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Abstract. We present preliminary results of our exploration of Machine
Learning techniques for detecting program errors, and in particular null
pointer errors in C code. We have curated a data set of positive and
negative samples of such errors from open source repositories and used it
to train a number of Machine Learning algorithms. Our current results
show that this is a promising approach for detecting null pointer errors.

1 Introduction
In a 2009 talk at QCon, Sir Tony Hoare has referred to his invention of the
null reference as his “billion dollar mistake” due to the innumerable errors it
has caused since its inception in 1965. Several techniques have been developed
to detect null pointer errors, such as testing (e.g. [7]), formal verification (e.g.
[2]), code analysis (e.g. [1]), and runtime verification (e.g. [5]), among others.
Nevertheless, none of these approaches has provided a complete remedy for null
pointer errors in programming languages such as C.

In this ongoing work we explore the use of Machine Learning (ML) techniques
in detecting null pointer errors, which may provide another tool in the arsenal of
software developers for combating this type of errors. Our hypothesis is that, in
many cases, programs with null pointer errors contain enough textual information
in their code that would allow a machine learning algorithm to learn how to
recognise them. In this work we set out to investigate whether this hypothesis
holds in practice. Although ML techniques have been used for aiding in program
verification (e.g. [8]) and in repairing program errors, including null pointer errors
[6], we are not aware of previous work that aims to use ML-only techniques for
detecting null pointer errors.

2 Methodology
In our investigation we have used the GitHub API to inspect more that one
million commit points from open source C repositories to create a training
data set of commits which aim to correct specific null pointer exceptions. This
data set currently contains 1400 unique snippets of code with positive examples
(containing null pointer exceptions) and the same number of negative examples
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(the corresponding fixed code). We also created a testing data set of 300 positive
and 300 negative examples. The latter data set is drawn from open source
repositories which are different than those used for learning to avoid bias in our
experiments due to project-specific programming conventions. In both data sets,
only the C functions that were altered at each commit point were kept, with
surrounding code being dropped. Typically these commit points altered a single
functions but a small number of commits involved changes to more than one
functions.

We have used the training set to train four ML algorithms: Support Vector
Machines (SVM) [4], XGBoost [3], a neural network with a binary cross-entropy
loss function, and a hybrid system with a Multi Layer Perceptron (MLP) combined
with XGBoost.

3 Current Results
Our preliminary results indicate that Machine Learning techniques can indeed
be used to recognise null pointer errors with a good degree of success, however
some knowledge about the semantics of a programming language improve the
approach. Our best results to date are derived by the hybrid MLP+XGBoost
system achieving 79.08% accuracy ( true positives+true negatives

all examples ), 77.30% precision
( true positives
true positives+false positives ), 82.35% recall ( true positives

true positives+false negatives ), 79.75% F1
score (2 recall×precision

recall+precision ), and 79.08% AUC score. We currently continue our inves-
tigation with exploring other ML algorithms, comparing our results to traditional
techniques such as formal verification, and improving our learning and testing
data sets.

Our data set leverages the semantic notion of a C function to focus the
attention of the algorithms around the code snippet where a null pointer exception
occurs. When we use entire C files for training and testing data sets, ML algorithms
are only marginally more performant than a random binary classifier. This is a
strong indication that leveraging the semantics of the underlying programming
language can focus the attention of the algorithms to relevant parts of the program
and improve the effectiveness of the approach. Exploring further semantics
properties to improve the training data set could lead to better results.

As is with most ML models, our approach makes hard to explain to the
programmer why a function may have a null pointer error. We envisage that
incorporating semantics techniques (e.g. a flow analysis) in the construction of
the training data or in the validation of the output of the ML algorithm could
mitigate this.

4 Future Work
In the future we hope to evaluate ML algorithms against static analysis and
formal verification tools. We also believe that there is scope of improvement of
the learning data set. Our data set may also be improved in accuracy but also
explainability if we leverage further programming language semantics techniques.
Finally the ML approach to bug finding will need to be evaluated in practice but
also in detecting a wider range of errors.
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Abstract. In this work in progress, we address the problem of the veri-

fication of properties of loss functions used in training (and, analogously,

metrics used in testing). These correctness proofs are particularly inter-

esting for critical tasks, from a developer’s perspective; and also from a

performance perspective when using large-scale neural networks, since it

allows to get rid of a high number of run-time checking, which presum-

ably enhances execution times.

We introduce an SMT-based approach to certify properties of loss func-

tions used for microscopical images’ super-resolution. Our early results

are promising and we report on a prototype in Dafny-Z3. To the best of

our knowledge, this is the first idea to perform such tasks.

1 Problem statement

So far, verification of machine-learning (ML) models has been approached uti-

lizing many di↵erent paradigms; however, checking loss functions has not been

addressed, since it has been considered that we can see in training (controlled)

environments whether results are correct or not. Thus, the usual way to (infor-

mally) verify whether an implemented function respects a set of properties is to

check them run-time. However, this yields two problems: (1) it is more probable

that the developer implements functions that do not conform the properties;

and (2) this run-time checking is resource-consuming, especially in large-scale

networks where this checking is performed millions of times. To illustrate the

first problematic, let us consider the following simple example:

Example 11 (An incorrect implementation.) Let a function f(x) = x2,
which holds the following property: 8x 2 R. f(x) � 0.

Now, consider (1) the developer makes an inadvertent mistake and imple-
ments f(x) = x3, which does not satisfy the property (consider negative x); and
also consider (2) that he has a monitor to check that f(x) � 0 holds. Let a biased
or corrupted dataset D = {5, 6, 3, 10, ...} that does not contain negative x 2 D;
thus, the monitor will never complain. However, the function is incorrectly im-
plemented.

This error would have been identified by the static verifier. Thus, in order
to get closer to (pseudo) correctness-by-construction, the more precise properties
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we add (and prove), the more sure we will be that our implementation conforms
the specification.

This formal-verification-powered practise becomes more important the harder
are functions to implement or if datasets are suspected biased. And, of course,
this pseudo-proofs are particularly interesting for critical tasks, e.g., aircraft vi-
sion systems or radiomedical images.

As for the second problematic, it is easy to see that verifiying loss functions

(instead of using run-time checking) yields a performance improvement: it is

better to have a verified function that will not call a monitor a million times

per training and testing. Thus, the problem that urgently needs to be solved is

this unnecessary extra resource consumption. This and the first problematic are

both solved formally verifying loss functions. We are currently developing the

idea applying it to the super-resolution (SR) problem.

SR is a technique that allows to obtain a high-resolution image from a low-

resolution one. In ML-based SR loss functions and metrics go from Mean Squared

Error (MSE) to more task specific ones. In this work in progress, we address the

problem of formal-verification of loss functions used in microscopical-image SR.

We introduce an approach by which we can rely on Sastisfiability Modulo
Theories (SMT) solvers to provably verify properties of loss functions. In partic-

ular, we already o↵er results on the verification of models and algorithms that

make use of the most popular image-quality-metrics. These verifications already

suggest a discussion, since many calculi are made using trascendental functions,

which calls into question usability of (classic) SMTs for these problems.

In summary, the contributions of this work in progress are as follows: (1) It

raises the idea of a novel formal verification for loss functions and metric using

SMT solvers, in Dafny-Z3. (2) Formalizes and implements two classic image

quality metrics for the SR problem: PSNR/MSE and Structural Similarity Index

(SSIM). (3) Limitations of this method are discussed: they are mainly focused

on trascendental functions that limit reliability of SMT solvers.

Example 12 (Why should we verify properties? SSIM as a use case.)
When dealing with SSIM as a loss function, we need to prove that the function
has a minimum, otherwise it cannot be expected to converge. Other properties
like boundedness are not strictly required but help avoiding exploding loss scores
as well as improving convergence time. Symmetry, for instance, yields better
convergence on corrupted labels.

If we are talking, instead, of SSIM as a metric (i.e., a similarity score), then
some other properties become compulsory. For instance, unique maximum; i.e.,
we want the function to return the maximum score only when comparing an im-
age to itself. Symmetry is also a necessary requirement from a safety perspective,
since comparing x to y should lead to the same score as comparing y to x.

We report on prototype in Dafny, a language that supports formal specifica-

tion and which uses the Z3 automated theorem prover below. To the best of our

knowledge, this is the first approach combining loss functions verification and

SMT solving. We also suggests a set of future research lines.
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LTL synthesis [10] is one of the most prominent frameworks for automatic
construction of reactive systems, due to how established linear temporal logic
(LTL) [9] is in the area of safety-critical and provably reliable dynamic systems.
A classical solution technique is the automata-theoretic approach [1, 11] which
first translates the specification into an automaton. Together with a partition of
the atomic propositions, the automaton induces a parity game, whose solution
corresponds to solving the original problem. However, there is an important
computational caveat: the problem of LTL synthesis is 2-EXPTIME complete.
Despite the infeasibility in the worst-case, many efforts have been made to cope
with practical problems by better LTL-to-ω-automata translations [2, 3] or by a
variety of heuristics whose impact is documented in the synthesis competition
SYNTCOMP [4]. A recent advancement by [5] is the exploitation of a semantic
labeling of states, provided by the automata translation, in order to solve the
parity game more efficiently or guide the exploration of on-the-fly approaches
[7] as implemented in STRIX [8]. In this work, we extend the work of [5] by
using the semantic labeling to learn more complex heuristics (backed by support
vector machines) in order to solve the parity games that arise from LTL synthesis
problems.

