\[h: U \times \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\} \]

General approach:

- store object in the first empty slot specified by the probe sequence
- empty slot in the hash table guaranteed, if the probe sequence \(h(k, 0), h(k, 1), \ldots, h(k, m-1) \) is a permutation of \(0, 1, \ldots, m-1 \)
Open HashInsert \(T : \text{Table}, \ x : \text{Object} \) : \text{Integer} \{
 \text{for } i \text{ from } 0 \text{ to } m-1 \text{ do } \{
 j := h(x.\text{key}, \ i);
 \text{if } T[j] = \text{NIL} \text{ then } \{ T[j] := x; \text{return } j; \}
 \}
 \text{cast error "hash table overflow"}
\}
Open Hash Insert (T: Table, x: Object) : Integer {
 for i from 0 to m−1 do {
 j := h(x.key, i);
 if T[j]=NIL then { T[j] := x; return j; }
 }
 cast error ”hash table overflow”
}

Open Hash Search (T: Table, k: Integer) : Object {
 i := 0;
 while T[h(k,i)] <> NIL and i < m {
 if k = T[h(k,i)].key then return T[h(k,i)];
 i := i + 1;
 }
 return NIL;
}
Open Addressing – Linear Probing

Hash function: $h(k, i) := (h_0(k) + i) \mod m$

- first slot to be checked is $T[h_0(k)]$
- second probe slot is $T[h_0(k) + 1]$, then $T[h_0(k) + 2]$, etc.
- wrap around to $T[0]$ after $T[m - 1]$ has been checked
Open Addressing – Linear Probing

Hash function: \(h(k, i) := (h_0(k) + i) \mod m \)
- first slot to be checked is \(T[h_0(k)] \)
- second probe slot is \(T[h_0(k) + 1] \), then \(T[h_0(k) + 2] \), etc.
- wrap around to \(T[0] \) after \(T[m-1] \) has been checked

Main problem: clustering
- continuous sequences of occupied slots (“clusters”) cause lots of checks during searching and inserting
- clusters tend to grow, because all objects that are hashed to a slot inside the cluster will increase it
- slight (but minor) improvement: \(h(k, i) := (h_0(k) + ci) \mod m \)
Open Addressing – Linear Probing

Hash function: \(h(k, i) := (h_0(k) + i) \mod m \)
- first slot to be checked is \(T[h_0(k)] \)
- second probe slot is \(T[h_0(k) + 1] \), then \(T[h_0(k) + 2] \), etc.
- wrap around to \(T[0] \) after \(T[m - 1] \) has been checked

Main problem: clustering
- continuous sequences of occupied slots ("clusters") cause lots of checks during searching and inserting
- clusters tend to grow, because all objects that are hashed to a slot inside the cluster will increase it
- slight (but minor) improvement: \(h(k, i) := (h_0(k) + ci) \mod m \)

Main advantage: simple and fast
- easy to implement
- cache efficient!
Open Addressing – Quadratic Probing

Hash function: \(h(k, i) := (h_0(k) + c_1 i + c_2 i^2) \mod m \)

- how to chose constants \(c_1 \) and \(c_2 \)?
- objects with identical \(h_0(k) \) still have the same sequence of hash values
 (“secondary clustering”)
Open Addressing – Quadratic Probing

Hash function: \(h(k, i) := (h_0(k) + c_1 i + c_2 i^2) \mod m \)

- how to chose constants \(c_1 \) and \(c_2 \)?
- objects with identical \(h_0(k) \) still have the same sequence of hash values
 (“secondary clustering”)

Idea: double hashing \(h(k, i) := (h_0(k) + i \cdot h_1(k)) \mod m \)

- if \(h_0 \) is identical for two keys, \(h_1 \) will generate different probe sequences
Open Addressing – Double Hashing

\[h(k, i) := (h_0(k) + i \cdot h_1(k)) \mod m \]

How to choose \(h_0 \) and \(h_1 \):

• range of \(h_0 \):
 \[U \rightarrow \{0, \ldots, m-1\} \] (cover entire table)

• \(h_1(k) \) must never be 0 (no probe sequence generated)

• \(h_1(k) \) should be prime to \(m \) for all \(k \rightarrow \) probe sequence will try all slots

• if \(d \) is the greatest common divisor of \(h_1(k) \) and \(m \), only \(1/d \) of the hash slots will be probed

Possible choices:

• \(m = 2^M \) and let \(h_1 \) generate odd numbers, only

• \(m \) a prime number, and \(h_1: U \rightarrow \{1, \ldots, m-1\} \) with \(m-1 < m \)
Open Addressing – Double Hashing

\[h(k, i) := (h_0(k) + i \cdot h_1(k)) \mod m \]

How to choose \(h_0 \) and \(h_1 \):

