Fundamental Algorithms

Chapter 4: AVL Trees

Jan Křetínský

Winter 2016/17
Part I

AVL Trees

(Adelson-Velsky and Landis, 1962)
Binary Search Trees – Summary

Complexity of Searching:
- worst-case complexity depends on height of the search trees
- $O(\log n)$ for balanced trees

Inserting and Deleting:
- insertion and deletion might change balance of trees
- question: how expensive is re-balancing?

Test: Inserting/Deleting into a (fully) balanced tree
⇒ strict balancing (uniform depth for all leaves) too strict
AVL-Trees

Definition
AVL-trees are binary search trees that fulfill the following balance condition. For every node \(v \)

\[\left| \text{height(left sub-tree}(v)) - \text{height(right sub-tree}(v)) \right| \leq 1. \]

Lemma
An AVL-tree of height \(h \) contains at least \(F_{h+2} - 1 \) and at most \(2^h - 1 \) internal nodes, where \(F_n \) is the \(n \)-th Fibonacci number (\(F_0 = 0, F_1 = 1 \)), and the height is the maximal number of edges from the root to an (empty) dummy leaf.
Proof.

The upper bound is clear, as a binary tree of height h can only contain

$$
\sum_{j=0}^{h-1} 2^j = 2^h - 1
$$

internal nodes.
AVL trees

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height \(h = 1 \) contains at least one internal node,
 \[1 \geq F_3 - 1 = 2 - 1 = 1. \]
2. an AVL tree of height \(h = 2 \) contains at least two internal nodes,
 \[2 \geq F_4 - 1 = 3 - 1 = 2. \]
Induction step:
An AVL-tree of height \(h \geq 2 \) of minimal size has a root with sub-trees of height \(h - 1 \) and \(h - 2 \), respectively. Both sub-trees have minimal node number.

Let

\[
 g_h := 1 + \text{minimal size of AVL-tree of height } h.
\]

Then

\[
 g_1 = 2 = F_3 \\
 g_2 = 3 = F_4 \\
 g_h - 1 = 1 + g_{h-1} - 1 + g_{h-2} - 1, \\
 g_h = g_{h-1} + g_{h-2},
\]

hence

\[
 g_h = F_{h+2}.
\]
AVL-Tress

An AVL-tree of height h contains at least $F_{h+2} - 1$ internal nodes. Since

$$n + 1 \geq F_{h+2} = \Omega \left(\left(\frac{1 + \sqrt{5}}{2} \right)^h \right),$$

we get

$$n \geq \Omega \left(\left(\frac{1 + \sqrt{5}}{2} \right)^h \right),$$

and, hence, $h = \mathcal{O}(\log n)$.
AVL-trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node \(v \) the **balance** of the node. Let \(v \) denote a tree node with left child \(c_\ell \) and right child \(c_r \).

\[
\text{balance}[v] := \text{height}(T_{c_\ell}) - \text{height}(T_{c_r}),
\]

where \(T_{c_\ell} \) and \(T_{c_r} \), are the sub-trees rooted at \(c_\ell \) and \(c_r \), respectively.
Rotations

The properties will be maintained through rotations:
Double Rotations

LeftRotate(y)

RightRotate(x)

DoubleRightRotate(x)
AVL-trees: Insert

- Insert like in a binary search tree.
- Let w denote the parent of the newly inserted node x.
- One of the following cases holds:

 - If $\text{bal}[w] \neq 0$, T_w has changed height; the balance-constraint may be violated at ancestors of w.
 - Call AVL-fix-up-insert(parent[w]) to restore the balance-condition.
In the beginning of AVL-fix-up-insert(ν):

1. The balance constraints hold at all descendants of ν.
2. A node has been inserted into T_c, where c is either the right or left child of ν.
3. T_c has increased its height by one (otw. we would already have aborted the fix-up procedure).
4. The balance at node c fulfills $\text{balance}[c] \in \{-1, 1\}$. This holds because if the balance of c is 0, then T_c did not change its height, and the whole procedure would have been aborted in the previous step.
AVL-trees: Insert

Algorithm 1 AVL-fix-up-insert(\(v\))

1: if balance[\(v\)] ∈ \{-2, 2\} then DoRotationInsert(\(v\));
2: if balance[\(v\)] ∈ \{0\} return;
3: if parent[\(v\)] = null return;
4: compute balance of parent[\(v\)];
5: AVL-fix-up-insert(parent[\(v\)]);