Naively, our approach works roughly as follows: We first solve numerous ex-
isting games by classical means to figure out the winning choices. Using this
data and features derived from the semantic labeling, we train a machine learn-
ing model to predict said winning choices. Ideally, these predictions immediately
result in a winning strategy, also for unseen games. However, even if the predic-
tion is not entirely correct, it can still serve as an initial strategy for strategy
iteration: SI gradually improves the current strategy and, if the initial strategy
is only a few updates away from a winning one, SI terminates much faster.

To realize our approach, we overcome several interesting challenges. Obtain-
ing a canonical ground truth, for example, proves to be a much tougher task
than one might expect. As an edge might be selected in some but not in other
winning strategies, we cannot simply declare some solution provided by strat-
egy iteration as ground truth. Rather, we have to incorporate the information of
all winning strategies, which we achieve by using approaches of classical game
theory mixed with simulation based approaches to obtain practical feasibility.

In addition to the ground truth, we put significant effort into the design of
over 200 features that try to capture the essence of the semantic labeling in



various different ways. While we also have simple, syntactic features like the
height of some LTL formulas syntax tree, we employ several semantic features
like trueness as presented by [5] or features based on obligation sets [6].

Our heuristic can be used in multiple ways: As mentioned above, it can
help solving parity games by predicting strategies that are either immediately
winning or only need a few adjustments by strategy iteration algorithms to be
made winning. In our experiments we observed the former surprisingly often,
even for complex practical formulae without even reading them. Thus, in some
sense our heuristic can be viewed as a constant time and space solution to LTL
synthesis, as it can be run on-the-fly with no input-dependent precomputation.
Further, our heuristic can guide the exploration of parity games in on-the-fly
synthesis tools such as STRIX, by suggesting which successors are most likely to
win and thus should be explored first. This can cause STRIX to find a solution
with only a small part of the automaton constructed, which, due to the double-
exponential nature of the latter, can have drastic impact on the overall runtime.
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Introduction

Deep Neural Networks (DNN), trained using task-oriented and precisely crafted
techniques, are the driving force of all modern deep learning applications that
have produced astonishing results. Their striking performance comes with a
downside: they are a blackbox. While it is easy to describe structure and pa-
rameters of a DNN, it is hard to obtain reliable predictions for or explanation
of their behaviour. Certifying that some DNN satisfies specific safety properties,
formally called verifying these properties, is difficult. A common, corresponding
decision problem, formally called output reachability, is NP-complete [2], even
for completely shallow DNN and simple specifications of relevant inputs and
outputs [4]. A typical interpretation task for some DNN N and an input-output
pair (x,N(x)) is to answer the question “which features of x are the relevant
ones leading to the output N(x)?” A corresponding decision problem, called the
MinimumSufficientReason problem, is known to be ΣP

2 -complete [1].
We propose a new, finite-state automata based approach for tackling chal-

lenges arising from the blackbox nature of DNN. A DNN N computes a function
of type Rm → Rn for some m,n ∈ N, which induces a relation RN ⊆ Rm × Rn.
Using an appropriate encoding, RN can be represented by a set of infinite words
over an alphabet of (m + n)-track symbols of the form (a1, . . . , am, b1, . . . , bn)
where ai, bi are taken from an alphabet like {0, 1, .,+,−}. A finite-state au-
tomaton A over such (m+ n)-track words works similar to one over plain, one-
dimensional words, but can be seen as a (synchronised) transducer between input
symbols (a1, . . . , am) and output symbols (b1, . . . , bn).

Translating DNN into WNBA

We present a complete construction of a weak Büchi automaton of exponential
size that recognises the input-output behaviour of a given DNN.

Theorem 1. [3] Let N be a DNN with input dimension m and output dimension
n. There is a WNBA AN of size 2O(||N ||) s.t. R(AN ) = RN .

A sketch of an auxiliary automaton called, recognizing the ternary addition rela-
tion, is given in Fig. 1. For details see [3]. There, similar auxiliary automata are
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Fig. 1. WNBA that recognises a subset of the ternary addition relation.

constructed which recognize the multiplication or addition with a fixed rational
constant or the application of the so called ReLU function, a popular choice for
an activation function in DNN. Then, the overall idea of our construction uses
combinations of such auxiliary automata to inductively build up an automaton
representing the computation of a given DNN.

Using WNBA for Verification and Interpretation of DNN

We consider two possible use cases for our DNN to WNBA translation. First, the
verification of adversarial robustness (AR) and output reachability (OR) proper-
ties and, second, the problem of finding a minimum sufficient reason (MinSufR)
for some output described above. Our main result is that given some AR, OR
or MinSufR property, we can use our translation of DNN into WNBA to reduce
these problems to the emptiness problem of NBA respectively WNBA.

Theorem 2. [3] Let N be a DNN with m inputs and n outputs, and P be an
AR, OR or MinSufR property. There is a WNBA AN,P of size 2O(||N ||+||P ||) s.t.
R(AN,P ) = ∅ iff N |= P .

Translating DNN With Bounded Precision Leads to Equivalent NFA

Our translation from DNN to finite state automata presented above is carried
out using Büchi automata. The reason for this is that infinite words are the most
natural way to represent real numbers. But one can also use nondeterministic
finite automata (NFA) over finite words. Clearly, for cardinality reasons alone
their inputs cannot represent all real numbers. We can still use NFA at the
expense of a less precise analysis. This can be seen as an abstraction mapping
real numbers to their nearest integer for instance. On the other side using NFA
enables us to use more efficient algorithms for minimisation.

We present a proof-of-concept implementation3, translating so called Bina-
rized Neural Networks (BNN), into input-output equivalent NFA. First exper-
iments (see referenced repository) clearly show the exponential blow up in the
translation but also indicate that automata-theoretic tools like minimisation can
decrease the size of the resulting automaton tremendously.
3 https://github.com/marcosaelzer/NN2NFA

https://github.com/marcosaelzer/NN2NFA
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Abstract. Deep reinforcement learning (DRL) has become a dominant
deep-learning paradigm for tasks where complex policies are learned
within reactive systems. Unfortunately, these policies are known to be
susceptible to bugs. Despite significant progress in DNN verification,
there has been little work demonstrating the use of modern verification
tools on real-world, DRL-controlled systems. In this case study, we at-
tempt to begin bridging this gap, and focus on the important task of
mapless robotic navigation — a classic robotics problem, in which a
robot, usually controlled by a DRL agent, needs to efficiently and safely
navigate through an unknown arena towards a target. We demonstrate
how modern verification engines can be used for effective model selection,
i.e., selecting the best available policy for the robot in question from a
pool of candidate policies. Specifically, we use verification to detect and
rule out policies that may demonstrate suboptimal behavior, such as col-
lisions and infinite loops. We also apply verification to identify models
with overly conservative behavior, thus allowing users to choose supe-
rior policies, which might be better at finding shorter paths to a target.
To validate our work, we conducted extensive experiments on an ac-
tual robot, and confirmed that the suboptimal policies detected by our
method were indeed flawed. We also demonstrate the superiority of our
verification-driven approach over state-of-the-art, gradient attacks. Our
work is the first to establish the usefulness of DNN verification in iden-
tifying and filtering out suboptimal DRL policies in real-world robots,
and we believe that the methods presented here are applicable to a wide
range of systems that incorporate deep-learning-based agents.

1 Introduction

In recent years, deep neural networks (DNN) have become extremely popular,
due to achieving state-of-the-art results in a variety of fields — such as natural

[*] Both authors contributed equally.
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language processing [20], image recognition [69], autonomous driving [13], and
more. The immense success of these DNN models is owed in part to their ability
to train on a fixed set of training samples drawn from some distribution, and then
generalize, i.e., correctly handle inputs that they had not encountered previously.
Notably, deep reinforcement learning (DRL) [51] has recently become a dominant
paradigm for training DNNs that implement control policies for complex systems
that operate within rich environments. One domain in which DRL controllers
have been especially successful is robotics, and specifically — robotic navigation,
i.e., the complex task of efficiently navigating a robot through an arena, in order
to safely reach a target [82,90].

Unfortunately, despite the immense success of DNNs, they have been shown
to suffer from various safety issues [43, 76]. For example, small perturbations
to their inputs, which are either intentional or the result of noise, may cause
DNNs to react in unexpected ways [60]. These inherent weaknesses, and others,
are observed in almost every kind of neural network, and indicate a need for
techniques that can supply formal guarantees regarding the safety of the DNN
in question. These weaknesses have also been observed in DRL systems [6,26,46],
showing that even state-of-the-art DRL models may err miserably.

To mitigate such safety issues, the verification community has recently devel-
oped a plethora of techniques and tools [10, 12, 23, 30, 37, 39, 43, 47, 53, 54, 83, 88]
for formally verifying that a DNN model is safe to deploy. Given a DNN, these
methods usually check whether the DNN: (i) behaves according to a prescribed
requirement for all possible inputs of interest; or (ii) violates the requirement,
in which case the verification tool also provides a counterexample.

To date, despite the abundance of both DRL systems and DNN verification
techniques, little work has been published on demonstrating the applicability
and usefulness of verification techniques to real-world DRL systems. In this case
study, we showcase the capabilities of DNN verification tools for analyzing DRL-
based systems in the robotics domain — specifically, robotic navigation systems.
To the best of our knowledge, this is the first attempt to demonstrate how off-
the-shelf verification engines can be used to identify both unsafe and subopti-
mal DRL robotic controllers, that cannot be detected otherwise using existing,
incomplete methods. Our approach leverages existing DNN verifiers that can
reason about single and multiple invocations of DRL controllers, and this allows
us to conduct a verification-based model selection process — through which we
filter out models that could render the system unsafe.

