Fundamental Algorithms

Chapter 3: Searching

Jan Křetínský

Winter 2017/18
Definition (Search Problem)

Input: a sequence or set A of n elements (objects) $\in A$, and an element $x \in A$.

Output: The (smallest) index $i \in \{1, \ldots, n\}$ with $x = A[i]$, or NIL, if $x \not\in A$.

```plaintext
SeqSearch (A: Array[1..n], x: Element) : Integer {
  for i from 1 to n do {
    if x = A[i] then return i;
  }
  return NIL;
}
```
Time Complexity of SeqSearch

SeqSearch \((A:\text{Array}[1..n], x:\text{Element}) : \text{Integer} \) {
 \text{for } i \text{ from } 1 \text{ to } n \text{ do } {
 \text{if } x = A[i] \text{ then return } i; \\
 }
 \text{return } \text{NIL};
}

\(\rightarrow\) count number of comparisons

Worst Case:

- we have to compare every \(A[i]\) with \(x \Rightarrow n\) comparisons
- occurs if \(A[n]=x\) or if \(x \not\in A\)
Time Complexity of SeqSearch (2)

Average Case:

- simplifying assumption: no duplicate elements
- \(p := \text{probability that } x = A[i] \)
 (assumption: \(p \) independent of \(i \))
- expected number of comparisons:

\[
\bar{C}(n) = \sum_{i=1}^{n} pi + (1 - np)n = \frac{pn(n + 1)}{2} + (1 - np)n
\]

- assume that \(x \) occurs in \(A \), thus \(p = \frac{1}{n} \), then:

\[
\bar{C}(n) = \frac{n(n + 1)}{2n} + 0n = \frac{n + 1}{2}
\]

(on average, we have to search through half of the array)
Searching – Divide and Conquer?

Will a divide-and-conquer approach work?

DQSearch(A: Array[p..r], x: Integer) : Integer {
 if p=r
 then {
 if x=A[p] then return p
 else return NIL;
 }
 else {
 m := floor((p+r)/2);
 q := DQSearch(A[p,m], x);
 if q = NIL
 then return DQSearch(A[m+1,r], x)
 else return q;
 }
}
Binary Search on Sorted Lists

Divide-and-conquer approach only works, if the array is sorted:

```
BinarySearch (A: Array[p..r], x: Integer) : Integer {
  if p=r
  then {
    if x=A[p] then return p
    else return NIL;
  }
  else {
    m := floor((p+r)/2);
    if x <= A[m]
    then return BinarySearch(A[p..m], x)
    else return BinarySearch(A[m+1..r], x)
  end if;
}
```
Time Complexity of Binary Search

Number of comparisons on an array with \(n \) elements:

- similar to divide-and-conquer: \(\log n \) subsequent recursive calls
- one comparison per call plus comparison with final element
 \(\Rightarrow 1 + \log n \)
- homework: formulate as recurrence

Discussion:

- What happens if we have to insert/delete elements in our sequence?
 \(\Rightarrow \) re-sorting of the sequence required
 \(\Rightarrow O(n \log n) \) effort
- therefore: Searching strongly dependent on choice of appropriate data structures for inserting and deleting elements!
Binary Search Trees

An **internal** binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node \(v \) have a smaller key-value than \(\text{key}[v] \) and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

((External Search Trees store objects only at leaf-vertices))

Examples:
Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- \(T.\ insert(x) \)
- \(T.\ delete(x) \)
- \(T.\ search(k) \)
- \(T.\ successor(x) \)
- \(T.\ predecessor(x) \)
- \(T.\ minimum() \)
- \(T.\ maximum() \)
Binary Search Trees: Searching

Algorithm 1

TreeSearch\((\text{root}, 17)\)

1. $\text{if } x = \text{null } \text{or } k = \text{key}[x] \text{ return } x$
2. $\text{if } k < \text{key}[x] \text{ return } \text{TreeSearch(left}[x], k)$
3. $\text{else return } \text{TreeSearch(right}[x], k)$
Binary Search Trees: Searching

Algorithm 1 \text{TreeSearch}(x, k)

1. if $x = \text{null}$ or $k = \text{key}[x]$ return x
2. if $k < \text{key}[x]$ return \text{TreeSearch}(\text{left}[x], k)$
3. else return \text{TreeSearch}(\text{right}[x], k)$
Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])

Binary Search Trees: Minimum
Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1. if right[x] \neq null return TreeMin(right[x])
2. $y \leftarrow$ parent[x]
3. while $y \neq$ null and $x = $ right[y] do
4. $x \leftarrow y$; $y \leftarrow$ parent[x]
5. return y;
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreelInsert(x, z)

1: if x = null then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreelInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreelInsert(right[x], z);
Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 3: Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Binary Search Trees: Delete

Algorithm 5 TreeDelete(z)

1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z);
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y];
5: if x ≠ null then parent[x] ← parent[y];
6: if parent[y] = null then
7: root[T] ← x
8: else
9: if y = left[parent[y]] then
10: left[parent[y]] ← x
11: else
12: right[parent[y]] ← x
13: if y ≠ z then copy y-data to z

select y to splice out
x is child of y (or null)
parent[x] is correct
fix pointer to x

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.