We will show that the above procedure is correct, and that it will do at most one rotation.
AVL-trees: Insert

Algorithm 2 DoRotationInsert(ν)

1: if balance[ν] = −2 then // insert in right sub-tree
2: if balance[right[ν]] = −1 then
3: LeftRotate(ν);
4: else
5: DoubleLeftRotate(ν);
6: else // insert in left sub-tree
7: if balance[left[ν]] = 1 then
8: RightRotate(ν);
9: else
10: DoubleRightRotate(ν);
AVL-trees: Insert

It is clear that the invariants for the fix-up routine hold as long as no rotations have been done.

We have to show that after doing one rotation all balance constraints are fulfilled.

We show that after doing a rotation at v:

- v fulfills balance condition.
- All children of v still fulfill the balance condition.
- The height of T_v is the same as before the insert-operation took place.

We only look at the case where the insert happened into the right sub-tree of v. The other case is symmetric.
AVL-trees: Insert

We have the following situation:

![Diagram of AVL tree with balance of -2 at v]

The right sub-tree of v has increased its height which results in a balance of -2 at v.

Before the insertion the height of T_v was $h + 1$.
Case 1: balance[right[v]] = −1

We do a left rotation at v

Now, the subtree has height $h + 1$ as before the insertion. Hence, we do not need to continue.
Case 2: $\text{balance}\left[\text{right}[v]\right] = 1$

Height is $h + 1$, as before the insert.
AVL-trees: Delete

- Delete like in a binary search tree.
- Let v denote the parent of the node that has been spliced out.
- The balance-constraint may be violated at v, or at ancestors of v, as a sub-tree of a child of v has reduced its height.
- Initially, the node c—the new root in the sub-tree that has changed—is either a dummy leaf or a node with two dummy leafs as children.

In both cases $\text{bal}[c] = 0$.

- Call AVL-fix-up-delete(v) to restore the balance-condition.
Invariant at the beginning AVL-fix-up-delete(v):

1. The balance constraints holds at all descendants of v.
2. A node has been deleted from T_c, where c is either the right or left child of v.
3. T_c has decreased its height by one.
4. The balance at the node c fulfills balance[c] = 0. This holds because if the balance of c is in $\{-1, 1\}$, then T_c did not change its height, and the whole procedure would have been aborted in the previous step.
AVL-trees: Delete

Algorithm 3 AVL-fix-up-delete(v)

1. if balance[v] ∈ {−2, 2} then DoRotationDelete(v);
2. if balance[v] ∈ {−1, 1} return;
3. if parent[v] = null return;
4. compute balance of parent[v];
5. AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for the case of a delete there may be a logarithmic number of rotations.
AVL-trees: Delete

Algorithm 4 DoRotationDelete(ν)

1: if balance[ν] = −2 then // deletion in left sub-tree
2: if balance[right[ν]] ∈ {0, −1} then
3: LeftRotate(ν);
4: else
5: DoubleLeftRotate(ν);
6: else // deletion in right sub-tree
7: if balance[left[ν]] = {0, 1} then
8: RightRotate(ν);
9: else
10: DoubleRightRotate(ν);
AVL-trees: Delete

It is clear that the invariants for the fix-up routine hold as long as no rotations have been done.

We show that after doing a rotation at v:

- v fulfills the balance condition.
- All children of v still fulfill the balance condition.
- If now $\text{balance}[v] \in \{-1, 1\}$ we can stop as the height of T_v is the same as before the deletion.

We only look at the case where the deleted node was in the right sub-tree of v. The other case is symmetric.
AVL-trees: Delete

We have the following situation:

The right sub-tree of \(v \) has decreased its height which results in a balance of 2 at \(v \).

Before the deletion the height of \(T_v \) was \(h + 2 \).
Case 1: $\text{balance[left[v]]} \in \{0, 1\}$

If the middle subtree has height h the whole tree has height $h + 2$ as before the deletion. The iteration stops as the balance at the root is non-zero.

If the middle subtree has height $h - 1$ the whole tree has decreased its height from $h + 2$ to $h + 1$. We do continue the fix-up procedure as the balance at the root is zero.
Case 2: balance[left[\textit{v}]] = -1

Sub-tree has height \(h + 1 \), i.e., it has shrunk. The balance at \(y \) is zero. We continue the iteration.