In addition to model selection, we demonstrate how verification methods al-
low gaining better insights into the DRL training process, by comparing the
outcomes of different training methods and assessing how the models improve
over additional training iterations. We also compare our approach to gradient-
based methods, and demonstrate the advantages of verification-based tools in
this setting. We regard this as another step towards increasing the reliability
and safety of DRL systems, which is one of the key challenges in modern ma-
chine learning [36]; and also as a step toward a more wholesome integration of
verification techniques into the DRL development cycle.
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In order to validate our experiments, we conducted an extensive evaluation
on a real-world, physical robot. Our results demonstrate that policies classified
as suboptimal by our approach indeed exhibited unwanted behavior. This eval-
uation highlights the practical nature of our work; and is summarized in a short
video clip [4], which we strongly encourage the reader to watch. In addition, our
code and benchmarks are available online [3].

The rest of the paper is organized as follows. Section 2 contains background
on DNNs, DRLs, and robotic controlling systems. In Section 3 we present our
DRL robotic controller case study, and then elaborate on the various properties
that we considered in Section 4. In Section 5 we present our experimental results,
and use them to compare our approach with competing methods. Related work
appears in Section 6, and we conclude in Section 7.

2 Background

Deep Neural Networks. Deep neural networks (DNNs) [33] are computa-
tional, directed, graphs consisting of multiple layers. By assigning values to the
first layer of the graph and propagating them through the subsequent layers,
the network computes either a label prediction (for a classification DNN) or a
value (for a regression DNN), which is returned to the user. The values com-
puted in each layer depend on values computed in previous layers, and also on
the current layer’s type. Common layer types include the weighted sum layer, in
which each neuron is an affine transformation of the neurons from the preceding
layer; as well as the popular rectified linear unit (ReLU ) layer, where each node
y computes the value y = ReLU(x) = max(0, x), based on a single node x from
the preceding layer to which it is connected. The DRL systems that are the sub-
ject matter of this case study consist solely of weighted sum and ReLU layers,
although the techniques mentioned are suitable for DNNs with additional layer
types, as we discuss later.
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Fig. 1: A toy DNN.

Fig. 1 depicts a small example of a
DNN. For input V1 = [2, 3]T , the sec-
ond (weighted sum) layer computes
the values V2 = [20,−7]T . In the third
layer, the ReLU functions are applied,
and the result is V3 = [20, 0]T . Finally,
the network’s single output is com-
puted as a weighted sum: V4 = [40].

Deep Reinforcement Learning. Deep reinforcement learning (DRL) [51] is a
particular paradigm and setting for training DNNs. In DRL, an agent is trained
to learn a policy π, which maps each possible environment state s (i.e., the
current observation of the agent) to an action a. The policy can have different
interpretations among various learning algorithms. For example, in some cases,
π represents a probability distribution over the action space, while in others it
encodes a function that estimates a desirability score over all the future actions
from a state s.
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During training, at each discrete time-step t ∈ {0, 1, 2, . . .}, a reward rt is
presented to the agent, based on the action at it performed at time-step t. Dif-
ferent DRL training algorithms leverage the reward in different ways, in order to
optimize the DNN-agent’s parameters during training. The general DNN archi-
tecture described above also characterizes DRL-trained DNNs; the uniqueness
of the DRL paradigm lies in the training process, which is aimed at generat-
ing a DNN that computes a mapping π that maximizes the expected cumulative
discounted reward Rt = E

[∑
t γ

t · rt
]
. The discount factor, γ ∈

[
0, 1
]
, is a hy-

perparameter that controls the influence that past decisions have on the total
expected reward.

DRL training algorithms are typically divided into three categories [74]:

1. Value-Based Algorithms. These algorithms attempt to learn a value func-
tion (called the Q-function) that assigns a value to each 〈state,action〉 pair.
This iterative process relies on the Bellman equation [59] to update the
function: Qπ(st, at) = r+γmaxat+1

Qπ(st+1, at+1). Double Deep Q-Network
(DDQN) is an optimized implementation of this algorithm [79].

2. Policy-Gradient Algorithms. This class contains algorithms that attempt
to directly learn the optimal policy, instead of assessing the value func-
tion. The algorithms in this class are typically based on the policy gradi-
ent theorem [75]. A common implementation is the Reinforce algorithm [89],
which aims to directly optimize the following objective function, over the
parameters θ of the DNN, through a gradient ascent process: ∇θJ(πθ) =

E[
∑T
t ∇θ log πθ(at|st) · rt]. For additional details, see [89].

3. Actor-Critic Algorithms. This family of hybrid algorithms combines the
two previous approaches. The key idea is to use two different neural networks:
a critic, which learns the value function from the data, and an actor, which
iteratively improves the policy by maximizing the value function learned by
the critic. A state-of-the-art implementation of this approach is the Proximal
Policy Optimization (PPO) algorithm [68].

All of these approaches are commonly used in modern DRL; and each has its
advantages and disadvantages. For example, the value-based methods typically
require only small sets of examples to learn from, but are unable to learn policies
for continuous spaces of 〈state,action〉 pairs. In contrast, the policy-gradient
methods can learn continuous policies, but suffer from a low sample efficiency
and large memory requirements. Actor-Critic algorithms attempt to combine
the benefits of value-based and policy-gradient methods, but suffer from high
instability, particularly in the early stages of training, when the value function
learned by the critic is unreliable.

DNN Verification and DRL Verification. A DNN verification algorithm
receives as input [43]: (i) a trained DNN N ; (ii) a precondition P on the DNN’s
inputs, which limits their possible assignments to inputs of interest; and (iii) a
postcondition Q on N ’s output, which usually encodes the negation of the be-
havior we would like N to exhibit on inputs that satisfy P . The verification
algorithm then searches for a concrete input x0 that satisfies P (x0)∧Q(N(x0)),



Verifying Learning-Based Robotic Navigation Systems 5

and returns one of the following outputs: (i) SAT, along with a concrete input
x0 that satisfies the given constraints; or (ii) UNSAT, indicating that no such x0
exists. When Q encodes the negation of the required property, a SAT result in-
dicates that the property is violated (and the returned input x0 triggers a bug),
while an UNSAT result indicates that the property holds.

For example, suppose we wish to verify that the DNN in Fig. 1 always outputs
a value strictly smaller than 7; i.e., that for any input x = 〈v11 , v21〉, it holds that
N(x) = v14 < 7. This is encoded as a verification query by choosing a precondition
that does not restrict the input, i.e., P = (true), and by setting Q = (v14 ≥ 7),
which is the negation of our desired property. For this verification query, a sound
verifier will return SAT, alongside a feasible counterexample such as x = 〈0, 2〉,
which produces v14 = 22 ≥ 7. Hence, the property does not hold for this DNN.

To date, the DNN verification community has focused primarily on DNNs
used for a single, non-reactive, invocation [30,37,43,54,83]. Some work has been
carried out on verifying DRL networks, which pose greater challenges: beyond
the general scalability challenges of DNN verification, in DRL verification we
must also take into account that agents typically interact with a reactive en-
vironment [6, 11, 18, 26, 41]. In particular, these agents are implemented with
neural networks that are invoked multiple times, and the inputs of each invoca-
tion are usually affected by the outputs of the previous invocations. This fact
aggregates the scalability limitations (because multiple invocations must be en-
coded in each query), and also makes the task of defining P and Q significantly
more complex [6].

3 Case Study: Robotic Mapless Navigation

Robotis Turtlebot 3. In our case study, we focus on the Robotis Turtlebot 3
robot (Turtlebot, for short), depicted in Fig. 2. Given its relatively low cost and
efficient sensor configuration, this robot is widely used in robotics research [9,61].
In particular, this robotic platform has the actuators required for moving and
turning, as well as multiple lidar sensors for detecting obstacles. These sensors
use laser beams to approximate the distance to the nearest object in their direc-
tion [86]. In our experiments, we used a configuration with seven lidar sensors,
each with a maximal range of one meter. Each pair of sensors are 30◦ apart, thus
allowing coverage of 180◦. The images in Fig. 3 depict a simulation of the Turtle-
bot navigating through an arena, and highlight the lidar beams. See Section B
of the Appendix for additional details.

The Mapless Navigation Problem. Robotic navigation is the task of navi-
gating a robot (in our case, the Turtlebot) through an arena. The robot’s goal
is to reach a target destination while adhering to predefined restrictions; e.g.,
selecting as short a path as possible, avoiding obstacles, or optimizing energy
consumption. In recent years, robotic navigation tasks have received a great deal
of attention [82,90], primarily due to their applicability to autonomous vehicles.

We study here the popular mapless variant of the robotic navigation problem,
where the robot can rely only on local observations (i.e., its sensors), without
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Fig. 2: The Robotis Turtlebot 3 platform, navigating in an arena. The image on
the left depicts a static robot, and the image on the right depicts the robot
moving towards the destination (the yellow square), while avoiding two wooden
obstacles in its route.

any information about the arena’s structure or additional data from external
sources. In this setting, which has been studied extensively [77], the robot has
access to the relative location of the target, but does not have a complete map of
the arena. This makes mapless navigation a partially observable problem, and
among the most challenging tasks to solve in the robotics domain [16,58,77,92].

DRL-Controlled Mapless Navigation. State-of-the-art solutions to map-
less navigation suggest training a DRL policy to control the robot. Such DRL-
based solutions have obtained outstanding results from a performance point of
view [63]. For example, recent work by Marchesini et al. [57] has demonstrated
how DRL-based agents can be applied to control the Turtlebot in a mapless
navigation setting, by training a DNN with a simple architecture, including two
hidden layers. Following this recent work, in our case study we used the following
topology for DRL policies:

– An input layer with nine neurons. These include seven neurons representing
the Turtlebot’s lidar readings. The additional, non-lidar inputs include one
neuron representing the relative angle between the robot and the target, and
one neuron representing the robot’s distance from the target. A scheme of
the inputs appears in Fig. 4a.

