Fundamental Algorithms

Chapter 6: Parallel Algorithms – The PRAM Model

Jan Křetínský

Winter 2017/18
Example: Parallel Sorting

Definition

Sorting is required to order a given sequence of elements, or more precisely:

Input: a sequence of \(n \) elements \(a_1, a_2, \ldots, a_n \)

Output: a permutation (reordering) \(a'_1, a'_2, \ldots, a'_n \) of the input sequence, such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \).
Example: Parallel Sorting

Definition
Sorting is required to order a given sequence of elements, or more precisely:

- **Input**: a sequence of n elements a_1, a_2, \ldots, a_n
- **Output**: a permutation (reordering) a'_1, a'_2, \ldots, a'_n of the input sequence, such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

A naive(?) solution:
- pairwise comparison of all elements
- count “wins” for each element to obtain its position
- use one processor for each comparison!
A (Naive?) Parallel Example: AccumulateSort

AccumulateSort \((A: Array[1..n])\) {

Create **Array** \(P[1..n]\) of **Integer**;
// all \(P[i]=0\) at start

\textbf{for} 1 \leq i, j \leq n \text{ and } i<j \text{ do in parallel} \{
\textbf{if} \ A[i] > A[j]
\textbf{then} \(P[i] := P[i]+1\)
\textbf{else} \(P[j] := P[j]+1\);
\}

\textbf{for} i \text{ from } 1 \text{ to } n \text{ do in parallel} \{
\text{A[} P[i]+1 \text{] := A[i];}
\}
\}
AccumulateSort – Discussion

Implementation:

- do all $\binom{n}{2}$ comparisons at once and in parallel
- use $\binom{n}{2}$ processors
- count “wins” for each element; then move them to their respective “rank”
- complexity: $T_{AS} = \Theta(1)$ on $n(n - 1)/2$ processors

Assumptions:

- all read accesses to A can be done in parallel
- increments of $P[i]$ and $P[j]$ can be done in parallel
- second for-loop is executed after the first one (on all processors)
- all moves $A[P[i]] := A[i]$ happen in one atomic step (no overwrites due to sequential execution)
AccumulateSort – Discussion

Implementation:

- do all \(\binom{n}{2} \) comparisons at once and in parallel
- use \(\binom{n}{2} \) processors
- count “wins” for each element; then move them to their respective “rank”
- complexity: \(T_{AS} = \Theta(1) \) on \(n(n-1)/2 \) processors

Assumptions:

- all read accesses to A can be done in parallel
- increments of \(P[i] \) and \(P[j] \) can be done in parallel
- second for-loop is executed after the first one (on all processors)
Example: Parallel Searching

Definition (Search Problem)

Input: a set A of n elements $\in A$, and an element $x \in A$.
Output: The (smallest) index $i \in \{1, \ldots, n\}$ with $x = A[i]$.
Example: Parallel Searching

Definition (Search Problem)

Input: a set \(A \) of \(n \) elements \(\in \mathcal{A} \), and an element \(x \in \mathcal{A} \).

Output: The (smallest) index \(i \in \{1, \ldots, n\} \) with \(x = A[i] \).

An immediate solution:

- use \(n \) processors
- on each processor: compare \(x \) with \(A[i] \)
- return matching index/indices \(i \)
Simple Parallel Searching

ParSearch(A: Array[1..n], x: Element) : Integer {
 for i from 1 to n do in parallel {
 if x = A[i] then return i;
 }
}
Simple Parallel Searching

ParSearch(A: Array[1..n], x: Element) : Integer {
 for i from 1 to n do in parallel {
 if x = A[i] then return i;
 }
}

Discussion:

• Can all n processors access x simultaneously?
 → exclusive or concurrent read

• What happens if more than one processor finds an x?
 → exclusive or concurrent write (of multiple returns)

• general approach: parallelisation by “competition”
Towards Parallel Algorithms

First Problems and Questions:

- parallel read access to variables possible?
- parallel write access (or increments?) to variables possible?
- are parallel/global copy statements realistic?
- how do we synchronise parallel executions?
Towards Parallel Algorithms

First Problems and Questions:

- parallel read access to variables possible?
- parallel write access (or increments?) to variables possible?
- are parallel/global copy statements realistic?
- how do we synchronise parallel executions?