- range of \(h_0 : U \rightarrow \{0, \ldots, m - 1\} \) (cover entire table)
- \(h_1(k) \) must never be 0 (no probe sequence generated)
- \(h_1(k) \) should be prime to \(m \) for all \(k \)
 \(\rightarrow \) probe sequence will try all slots
- if \(d \) is the greatest common divisor of \(h_1(k) \) and \(m \), only \(\frac{1}{d} \) of the hash slots will be probed
Open Addressing – Double Hashing

\[h(k, i) := (h_0(k) + i \cdot h_1(k)) \mod m \]

How to choose \(h_0 \) **and** \(h_1 \):

- **range of** \(h_0 : U \rightarrow \{0, \ldots, m - 1\} \) (cover entire table)
- \(h_1(k) \) must never be 0 (no probe sequence generated)
- \(h_1(k) \) should be prime to \(m \) for all \(k \)
 \(\rightarrow \) probe sequence will try all slots
- if \(d \) is the greatest common divisor of \(h_1(k) \) and \(m \), only \(\frac{1}{d} \) of the hash slots will be probed

Possible choices:

- \(m = 2^M \) and let \(h_1 \) generate odd numbers, only
- \(m \) a prime number, and \(h_1 : U \rightarrow \{1, \ldots, m_1\} \) with \(m_1 < m \)
Collisions and Clustering

Scenarios for Collisions:

- keys share the same primary hash value: $h(k_1, 0) = h(k_2, 0)$ → same sequence of hash values for linear and quadratic probing
- keys share a value of the hash sequence: $h(k_1, i) = h(k_2, j)$ → same sequence of hash values for linear probing → different hash values for next try: $h(k_1, i+1) \neq h(k_2, j+1)$

Example:
- multiple keys that share the same hash values
- linear hashing will cause primary cluster
- cluster will also grow by all keys mapped to a hash value within this cluster
Collisions and Clustering

Scenarios for Collisions:

• keys share the same primary hash value: $h(k_1, 0) = h(k_2, 0)$
 \rightarrow same sequence of hash values for linear and quadratic probing

• keys share a value of the hash sequence: $h(k_1, i) = h(k_2, j)$
 \rightarrow same sequence of hash values for linear probing
 \rightarrow different hash values for next try: $h(k_1, i + 1) \neq h(k_2, j + 1)$
Collisions and Clustering

Scenarios for Collisions:

- keys share the same primary hash value: \(h(k_1, 0) = h(k_2, 0) \)
 \(\rightarrow \) same sequence of hash values for linear and quadratic probing

- keys share a value of the hash sequence: \(h(k_1, i) = h(k_2, j) \)
 \(\rightarrow \) same sequence of hash values for linear probing
 \(\rightarrow \) different hash values for next try: \(h(k_1, i + 1) \neq h(k_2, j + 1) \)

Example:

- multiple keys that share the same hash values
- linear hashing will cause primary cluster
- cluster will also grow by all keys mapped to a hash value within this cluster
Open Addressing – Deletion

Problem remaining: how to delete?

• search entry, remove it
• does not work:
 • insert 3, 7, 8 having same hash-value, then delete 7
 • how to find 8?
 ⇒ do not delete, just mark as deleted

Next problem:
• searching stops if first empty entry found
• after many deletions: lots of unnecessary comparisons!
Open Addressing – Deletion

Problem remaining: how to delete?

- search entry, remove it
- does not work:
 - insert 3, 7, 8 having same hash-value, then delete 7
 - how to find 8?

⇒ do not delete, just mark as deleted

Next problem:
- searching stops if first empty entry found
- after many deletions: lots of unnecessary comparisons!
Open Addressing – Deletion

Problem remaining: how to delete?

- search entry, remove it
- does not work:
 - insert 3, 7, 8 having same hash-value, then delete 7
 - how to find 8?

⇒ do not delete, just mark as deleted
Open Addressing – Deletion

Problem remaining: how to delete?

- search entry, remove it
- does not work:
 - insert 3, 7, 8 having same hash-value, then delete 7
 - how to find 8?

⇒ do not delete, just mark as deleted

Next problem:

- searching stops if first empty entry found
- after many deletions: lots of unnecessary comparisons!
Deletion general problem for open hashing

- only “solution”: new construction of table after some deletions
- hash tables therefore commonly don’t support deletion
Open Addressing – Deletion (2)

Deletion general problem for open hashing

- only “solution”: new construction of table after some deletions
- hash tables therefore commonly don’t support deletion

Inserting

- inserting efficient, but too many inserts \(\Rightarrow \) not enough space
 \(\Rightarrow \) if ratio \(\alpha \) too big, new construction of table with larger size
Open Addressing – Deletion (2)

Deletion general problem for open hashing
- only “solution”: new construction of table after some deletions
- hash tables therefore commonly don’t support deletion

Inserting
- inserting efficient, but too many inserts ⇒ not enough space
 ⇒ if ratio α too big, new construction of table with larger size

Still…
- searching faster than $O(\log n)$ possible