– Two subsequent fully-connected layers, each consisting of 16 neurons, and
followed by a ReLU activation layer.

– An output layer with three neurons, each corresponding to a different (dis-
crete) action that the agent can choose to execute in the following step: move
FORWARD, turn LEFT, or turn RIGHT.1

1 It has been shown that discrete controllers achieve excellent performance in robotic
navigation, often outperforming continuous controllers in a large variety of tasks [57].
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Fig. 3: An example of a simulated Turtlebot entering a 2-step loop. The white
and red dashed lines represent the lidar beams (white indicates “clear”, and red
indicates that an obstacle is detected). The yellow square represents the target
position; and the blue arrows indicate rotation. In the first row, from left to
right, the Turtlebot is stuck in an infinite loop, alternating between right and
left turns. Given the deterministic nature of the system, the agent will continue
to select these same actions, ad infinitum. In the second row, from left to right,
we present an almost identical configuration, but with an obstacle located 30◦

to the robot’s left (circled in blue). The presence of the obstacle changes the
input to the DNN, and allows the Turtlebot to avoid entering the infinite loop;
instead, it successfully navigates to the target.

While the aforementioned DRL topology has been shown to be efficient for
robotic navigation tasks, finding the optimal training algorithm and reward func-
tion is still an open problem. As part of our work, we trained multiple deter-
ministic policies using the DRL algorithms presented in Section 2: DDQN [79],
Reinforce [89], and PPO [68]. For the reward function, we used the following
formulation:

Rt = (dt−1 − dt) · α− β,

where dt is the distance from the target at time-step t; α is a normalization factor
used to guarantee the stability of the gradient; and β is a fixed value, decreased
at each time-step, and resulting in a total penalty proportional to the length
of the path (by minimizing this penalty, the agent is encouraged to reach the
target quickly). In our evaluation, we empirically selected α = 3 and β = 0.001.
Additionally, we added a final reward of +1 when the robot reached the target,
or −1 in case it collided with an obstacle. For additional information regarding
the parameters chosen for the training phase, see Section A of the Appendix.

DRL Training and Results. Using the training algorithms mentioned in Sec-
tion 2, we trained a collection of DRL agents to solve the Turtlebot mapless
navigation problem. We ran a stochastic training process, and thus obtained
varied agents; of these, we only kept those that achieved a success rate of at
least 96% during training. A total of 780 models were selected, consisting of
260 models per each of the three training algorithms. More specifically, for each
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(a) The DRL controller
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Fig. 4: (a) The DRL controller used for the robot in our case study. The DRL
has nine input neurons: seven lidar sensor readings (blue), one input indicating
the relative angle (orange) between the robot and the target, and one input
indicating the distance (green) between the robot and the target. (b) The average
success rates of models trained by each of the three DRL training algorithms,
per training episode.

algorithm, all 260 models were generated from 52 random seeds. Each seed gave
rise to a family of 5 models, where the individual family members differ in the
number of training episodes used for training them. Fig. 4b shows the trained
models’ average success rate, for each algorithm used. We note that PPO was
generally the fastest to achieve high accuracy. However, all three training algo-
rithms successfully produced highly accurate agents.

4 Using Verification for Model Selection

All of our trained models achieved very high success rates, and so, at face value,
there was no reason to favor one over the other. However, as we show next, a
verification-based approach can expose multiple subtle differences between them.
As our evaluation criteria, we define two properties of interest that are derived
from the main goals of the robotic controller: (i) reaching the target; and (ii)
avoiding collision with obstacles. Employing verification, we use these criteria to
identify models that may fail to fulfill their goals, e.g., because they collide with
various obstacles, are overly conservative, or may enter infinite loops without
reaching the target. We now define the properties that we used, and the results
of their verification are discussed in Section 5. Additional details regarding the
precise encoding of our queries appear in Section D of the Appendix.

Collision Avoidance. Collision avoidance is a fundamental and ubiquitous
safety property [17] for navigation agents. In the context of Turtlebot, our goal
is to check whether there exists a setting in which the robot is facing an obstacle,
and chooses to move forward — even though it has at least one other viable
option, in the form of a direction in which it is not blocked. In such situations,
it is clearly preferable to choose to turn LEFT or RIGHT instead of choosing to
move FORWARD and collide. See Fig. 5 for an illustration.
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Fig. 5: Example of a single-step collision. The robot is not blocked on its right
and can avoid the obstacle by turning (panel A), but it still chooses to move
forward — and collides (panel B).

Given that turning LEFT or RIGHT produces an in-place rotation (i.e., the
robot does not change its position), the only action that can cause a collision
is FORWARD. In particular, a collision can happen when an obstacle is directly in
front of the robot, or is slightly off to one side (just outside the front lidar’s field
of detection). More formally, we consider the safety property “the robot does not
collide at the next step”, with three different types of collisions:

– FORWARD COLLISION: the robot detects an obstacle straight ahead, but nev-
ertheless makes a step forward and collides with the obstacle.

– LEFT COLLISION: the robot detects an obstacle ahead and slightly shifted
to the left (using the lidar beam that is 30◦ to the left of the one point-
ing straight ahead), but makes a single step forward and collides with the
obstacle. The shape of the robot is such that in this setting, a collision is
unavoidable.

– RIGHT COLLISION: the robot detects an obstacle ahead and slightly shifted
to the right, but makes a single step forward and collides with the obstacle.

Recall that in mapless navigation, all observations are local — the robot has
no sense of the global map, and can encounter any possible obstacle configu-
ration (i.e., any possible sensor reading). Thus, in encoding these properties,
we considered a single invocation of the DRL agent’s DNN, with the following
constraints:

1. All the sensors that are not in the direction of the obstacle receive a lidar
input indicating that the robot can move either LEFT or RIGHT without risk
of collision. This is encoded by lower-bounding these inputs.

2. The single input in the direction of the obstacle is upper-bounded by a value
matching the representation of an obstacle, close enough to the robot so that
it will collide if it makes a move FORWARD.

3. The input representing the distance to the target is lower-bounded, indicat-
ing that the target has not yet been reached (encouraging the agent to make
a move).
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The exact encoding of these properties is based on the physical characteristics
of the robot and the lidar sensors, as explained in Section B of the Appendix.

Infinite Loops. Whereas collision avoidance is the natural safety property to
verify in mapless navigation controllers, checking that progress is eventually
made towards the target is the natural liveness property. Unfortunately, this
property is difficult to formulate due to the absence of a complete map. Instead,
we settle for a weaker property, and focus on verifying that the robot does not
enter infinite loops (which would prevent it from ever reaching the target).

Unlike the case of collision avoidance, where a single step of the DRL agent
could constitute a violation, here we need to reason about multiple consecutive
invocations of the DRL controller, in order to identify infinite loops. This, again,
is difficult to encode due to the absence of a global map, and so we focus on
in-place loops: infinite sequences of steps in which the robot turns LEFT and
RIGHT, but without ever moving FORWARD, thus maintaining its current location
ad infinitum.

Our queries for identifying in-place loops encode that: (i) the robot does
not reach the target in the first step; (ii) in the following k steps, the robot
never moves FORWARD, i.e., it only performs turns; and (iii) the robot returns
to an already-visited configuration, guaranteeing that the same behavior will be
repeated by our deterministic agents. The various queries differ in the choice of
k, as well as in the sequence of turns performed by the robot. Specifically, we
encode queries for identifying the following kinds of loops:

– ALTERNATING LOOP: a loop where the robot performs an infinite sequence of
〈LEFT, RIGHT, LEFT, RIGHT, LEFT...〉 moves. A query for identifying this loop
encodes k = 2 consecutive invocations of the DRL agent, after which the
robot’s sensors will again report the exact same reading, leading to an infinite
loop. An example appears in Fig. 3. The encoding uses the “sliding window”
principle, on which we elaborate later.

– LEFT CYCLE, RIGHT CYCLE: loops in which the robot performs an infinite
sequence of 〈LEFT, LEFT, LEFT, . . .〉 or 〈RIGHT, RIGHT, RIGHT, . . .〉 operations
accordingly. Because the Turtlebot turns at a 30◦ angle, this loop is encoded
as a sequence of k = 360◦/30◦ = 12 consecutive invocations of the DRL
agent’s DNN, all of which produce the same turning action (either LEFT or
RIGHT). Using the sliding window principle guarantees that the robot returns
to the same exact configuration after performing this loop, indicating that
it will never perform any other action.

We also note that all the loop-identification queries include a condition for
ensuring that the robot is not blocked from all directions. Consequently, any
loops that are discovered demonstrate a clearly suboptimal behavior.

Specific Behavior Profiles. In our experiments, we noticed that the safe poli-
cies, i.e., the ones that do not cause the robot to collide, displayed a wide spec-
trum of different behaviors when navigating to the target. These differences
occurred not only between policies that were trained by different algorithms,
but also between policies trained by the same reward strategy — indicating that
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these differences are, at least partially, due to the stochastic realization of the
DRL training process.

GOAL

OBSTACLE

A

B

C

Fig. 6: Comparing paths selected by
policies with different bravery levels.
Path A takes the Turtlebot close to the
obstacle (red area), and is the short-
est. Path B maintains a greater dis-
tance from the obstacle (light red area),
and is consequently longer. Finally, path
C maintains such a significant distance
from the obstacle (white area) that it is
unable to reach the target.