Reality vs. Theory:

- on real hardware: probably lots of restrictions (e.g., no parallel reads/writes; no global operations on or access to memory)
- in theory: if there were no such restrictions, how far can we get?
- or: for different kinds of restrictions, how far can we get?
The PRAM Models

Concurrent or Exclusive Read/Write Access:

- **EREW**: exclusive read, exclusive write
- **CREW**: concurrent read, exclusive write
- **ERCW**: exclusive read, concurrent write
- **CRCW**: concurrent read, concurrent write
Exclusive/Concurrent Read and Write Access

Exclusive Read

- X1, X2
- X3, X4
- X5, X6

Concurrent Read

- X
- Y

Exclusive Write

- X1, X2
- X3, X4
- X5, X6

Concurrent Write

- X
- Y
The PRAM Models (2)

SIMD

- Underlying principle for parallel hardware architecture: strict single instruction, multiple data (SIMD)

⇒ All parallel instructions of a parallelized loop are performed synchronously (applies even to simple if-statements)
Loops and If-Statements in PRAM Programs

Lockstep Execution of parallel for:

- Parallel for-loops (i.e., with extension in parallel) are executed “in lockstep”.
- Any instruction in a parallel for-loop is executed at the same time (and “in sync”) by all involved processors.
- If an instruction consists of several substeps, all substeps are executed in sync.
- If an if-then-else statement appears in a parallel for-loop, all processors first evaluate the comparison at the same time. Then, all processors on which the condition evaluates as true execute the then branch. Finally, all processors on which the condition evaluates to false execute the else branch.

Lockstep Example:

```
for i from 1 to n do in parallel {
    if U[i] > 0 then
        F[i] := (U[i] - U[i - 1]) / dx
    else
        F[i] := (U[i + 1] - U[i]) / dx
    end if
}
```

- First, all processors perform the comparison U[i] > 0
- All processors where U[i] > 0 then compute F[i]; note that first all processors read U[i] and then all processors read U[i - 1] (substeps!); hence, there is no concurrent read access!
- Afterwards, the else-part is executed in the same manner by all processors with U[i] \leq 0
Parallel Search on an EREW PRAM

ToDos for exclusive read and exclusive write:

- avoid exclusive access to x
 \Rightarrow replicate x for all processors ("broadcast")

- determine smallest index of all elements found:
 \Rightarrow determine minimum in parallel
Parallel Search on an EREW PRAM

ToDos for exclusive read and exclusive write:

- avoid exclusive access to x
 \Rightarrow replicate x for all processors (“broadcast”)
- determine smallest index of all elements found:
 \Rightarrow determine minimum in parallel

Broadcast on the PRAM:

- copy x into all elements of an array $X[1..n]$
- note: each processor can only produce one copy per step
Broadcast on the PRAM – Copy Scheme
Broadcast on the PRAM – Implementation

BroadcastPRAM(x:Element, A:Array[1..n]) {
 // n assumed to be 2^k
 // Model: EREW PRAM

 for i from 0 to k−1 do
 for j from 2^i+1 to 2^(i+1) do in parallel {
 }
}
Broadcast on the PRAM – Implementation

BroadcastPRAM(\(x : \text{Element} \), \(A : \text{Array}[1..n] \))

// \(n \) assumed to be \(2^k \)
// Model: EREW PRAM

\[
A[1] := x; \\
\text{for } i \text{ from } 0 \text{ to } k-1 \text{ do} \\
\quad \text{for } j \text{ from } 2^i+1 \text{ to } 2^{i+1} \text{ do in parallel} \\
\quad \quad A[j] := A[j-2^i]; \\
\quad \}
\]

Complexity:

- \(T(n) = \Theta(\log n) \) on \(\frac{n}{2} \) processors
Minimum Search on the PRAM – “Binary Fan-In”
Minimum on the PRAM – Implementation

MinimumPRAM(A: Array[1..n]) : Integer {
 // n assumed to be 2^k
 // Model: EREW PRAM

 for i from 1 to k do
 for j from 1 to \(\frac{n}{2^i}\) do in parallel {
 end if;
 }
 return A[1];
}
Minimum on the PRAM – Implementation

MinimumPRAM(A: Array[1..n]) : Integer {
 // n assumed to be 2^k
 // Model: EREW PRAM

 for i from 1 to k do
 for j from 1 to n/(2^i) do in parallel {
 end if;
 }
 return A[1];
}

Complexity: $T(n) = \Theta(\log n)$ on $\frac{n}{2}$ processors
“Binary Fan-In” (2)

Comment Concerned about synchronous copy statement?
⇒ Modify stride!
Searching on the PRAM – Parallel Implementation

SearchPRAM(A: Array [1..n], x: Element) : Integer {
 // n assumed to be 2^k
 // Model: EREW PRAM

 BroadcastPRAM(x, X[1..n]);

 for i from 1 to n do in parallel {
 if A[i] = X[i]
 then X[i] := i;
 else X[i] := n+1; // (invalid index)
 end if;

 return MinimumPRAM(X[1..n]);
}
The Prefix Problem

Definition (Prefix Problem)

Input: an array A of n elements a_i.

