FAKULTAT FUR INFORMATIK
TECHNISCHE UNIVERSITAT MUNCHEN

Specification Draft

THE XMTS FILE FORMAT

AUTHOR: SALOMON SICKERT
DATE: JUNE 15, 2013

OVERVIEW

1.1 INTRODUCTION

Naturally, one needs a standard file format for specifying, storing, and ex-
changing modal transition systems. In the closely related graph file formats
it is either impossible or very tedious to specify properties, such as distinct
must- and may-transitions or obligation functions. Hence a new file format
was designed, which is loosely inspired by the GML format, a simple plain-
text graph file format [Him].

1.2 BASIC CONCEPT

The xmts file format is stored as plain text and based on the concept of lists
- also called records - consisting of key-value pairs. This approach makes it
very easy to extend and to adapt it. Currently the format specifies keywords
to express the following MTS extensions: DMTS, OTS, BMTS, PMTS, MTSD,
MTSD+DPS. The last two extensions were introduced in [Ben+12].

An example can be found in Listing 1.1. In the first line, it is stated that
the specified system is a PMTS with the id (param1). The attached record
- delimited by [and] - contains the optional description as the first entry.
Furthermore we specify with the parameter and action keywords the sup-
ported parameters and actions of the system. To make the format easier to
read and write, outgoing transitions and the obligation function are directly
listed in the record of the state. The obligation is given as a boolean formula -
the exact production rules of which can be found in the next section. The all
keyword is a short hand for the conjunction of all transitions. The scheme -
action -> successorState - used for specifying transitions intentionally diverges
from the strict key-value design for reasons of convenience.

ii

Listing 1.1: xmts representation of a system

pmts param1 [
label "Abstract Traffic Light System"
parameter reqY

action go
action stop
action ready

state green [
obligation ([stop, red] <—> ![ready, yellow])
& (reqY <—> [ready, yellow])
ready —> yellow
stop —> red

]

state yellow [
obligation all
stop —> red

]

state red |
obligation ([go, green] <—> ![ready, yellowRed])
& (reqY <—> [ready, yellowRed])
ready —> yellowRed
go —> green

]

state yellowRed [
obligation all
go —> green

iii

FORMAL LANGUAGE DEFINITION

2.1 ABSTRACT GRAMMAR
ADDITIONAL NOTES

¢ This version of the grammar and the antlr3 grammar is not identical
due to technical reasons.

* To improve readability white space is not explicitly noted, however
needed between keywords and values.

TOPLEVEL RULES

(xmts) = (mts) | (dmts) | (bmts) | (pmts) | (mtsd) | (mtsd+dps)
(mts) == mits (id) [(label)? (initial)? (action)* (state)+]

(dmts) := dmts (id) [(label)? (initial)? (action)* (state)+

(bmts) = bmts (id) [(label)? (initial)? (action)* (state)+]

(pmts) = pmts (id) [(Iabel)? (initial)? (parameter)* (action)* (state)+]
(mtsd) := mtsd (id) [(label)? (initial) {(action)* (state)+]

(mtsd+dps) ::= mtsd+dps (id) [(label)? (initial) (parameter)* (action)* (state)+

]

COMMON PROPERTIES
(label)
(id)

label (string)

(char) ({char) | (digit) | _)*

ACTION PROPERTIES

(action) == action (id)
| action (id) [(label)? (requirement)? (cost)?]

(requirement) ::= requirement (formula)

(cost) = running_cost (number)
| running_cost (signed_number)

PARAMETER PROPERTIES

(parameter) ::= parameter (id)
| parameter (id) [(label)? (investment)?]

(investment) ::= investment_cost (number)

iv

STATE PROPERTIES

(state) == state (id)
| state (id) [(label)? (obligation)? (position)? (transition)*]

(obligation) ::= obligation (formula)
| obligation all

(position) = position ((number) , (number))

(transition) == (id) -> (id)
| (id) -> (id) [(label)? (duration)?]

(duration) := duration ((number) , (number))
| duration [(number) , (number)]

(initial) = initial_state (id)

BOOLEAN FORMULA

(formula) == (unit)
I ! {unit)
I (unit) & (unit) (& (unit))*
I (unit) | (unit) (| (unit))*
I (unit) -> (unit)
I (unit) <-> (unit)
(unit) == true | false | (id) | (id) . (id) | ((formula))

BASIC RULES

(char) s=al...lzIlAl...l1Z
(digit) x=o0l...19
(number) == (1 | ... | 9) (digit)*

| o

(signed_number) = (+ | -) (number)
(string) HE D Vi

2.2 KEYWORD REFERENCE
ADDITIONAL NOTES

¢ The keywords are grouped by context.

¢ The third column specifies if the keyword must have an attached
record (v), can have one (O), or must not have one (x).

+ This production rule is greedy

Context Keyword Rec. Meaning
mts v <value> is an MTS
mitsd v <value> is an MTSD
mtsd+dps v <value> is an MTSD with dual-
priced scheme
pmts v <value> is a PMTS
All label X <value> is the description of the
record
System initial_state X <wvalue> is the initial state
parameter (@) Add <value> to P
action o0 Add <value> to
state O Add <value>to S
Action requirement X <value> is the requirement of the
action
running_cost X <value> is the running cost of the
action
Parameter investment cost X <value> is the investment cost of
the parameter
State obligation X <value> is the obligation function
of the state. Missing obligations
will be interpreted as all
position X Hint for placing the state in a
graphical representation.
-> (@) Add (<value1>, <value2>) to T(s)
Transition duration X <value1> is the duration interval
of the transition
Table 2.1: Keyword Reference
2.3 SEMANTICALLY WRONG INPUT

Although there exist safeguards in the grammar to avoid semantically wrong
input, e.g. parameter specification after claiming the system is an MTS, in-
valid descriptions are still possible. In this case the behaviour is undefined,
and it is up to the implementation if invalid information is discarded or the
input is completely rejected.

vi

BIBLIOGRAPHY

[Ben+12]

[Him]

Nikola Benes et al. “Dual-Priced Modal Transition Systems with
Time Durations”. In: Logic for Programming, Artificial Intelligence,
and Reasoning. Ed. by Nikolaj Bjerner and Andrei Voronkov.
Vol. 7180. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 122-137. ISBN: 978-3-642-28716-9. DOIL:
10.1007/978-3-642-28717-6_12. URL: http://dx.doi.
org/10.1007/978-3-642-28717-6_12.

Michael Himsolt. GML: A portable Graph File Format. Tech. rep.
Universitdt Passau. URL: www.fim.uni-passau.de/fileadmin/
files/lehrstuhl/brandenburg/projekte/gml/gml-technical-
report.pdf.

vii

http://dx.doi.org/10.1007/978-3-642-28717-6_12
http://dx.doi.org/10.1007/978-3-642-28717-6_12
http://dx.doi.org/10.1007/978-3-642-28717-6_12
www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf

	1 Overview
	1.1 Introduction
	1.2 Basic Concept

	2 Formal Language Definition
	2.1 Abstract Grammar
	2.2 Keyword Reference
	2.3 Semantically Wrong Input

	Bibliography