Specifically, we noticed high vari-
ability in the length of the routes se-
lected by the DRL policy in order
to reach the given target: while some
policies demonstrated short, efficient,
paths that passed very close to ob-
stacles, other policies demonstrated a
much more conservative behavior, by
selecting longer paths, and avoiding
getting close to obstacles (an example
appears in Fig. 6).

Thus, we used our verification-
driven approach to quantify how con-
servative the learned DRL agent is
in the mapless navigation setting. In-
tuitively, a highly conservative pol-
icy will keep a significant safety mar-
gin from obstacles (possibly taking a
longer route to reach its destination),
whereas a “braver” and less conser-
vative controller would risk venturing
closer to obstacles. In the case of Turtlebot, the preferable DRL policies are the
ones that guarantee the robot’s safety (with respect to collision avoidance), and
demonstrate a high level of bravery — as these policies tend to take shorter, op-
timized paths (see path A in Fig. 6), which lead to reduced energy consumption
over the entire trail.

Bravery assessment is performed by encoding verification queries that identify
situations in which the Turtlebot can move forward, but its control policy chooses
not to. Specifically, we encode single invocations of the DRL model, in which we
bound the lidar inputs to indicate that the Turtlebot is sufficiently distant from
any obstacle and can safely move forward. We then use the verifier to determine
whether, in this setting, a FORWARD output is possible. By altering and adjusting
the bounds on the central lidar sensor, we can control how far away the robot
perceives the obstacle to be. If we limit this distance to large values and the
policy will still not move FORWARD, it is considered conservative; otherwise, it is
considered brave. By conducting a binary search over these bounds [6], we can
identify the shortest distance from an obstacle for which the policy safely orders
the robot to move FORWARD. This value’s inverse then serves as a bravery score
for that policy.

Design-for-Verification: Sliding Windows. A significant challenge that we
faced in encoding our verification properties, especially those that pertain to
multiple consecutive invocations of the DRL policy, had to do with the local
nature of the sensor readings that serve as input to the DNN. Specifically, if
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the robot is in some initial configuration that leads to a sensor input x, and
then chooses to move forward and reaches a successor configuration in which the
sensor input is x′, some connection between x and x′ must be expressed as part
of the verification query (i.e., nearby obstacles that exist in x cannot suddenly
vanish in x′). In the absence of a global map, this is difficult to enforce.

In order to circumvent this difficulty, we used the sliding window princi-
ple, which has proven quite useful in similar settings [6, 26]. Intuitively, the
idea is to focus on scenarios where the connections between x and x′ are par-
ticularly straightforward to encode — in fact, most of the sensor information
that appeared in x also appears in x′. This approach allows us to encode mul-
tistep queries, and is also beneficial in terms of performance: typically, adding
sliding-window constraints reduces the search space explored by the verifier, and
expedites solving the query.

In the Turtlebot setting, this is achieved by selecting a robot configuration in
which the angle between two neighboring lidar sensors is identical to the turning
angle of the robot (in our case, 30◦). This guarantees, for example, that if the
central lidar sensor observes an obstacle at distance d and the robot chooses to
turn RIGHT, then at the next step, the lidar sensor just to the left of the central
sensor must detect the same obstacle, at the same distance d. More generally,
if at time-step t the 7 lidar readings (from left to right) are 〈l1, . . . , l7〉 and the
robot turns RIGHT, then at time-step t + 1 the 7 readings are 〈l2, l3, . . . , l7, l8〉,
where only l8 is a new reading. The case for a LEFT turn is symmetrical. By
placing these constraints on consecutive states encountered by the robot, we
were able to encode complex properties that involve multiple time-steps, e.g., as
in the aforementioned infinite loops. An illustration appears in Fig. 3.

5 Experimental Evaluation

Next, we ran verification queries with the aforementioned properties, in order to
assess the quality of our trained DRL policies. The results are reported below.
In many cases, we discovered configurations in which the policies would cause
the robot to collide or enter infinite loops; and we later validated the correctness
of these results using a physical robot. We strongly encourage the reader to
watch a short video clip that demonstrates some of these results [4]. Our code
and benchmarks are also available online [3]. In our experiments, We used the
Marabou verification engine [45] as our backend, although other engines could
be used as well. For additional details regarding the experiments, we refer the
reader to Section D of the Appendix.

Model Selection. In this set of experiments, we used verification to assess
our trained models. Specifically, we used each of the three training algorithms
(DDQN, Reinforce, PPO) to train 260 models, creating a total of 780 models.
For each of these, we verified six properties of interest: three collision proper-
ties (FORWARD COLLISION, LEFT COLLISION, RIGHT COLLISION), and three loop
properties (ALTERNATING LOOP, LEFT CYCLE, RIGHT CYCLE), as described in Sec-
tion 4. This gives a total of 4680 verification queries. We ran all queries with a
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LEFT COLLISION FORWARD COLLISION RIGHT COLLISION

Algorithm SAT UNSAT SAT UNSAT SAT UNSAT

DDQN 259 1 248 12 258 2

Reinforce 255 5 254 6 252 8

PPO 196 64 197 63 207 53

ALTERNATING LOOP LEFT CYCLE RIGHT CYCLE INSTABILITY

Algorithm SAT UNSAT SAT UNSAT SAT UNSAT # alternations

DDQN 260 0 56 77 56 61 21

Reinforce 145 115 5 185 120 97 10

PPO 214 45 26 198 30 198 1

Table 1: Results of the policy verification queries. We verified six properties over
each of the 260 models trained per algorithm; SAT indicates that the property
was violated, whereas UNSAT indicates that it held (to reduce clutter, we omit
TIMEOUT and FAIL results). The rightmost column reports the stability values of
the various training methods. For the full results see [3].

TIMEOUT value of 12 hours and a MEMOUT limit of 2G; the results are summarized
in Table 1. The single-step collision queries usually terminated within seconds,
and the 2-step queries encoding an ALTERNATING LOOP usually terminated within
minutes. The 12-step cycle queries, which are more complex, usually ran for a
few hours. 9.6% of all queries hit the TIMEOUT limit (all from the 12-step cycle
category), and none of the queries hit the MEMOUT limit.2

Our results exposed various differences between the trained models. Specif-
ically, of the 780 models checked, 752 (over 96%) violated at least one of the
single-step collision properties. These 752 collision-prone models include all 260
DDQN-trained models, 256 Reinforce models, and 236 PPO models. Further-
more, when we conducted a model filtering process based on all six properties
(three collisions and three infinite loops), we discovered that 778 models out
of the total of 780 (over 99.7%!) violated at least one property. The only two
models that passed our filtering process were trained by the PPO algorithm.

Further analyzing the results, we observed that PPO models tended to be
safer to use than those trained by other algorithms: they usually had the fewest
violations per property. However, there are cases in which PPO proved less suc-
cessful. For example, our results indicate that PPO-trained models are more
prone to enter an ALTERNATING LOOP than those trained by Reinforce. Specif-
ically, 214 (82.3%) of the PPO models have entered this undesired state, com-
pared to 145 (55.8%) of the Reinforce models. We also point out that, similarly
to the case with collision properties, all DDQN models violated this property.

Finally, when considering 12-step cycles (either LEFT CYCLE or RIGHT CYCLE),
44.8% of the DDQN models entered such cycles, compared to 30.7% of the Rein-
force models, and just 12.4% of the PPO models. In computing these results, we

2 We note that two queries failed due to internal errors in Marabou.
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computed the fraction of violations (SAT queries) out of the number of queries
that did not time out or fail, and aggregated SAT results for both cycle directions.

Interestingly, in some cases, we observed a bias toward violating a certain
subcase of various properties. For example, in the case of entering full cycles —
although 125 (out of 520) queries indicated that Reinforce-trained agents may
enter a cycle in either direction, in 96% of these violations, the agent entered a
RIGHT CYCLE. This bias is not present in models trained by the other algorithms,
where the violations are roughly evenly divided between cycles in both directions.

We find that our results demonstrate that different “black-box” algorithms
generalize very differently with respect to various properties. In our setting, PPO
produces the safest models, while DDQN tends to produce models with a higher
number of violations. We note that this does not necessarily indicate that PPO-
trained models perform better, but rather that they are more robust to corner
cases. Using our filtering mechanism, it is possible to select the safest models
among the available, seemingly equivalent candidates.

Next, we used verification to compute the bravery score of the various models.
Using a binary search, we computed for each model the minimal distance a dead-
ahead obstacle needs to have for the robot to safely move forward. The search
range was [0.18, 1] meters, and the optimal values were computed up to a 0.01
precision (see Section D of the Appendix for additional details). Almost all binary
searches terminated within minutes, and none hit the TIMEOUT threshold.

By first filtering the models based on their safe behavior, and then by their
bravery scores, we are able to find the few models that are both safe (do not col-
lide), and not overly conservative. These models tend to take efficient paths, and
may come close to an obstacle, but without colliding with it. We also point out
that over-conservativeness may significantly reduce the success rate in specific
scenarios, such as cases in which the obstacle is close to the target. Specifically,
of the only two models that survived the first filtering stage, one is considerably
more conservative than the other — requiring the obstacle to be twice as distant
as the other, braver, model requires it to be, before moving forward.