Output: All terms $a_1 \times a_2 \times \cdots \times a_k$ for $k = 1, \ldots, n$.

\times may be any associative operation.
The Prefix Problem

Definition (Prefix Problem)

Input: an array A of n elements a_i.

Output: All terms $a_1 \times a_2 \times \cdots \times a_k$ for $k = 1, \ldots, n$.

\times may be any associative operation.

Straightforward serial implementation:

```plaintext
Prefix (A: Array [1..n]) {
    // in-place computation:
    for i from 2 to n do {
        A[i] := A[i-1]*A[i];
    }
}
```
The Prefix Problem – Divide and Conquer

Idea:

1. compute prefix problem for $A_1, \ldots, A_{n/2}$
 \rightarrow gives $A_{1:1}, \ldots, A_{1:n/2}$

2. compute prefix problem for $A_{n/2+1}, \ldots, A_n$
 \rightarrow gives $A_{n/2+1:n/2+1}, \ldots, A_{n/2+1:n}$

3. multiply $A_{1:n/2}$ with all $A_{n/2+1:n/2+1}, \ldots, A_{n/2+1:n}$
 \rightarrow gives $A_{1:n/2+1}, \ldots, A_{1:n}$

Parallelism:
• steps 1 and 2 can be computed in parallel (divide)
• all multiplications in step 3 can be computed in parallel
• recursive extension leads to parallel prefix scheme
The Prefix Problem – Divide and Conquer

Idea:

1. compute prefix problem for $A_1, \ldots, A_{n/2}$
 \rightarrow gives $A_{1:1}, \ldots, A_{1:n/2}$

2. compute prefix problem for $A_{n/2+1}, \ldots, A_n$
 \rightarrow gives $A_{n/2+1:n/2+1}, \ldots, A_{n/2+1:n}$

3. multiply $A_{1:n/2}$ with all $A_{n/2+1:n/2+1}, \ldots, A_{n/2+1:n}$
 \rightarrow gives $A_{1:n/2+1}, \ldots, A_{1:n}$

Parallelism:

- steps 1 and 2 can be computed in parallel (divide)
- all multiplications in step 3 can be computed in parallel
- recursive extension leads to parallel prefix scheme
Parallel Prefix – Divide and Conquer

Diagram showing the process of parallel prefix computation through divide and conquer method.
Parallel Prefix Scheme on a CREW PRAM

Additional Feature: In-Place Computation, Pin Elements to Cores
Outlook: Parallel Prefix on Distributed Memory

Consider scheme from previous slide:

Execution on Distributed Memory:
- Each color corresponds to one compute node
- Nodes cannot directly access matrices from a node with different colour → explicit data transfer (communication) required

Properties of the Distributed-Memory Parallel Prefix Scheme:
- In-place computation; A[1:n] will overwrite A[n]; all A[j:n] stored on the same node
- One of the two multiplied matrices is always local
- Still, $n/2$ outgoing messages from A[1:n/2] in the last step (bottleneck!)
Parallel Prefix – CREW PRAM Implementation

```
PrefixPRAM( A: Array[1..n] ) {
    // n assumed to be 2^k
    // Model: CREW PRAM (n/2 processors)

    for l from 0 to k−1 do
        for p from 2^l by 2^(l+1) to n do in parallel
            for j from 1 to 2^l do in parallel {
            }
    }

Comments:

• p- and j-loop together: n/2 multiplications per l-loop
• concurrent read access to A[p] in the innermost loop
```
Parallel Prefix Scheme on an EREW PRAM
PrefixPRAM(A: Array[1..n]) {
 // n assumed to be 2^k
 // Model: EREW PRAM (n−1 processors)

 for l from 0 to k−1 do
 for j from 2^l+1 to n do in parallel {
 tmp[j] := A[j−2^l];
 }
}

Comment:
• all processors execute tmp[j] := A[j-2^l] before multiplication!