Algorithm Stability Analysis. As part of our experiments, we used our
method to assess the three training algorithms — DDQN, PPO, and Reinforce.
Recall that we used each algorithm to train 52 families of 5 models each, in which
the models from the same family are generated from the same random seed, but
with a different number of training iterations. While all models obtained a high
success rate, we wanted to check how often it occurred that a model success-
fully learned to satisfy a desirable property after some training iterations, only
to forget it after additional iterations. Specifically, we focused on the 12-step
full-cycle properties (LEFT CYCLE and RIGHT CYCLE), and for each family of 5
models checked whether some models satisfied the property while others did not.

We define a family of models to be unstable in the case where a property holds
in the family, but ceases to hold for another model from the same family with
a higher number of training iterations. Intuitively, this means that the model
“forgot” a desirable property as training progressed. The instability value of
each algorithm type is defined to be the number of unstable 5-member families.
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Although all three algorithms produced highly accurate models, they dis-
played significant differences in the stability of their produced policies, as can
be seen in the rightmost column of Table 1. Recall that we trained 52 families
of models using each algorithm, and then tested their stability with respect to
two properties (corresponding to the two full cycle types). Of these, the DDQN
models display 21 unstable alternations — more than twice the number of al-
terations demonstrated by Reinforce models (10), and significantly higher than
the number of alternations observed among the PPO models (1).

These results shed light on the nature of these training algorithms — indi-
cating that DDQN is a significantly less stable training algorithm, compared to
PPO and Reinforce. This is in line with previous observations in non-verification-
related research [68], and is not surprising, as the primary objective of PPO is to
limit the changes the optimizer performs between consecutive training iterations.

Gradient-Based Methods. We also conducted a thorough comparison be-
tween our verification-based approach and competing gradient-based methods.
Although gradient-based attacks are extremely scalable, our results (summarized
in Table 2 of the Appendix) show that they may miss many of the violations
found by our complete, verification-based procedure. For example, when search-
ing for collisions, our approach discovered a total of 2126 SAT results, while the
gradient-based method discovered only 1421 SAT results — a 33% decrease (!).
In addition, given that gradient-based methods are unable to return UNSAT, they
are also incapable of proving that a property always holds, and hence cannot
formally guarantee the safety of a policy in question. Thus, performing model
selection based on gradient-based methods could lead to skewed results. We refer
the reader to Section E of the Appendix, in which we elaborate on gradient at-
tacks and the experiments we ran, demonstrating the advantages of our approach
for model selection, when compared to gradient-based methods.

6 Related Work

Due to the increasing popularity of DNNs, the formal methods community has
put forward a plethora of tools and approaches for verifying DNN correctness [24,
30, 35, 37, 43–45, 48, 53, 70, 78]. Recently, the verification of systems involving
multiple DNN invocations, as well as hybrid systems with DNN components,
has been receiving significant attention [6, 11, 21, 22, 28, 46, 73, 80]. Our work
here is another step toward applying DNN verification techniques to additional,
real-world systems and properties of interest.

In the robotics domain, multiple approaches exist for increasing the reliability
of learning-based systems [65,81,91]; however, these methods are mostly heuristic
in nature [1, 29, 56]. To date, existing techniques rely mostly on Lagrangian
multipliers [52,67,71], and do not provide formal safety guarantees; rather, they
optimize the training in an attempt to learn the required policies [14]. Other,
more formal approaches focus solely on the systems’ input-output relations [18,
55], without considering multiple invocations of the agent and its interactions
with the environment. Thus, existing methods are not able to provide rigorous
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guarantees regarding the correctness of multistep robotic systems, and do not
take into account sequential decision making — which renders them insufficient
for detecting various safety and liveness violations.

Our approach is orthogonal and complementary to many existing safe DRL
techniques. Reward reshaping and shielding techniques (e.g., [2]) improve safety
by altering the training loop, but typically afford no formal guarantees. Our
approach can be used to complement them, by selecting the most suitable policy
from a pool of candidates, post-training. Guard rules and runtime shields are
beneficial for preventing undesirable behavior of a DNN agent, but are sometimes
less suited for specifying the desired actions it should take instead. In contrast,
our approach allows selecting the optimal policy from a pool of candidates,
without altering its decision-making.

7 Conclusion

Through the case study described in this paper, we demonstrate that current
verification technology is applicable to real-world systems. We show this by ap-
plying verification techniques for improving the navigation of DRL-based robotic
systems. We demonstrate how off-the-shelf verification engines can be used to
conduct effective model selection, as well as gain insights into the stability of
state-of-the-art training algorithms. As far as we are aware, ours is the first work
to demonstrate the use of formal verification techniques on multistep properties
of actual, real-world robotic navigation platforms. We also believe the techniques
developed here will allow the use of verification to improve additional multistep
systems (autonomous vehicles, surgery-aiding robots, etc.), in which we can im-
pose a transition function between subsequent steps. However, our approach is
limited by DNN-verification technology, which we use as a black-box backend. As
that technology becomes more scalable, so will our approach. Moving forward,
we plan to generalize our work to richer environments — such as cases where
a memory-enhanced agent interacts with moving objects, or even with multiple
agents in the same arena, as well as running additional experiments with deeper
networks, and more complex DRL systems. In addition, we see probabilistic
verification of stochastic policies as interesting future work.
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Appendices

A Training the DRL Models

In this Appendix, we elaborate on the hyperparameters used for training, along-
side various implementation details. The code is based on the BasicRL baselines3.
Our full code for training, as well as our original models, can be found in our
publicly-available artifact accompanying this paper [3].

General Parameters

– episode limit : 100,000
– number of hidden layers: 2
– size of hidden layers: 16
– gamma (γ): 0.99

To facilitate our experiments, we followed [57] — and used the same network
topology, i.e., two fully-connected ReLU layers, but focused on the smallest layer
size that still achieved state-of-the-art results: 16 neurons, instead of 64 in [57],
as these achieved similar accuracy and allowed us to expedite verification.

An additional difference, between our setting and the one appearing in [57],
is that our agents have three outputs, instead of five. However, this is beneficial,
as our agents achieve similar rewards to those reported in [57], and are more
straightforward to verify (“design-for-verification”).

DDQN Parameters
For the DDQN experiments, we rely on the Double DQN implementation

(DDQN) with a “soft” update performed at each step. The network is a standard
feed-forward DNN, without dueling architecture.

– memory limit : 5,000
– epochs: 40
– batch size: 128
– ε-decay : 0.99995
– tau (τ): 0.005

Reinforce Parameters
Our implementation is based on a version of Reinforce which directly imple-

ments the policy gradient theorem [75]. The strategy for the update rule is a
pure Monte Carlo approach, without temporal difference rollouts.

– memory limit : None
– trajectory update frequency : 20
– trajectory reduction strategy : sum

3 https://github.com/d-corsi/BasicRL

https://github.com/d-corsi/BasicRL
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PPO Parameters
For the value function estimation and the critic update, we adopted a 1-step

temporal difference strategy (TD-1). The update rule follows the guidelines of
the OpenAI’s Spinning Up documentation.4

– memory limit : None
– trajectory update frequency : 20
– trajectory reduction strategy : sum
– critic batch size: 128
– critic epochs: 60
– critic network size: same as actor
– PPO clip: 0.2

Random Seeds for Reproducibility
We now present a complete list of our seeds, sorted by value:
[35, 47, 67, 68, 73, 76, 77, 81, 90, 91, 114, 128, 158, 165, 174, 176, 180, 196,

201, 215, 234, 239, 240, 267, 286, 296, 298, 299, 303, 308, 318, 319, 321, 343, 352,
379, 381, 393, 399, 418, 425, 444, 457, 491, 502, 512, 518, 528, 530, 535, 540, 549]

At each execution, we fed the same seeds to procedures from the Random,
NumPy and TensorFlow Python modules.

4 https://spinningup.openai.com/en/latest/

https://spinningup.openai.com/en/latest/
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B Technical Specifications of the Robot

In this Appendix, we describe the details regarding the technical specifications
of the robot, its sensors, and our design choices. We performed our experiments
on the Robotis Turtlebot 3, in the burger version.5 Turtlebot is a small research
and development platform (138mm x 178mm x 192mm), that includes a set of
various sensors for mapping and navigation:

– 360◦ lidar sensor (with a maximal distance of 3.5 m)
– Raspberry Pi 3 to control the platform
– Gyroscope, Accelerometer, and Magnetometer sensors
– (optional) Raspberry Pi Camera for perception

The manufacturer provides all the libraries and scripts for full compatibility
with the standard Robotic Operating System (ROS). The robot is designed
to receive continuous input (linear and angular velocity). In our settings, we
discretized the action space: therefore a single step FORWARD corresponds to a
linear translation of 5 cm, while a LEFT/RIGHT turn produces a rotation of 30◦

in the desired direction.

Fig. 7: The Unity3D engine with our simulation environment.

To perform the training of our robot, we rely on Unity3D, a popular engine
originally designed for game development, that has recently been adopted for
robotics simulation [55,64]. In particular, the built-in physics engine, the power-
ful 3D rendering algorithm and the time control system (which allows speeding
up the simulation by more than 10 times), have made Unity3D a very powerful
tool in these contexts [42]. Fig. 7 depicts an example of our Turtlebot3 environ-
ment in the Unity3D simulator. A key advantage of mapless navigation is that
the robot can access only local observations. Thus, the robot can “see” only the
distance to the nearest collision point; hence the agent’s decisions are agnostic
to the actual shape and size of the obstacles, and thus our system is encouraged
to generalize to unseen environments during training.

5 https://www.robotis.us/turtlebot-3/

https://www.robotis.us/turtlebot-3/
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C Adversarial Trajectories

In this Appendix, we depict a complete trajectory of a RIGHT CYCLE, as seen in
Fig. 8. We note that in this, and other, infinite-loop trajectories, it is crucial to
encode that the first and last states of the trajectory are identical (e.g., Subfig.
A and Subfig. L in Fig. 8). Thus, given the deterministic nature of the controller,
the robot will repeat the same sequence of actions, ending in an infinite loop, in
which it constantly turns RIGHT.

Fig. 8: A 12-step trajectory of an infinite RIGHT CYCLE. The white and red dashed
lines represent the lidar scan (white indicates a clear path; red indicates an ob-
stacle is present), while the yellow square represents the target position towards
which the robot navigates. The yellow dotted line represents the angular step the
robot performs in the first six steps. Given that the spacing between each lidar
scan is the same as the angular step size (30◦), at each time-step it is possible
to encode the sliding window for the state. The trajectory of a LEFT CYCLE is
symmetric.
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D Encoding Verification Queries

In this Appendix, we formally define the complete list of properties we analyzed
in our experiments. All values are calibrated based on the technical specifications
of the robot, and the size of the discrete actions presented in this paper.

Notice that, the symbol xtn corresponds to the input node n of the network
at time t, while ytn is the output node n at time t. Time (t) is omitted for the
one-step properties (i.e., k=1).

Determinsitic Policies and Stochastic Policies. In order to compare DDQN
to the stochastic policies (Reinforce and PPO), we first trained the stochastic
policies as usual, and then treated them as deterministic. We note that in the
case of stochastic policies, our approach can only detect whether a property may
be violated, and not how likely the violation is.

Marabou. All our queries were dispatched using the sound and complete Marabou
verification engine [45, 84]. Marabou is a modern DNN verifier, whose core con-
sists of a native Simplex solver, combined with abstraction and abstract-interpretation
techniques [25,62,70,83], splitting heuristics [85], optimization capabilities [72],
and enhanced to support varied activation functions [7] and recurrent networks [40].
Marabou has been previously applied to various verification-based tasks, such as
network repair [32, 66], network simplification [31, 50], ensemble selection [8],
and more [5,15,19,38,87]. The Marabou engine supports DNNs with ReLU lay-
ers, max-pooling, convolution, absolute value, and sign layers; and also supports
sigmoids and softmax constraints.

D.1 Property Constraints

Trivial Bounds: all the inputs of the network are normalized in the range [0, 1].
However, in the following cases, the actual bounds can be tightened: (i) the true
lower-bound for a lidar scan is 0.135, given that the lidar scan is positioned in
the center of the robot, therefore the size of the robot itself constitutes a minimal
distance from an obstacle; (ii) this lower bound can be further tightened to a
value of 0.2 to guarantee enough space for all the possible actions (i.e., FORWARD,
LEFT, RIGHT); (iii) for the collision properties, we found that 0.185 is the minimal
distance with which the robot can make an action FORWARD, while avoiding a
collision due to a rotation; and (iv) to avoid configurations in which reaching the
target position is a trivial problem (e.g., a 1-step trajectory), we set a minimum
distance from the target of 0.2.

A complete list of constraints, per property

Notice that all the properties are encoded as a negation of the expected
behavior (see Sec. 4 for details). Therefore a SAT assignment corresponds to
a violation of the required property. We note that the outputs < y0, y1, y2 >
correspond to the actions < FORWARD, LEFT, RIGHT >.
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– FORWARD COLLISION (k=1): if the robot is closer than 185 mm to an obstacle
in front, never select the action FORWARD. If violated, the robot collides in,
at most, two steps.
• Precondition (P): xi ∈ [0.2, 1] for i = [0, 1, 2, 4, 5, 6]∧x3 ∈ [0.135, 0.185]∧
x7 ∈ [0, 1] ∧ x8 ∈ [0.2, 1]

• Postcondition (Q): y0 > y1 ∧ y0 > y2
– LEFT COLLISION (k=1): if the robot is closer than 185 mm to an obstacle on

the front-left, never select the action FORWARD. If violated, the robot collides
in, at most, two steps.
• Precondition (P): xi ∈ [0.2, 1] for i = [0, 1, 3, 4, 5, 6]∧x2 ∈ [0.135, 0.185]∧
x7 ∈ [0, 1] ∧ x8 ∈ [0.2, 1]

• Postcondition (Q): y0 > y1 ∧ y0 > y2
– RIGHT COLLISION (k=1): if the robot is closer than 185 mm to an obstacle

on the front-right, never select the action FORWARD. If violated, the robot will
collide in, at most, two steps.
• Precondition (P): xi ∈ [0.2, 1] for i = [0, 1, 2, 3, 5, 6]∧x4 ∈ [0.135, 0.185]∧
x7 ∈ [0, 1] ∧ x8 ∈ [0.2, 1]

• Postcondition (Q): y0 > y1 ∧ y0 > y2
– ALTERNATING LOOP (k=2): for all possible positions of the target and the

obstacles, never sequentially select the actions RIGHT and then immediately
LEFT. If violated, the robot gets stuck in an infinite 2-step loop.
• Precondition (P): xti ∈ [0.2, 1] for i = [0, 1, 2, 3, 4, 5, 6, 8] ∧ xt7 ∈ [0, 1] ∧
xt+1
i ∈ [0.2, 1] for i = [0, 1, 2, 3, 4, 5, 6, 8] ∧ xt+1

7 ∈ [0, 1] ∧ xt8 = xt+1
8 ∧

xti = xti+1 for i = [0, 1, 2, 3, 4, 5] ∧ xt+1
7 = xt7 ± 1

12

• Postcondition (Q): (yt2 > yt0 ∧ yt2 > yt1) ∧ (yt+1
1 > yt+1

0 ∧ yt+1
1 > yt+1

2 )
Given the symmetric nature of this property, the same encoding allowed us
to check both the LEFT/RIGHT and RIGHT/LEFT alternating loops. However,
we note that our encodings (arbitrarily) search for trajectories starting with
a turn to the RIGHT.

– LEFT CYCLE and RIGHT CYCLE (k=12): for all possible positions of the target
and the obstacles, if the robot has at least one escape direction, never select in
12 consecutive steps the action LEFT (or RIGHT). If this property is violated,
the robot will get stuck in an infinite loop of 360◦ rotating counter-clockwise
(or clockwise).
• Precondition - bounds (P): xti ∈ [0.2, 1] for i = [0, 1, 2, 3, 4, 5, 6, 8] and t =

[0, ..., 11] ∧ xt7 ∈ [0, 1] for t = [0, ..., 11] ∧ xt8 = xt+1
8 for t = [0, ..., 10]

• Precondition - sliding window (P): to better explain the property, we
refer to Fig. 9 (for RIGHT CYCLE the figure should be read from top to
bottom; the opposite for LEFT CYCLE), which includes a scheme of the
sliding window encoding, as explained in Sec. 4. We note that sensors
(in different time-steps) are colored the same to represent that they
encode the same equality constraint (e.g., 〈L1, T0〉 = 〈L0, T1〉). The input
relative to the distance from the target (i.e., xt8) must be the same for
all the 12 steps, while the angle (i.e., xt7) must respect the property
xt+1
7 = xt7 ± 1

12 (depending on whether RIGHT CYCLE or LEFT CYCLE is
encoded).
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• Postcondition (Q): choose the same action (LEFT or RIGHT) for 12 con-
secutive steps.

X

X

X

X

X

X

X
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T=0

T=1

T=2

T=3
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Fig. 9: A visual scheme of the “sliding window” constraints for encoding a 12-
step full cycle. In the case of encoding a RIGHT CYCLE, the constraints should be
read from top to bottom. In the case of encoding a LEFT CYCLE, the constraints
should be read from bottom to top.

Note. The fact that the agent may enter infinite loops is not due to the turning
angle matching the angle between consecutive lidar sensors; the same can happen
when different angles are used, as in [57]. Configuring the lidar angles to match
the turning angle is part of our methodology for facilitating verification (“sliding
window”, for reducing the state space), but it does not cause the infinite loop,
or any other property violation.

D.2 The Slack Margin

When searching for adversarial inputs with formal verification techniques, it is
common practice to search for strong violations, i.e., requiring a minimal dif-
ference between the original output and the output generated by the adversar-
ial input. Formally, if the original output is y, we consider a violation only if
y′ > y + γ, for some predefined margin (“slack”) γ > 0, and an output y′.

In our experiments, to conduct a fair comparison between models trained
by different algorithms (all outputting values in different ranges) we analyzed
the empirical distribution of a random variable that consists of the difference
between the “winner” (classified) output and the “runner-up” (second highest)
output.

As can be seen in Fig. 10, the empirical distribution for this random variable
is different (both in the shape, and values) per each of the training algorithms.

Given these results, to guarantee a fair comparison between the algorithms,
we used a slack variable with a value corresponding to the 75-th percentile, i.e., a
value that is larger than 75% of the samples. The values matching this percentile
(per each training algorithm) are:



30 G. Amir, D. Corsi et al.

0.00 0.11 0.21 0.320.04
winner - runner up

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

pr
op

or
tio

n 
of

 sa
m

pl
es

 (%
)

DDQN

0.00 1.50 3.00 4.491.90
winner - runner up

0.0

1.0

2.0

3.0

4.0

5.0

pr
op

or
tio

n 
of

 sa
m

pl
es

 (%
)

Reinforce

0.00 3.64 7.28 10.924.82
winner - runner up

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

pr
op

or
tio

n 
of

 sa
m

pl
es

 (%
)

PPO

Fig. 10: The empirical distribution of the difference between the “winning” (high-
est) output and the second-highest output. Each distribution is based on approx-
imately 4000 samples, taken from N = 100 episodes for each algorithm.

– DDQN: 0.042
– Reinforce: 1.904
– PPO: 4.821

These values were chosen to be the γ slack values encoded for the single-step
(k = 1) verification queries, i.e., queries encoding: FORWARD COLLISION, LEFT
COLLISION or RIGHT COLLISION.

When encoding multistep properties (the three loop types) this slack was
divided by the number of k steps encoded in the relevant query. This is be-
cause each additional step adds constraints to the query and so to balance the
additional constraints — the γ slack is reduced.

For the original verification query encodings, we refer the reader to our
publicly-available artifact accompanying this paper [3].

D.3 Bravery Property Results

Our verification results indicate that:

1. the braver model may move forward when the distance is slightly over 0.42
meters; while

2. the over-conservative model never moves forward in cases where a similar
obstacle is closer than 0.88 meters.
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E Comparison to Gradient-Based Methods

We also compared our verification-based method to state-of-the-art gradient at-
tacks, which can also be used to search for property violations — and hence,
in model selection. Gradient attacks are optimization methods, designed to pro-
duce inputs that are misclassified by the DNN [76]. Intuitively, starting from
some arbitrary input point, these methods seek perturbations that cause sig-
nificant changes to the model’s outputs — increasing the value it assigns to
outputs that correspond to some (targeted) incorrect label. These perturbations
are discovered using a local search that performs gradient descent on a tailored
loss function [34]. It is common practice to consider a gradient-based search as
successful if it finds a perturbed input on which the target label receives a score
that is higher than the true label (by some predefined margin). Notice that,
in contrast to complete verification methods, a gradient-based attack can only
answer SAT or TIMEOUT.

In our evaluation, we ran the Basic Iterative Method (BIM) [49] — a popular
gradient attack based on the Fast-Gradient Sign Method (FGSM) [27, 34]. We
ran the attack on all 780 models, searching for violations of all three single-step
safety properties. Each attack ran for 40 iterations, with a step size of 0.01. In
order to conduct a fair comparison between this gradient-based attack and our
verification-based approach, we used a heuristic of choosing the initial point for
the attack to be the center of the bounds for each input. In addition, we used
the same slack margin by which the incorrect label should pass the correct one
in all experiments, for both approaches. For additional details see Section D of
the Appendix.

Although gradient-based methods are extremely scalable, they suffer from
many setbacks. Firstly, they tend to miss many violations otherwise found by
verification-driven approaches (up to a third of our violations were missed, as
seen in Table 2). In addition, gradient-based methods are incomplete, and thus,
are unable to guarantee that some properties always hold, while sound and com-
plete verification tools may guarantee a property holds in various settings. An-
other pitfall of gradient-based methods is their inadequacy to check for adver-
sarial inputs across multiple steps (loops, in our case), bringing us to focus solely
on collision properties in our comparison. Hence, although gradient approaches

Algorithm Gradient Verification Ratio (%)

DDQN 405 765 53

Reinforce 671 761 88

PPO 345 600 58

Total 1421 2126 67

Table 2: The number of counterexamples (SAT results) discovered using the
gradient-based BIM method [49], versus our verification-based approach. The
rightmost column indicates the ratio of values in the two previous columns.
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are ill-suited for the task described, we compared them to our approach, despite
the inherent limitations of such a comparison. Still, gradient attacks are the best
tool previously available, and so we believe this highlights the usefulness of our
approach.
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1 Extended Abstract

Neural networks have gained a lot of popularity in recent years, due to their
ability to accurately solve a wide range of prediction tasks. In safety-critical
settings, such as autonomous driving [Che+17; Gri+19], it is important to ensure
the correctness of neural networks. To this end, different techniques can be used,
e.g. abstract interpretation [Sin+19] or SMT-solving [Kat+19], which however
often do not scale to networks of practical sizes.

In this talk, we present a generic abstraction approach using the previously
introduced semantics for neural networks [Ash+20]. Based on the semantics,
we apply linear programming and orthogonal projection to carefully replace
neurons by linear combinations of neurons. We then outline how our abstraction
could help scale existing verification procedures. Additionally, we discuss how our
approach can be used to reveal redundancies in the networks, possibly leading to
more informed network architecture choices. Finally, we describe the refinement
of our abstraction, allowing for the application of a counter-example guided
abstraction refinement (CEGAR) scheme [Cla+00].
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Abstract. With the rapid growth of machine learning, deep neural net-
works (DNNs) are now being used in numerous domains. Unfortunately,
DNNs are “black-boxes”, and cannot be interpreted by humans, which is
a substantial concern in safety-critical systems. To mitigate this issue, re-
searchers have begun working on explainable AI (XAI) methods, which
can identify a subset of input features that are the cause of a DNN’s
decision for a given input. Most existing techniques are heuristic, and
cannot guarantee the correctness of the explanation provided. In con-
trast, recent and exciting attempts have shown that formal methods can
be used to generate provably correct explanations. Although these meth-
ods are sound, the computational complexity of the underlying verifica-
tion problem limits their scalability; and the explanations they produce
might sometimes be overly complex. Here, we propose a novel approach
to tackle these limitations. We (i) suggest an efficient, verification-based
method for finding minimal explanations, which constitute a provable
approximation of the global, minimum explanation; (ii) show how DNN
verification can assist in calculating lower and upper bounds on the op-
timal explanation; (iii) propose heuristics that significantly improve the
scalability of the verification process; and (iv) suggest the use of bundles,
which allows us to arrive at more succinct and interpretable explanations.
Our evaluation shows that our approach significantly outperforms state-
of-the-art techniques, and produces explanations that are more useful to
humans. We thus regard this work as a step toward leveraging verification
technology in producing DNNs that are more reliable and comprehensi-
ble.

1 Introduction

Machine learning (ML) is a rapidly growing field with a wide range of applica-
tions, including safety-critical, high-risk systems in the fields of health care [19],
aviation [39] and autonomous driving [12]. Despite their success, ML models,
and especially deep neural networks (DNNs), remain “black-boxes” — they are
incomprehensible to humans and are prone to unexpected behaviour and errors.
This issue can result in major catastrophes [13, 74], and also in poor decision-
making due to brittleness or bias [8, 25].

In order to render DNNs more comprehensible to humans, researchers have
been working on explainable AI (XAI ), where we seek to construct models for
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explaining and interpreting the decisions of DNNs [51,56–58]. Work to date has
focused on heuristic approaches, which provide explanations, but do not provide
guarantees about the correctness or succinctness of these explanations [14,33,45].
Although these approaches are an important step, their limitations might result
in skewed results, possibly failing to meet the regulatory guidelines of institu-
tions and organizations such as the European Union, the US government, and
the OECD [52]. Thus, producing DNN explanations that are provably accurate
remains of utmost importance.

More recently, the formal verification community has proposed approaches
for providing formal and rigorous explanations for DNN decision making [28,32,
52, 60]. Many of these approaches rely on the recent and rapid developments in
DNN verification [1, 9, 10, 40]. These approaches typically produce an abductive
explanation (also known as a prime implicant, or PI-explanation) [32, 59, 60]:
a minimum subset of input features, which by themselves already determine
the classification produced by the DNN, regardless of any other input features.
These explanations afford formal guarantees, and can be computed via DNN
verification [32].

Abductive explanations are highly useful, but there are two major difficul-
ties in computing them. First, there is the issue of scalability: computing locally
minimal explanations might require a polynomial number of costly invocations
of the underlying DNN verifier, and computing a globally minimal explanation
is even more challenging [?,32,49]. The second difficulty is that users may some-
times prefer “high-level” explanations, not based solely on input features, as
these may be easier to grasp and interpret compared to “low-level”, complex,
feature-based explanations.

To tackle the first difficulty, we propose here new approaches for more effi-
ciently producing verification-based abductive explanations. More concretely, we
propose a method for provably approximating minimum explanations, allowing
stakeholders to use slightly larger explanations that can be discovered much more
quickly. To accomplish this, we leverage the recently discovered dual relationship
between explanations and contrastive examples [31]; and also take advantage of
the sensitivity of DNNs to small adversarial perturbations [65], to compute both
lower and upper bounds for the minimum explanation. In addition, we propose
novel heuristics for significantly expediting the underlying verification process.

In addressing the second difficulty, i.e. the interpretability limitations of “low-
level” explanations, we propose to construct explanations in terms of bundles,
which are sets of related features. We empirically show that using our method
to produce bundle explanations can significantly improve the interpretability of
the results, and even the scalability of the approach, while still maintaining the
soundness of the resulting explanations.

To summarize, our contributions include the following: (i) We are the first
to suggest a method that formally produces sound and minimal abductive ex-
planations that provably approximate the global-minimum explanation. (ii) Our
three suggested novel heuristics expedite the search for minimal abductive ex-
planations, significantly outperforming the state of the art. (iii) We suggest a



novel approach for using bundles to efficiently produce sound and provable ex-
planations that are more interpretable and succinct.

For evaluation purposes, we implemented our approach as a proof-of-concept
tool. Although our method can be applied to any ML model, we focused here
on DNNs, where the verification process is known to be NP-complete [40], and
the scalable generation of explanations is known to be challenging [32, 59]. We
used our tool to test the approach on DNNs trained for digit and clothing classi-
fication, and also compared it to state-of-the-art approaches [32,33]. Our results
indicate that our approach was successful in quickly producing meaningful ex-
planations, often running 40% faster than existing tools. We believe that these
promising results showcase the potential of this line of work.

The rest of the paper is organized as follows. Sec. 2 contains background on
DNNs and their verification, as well as on formal, minimal explanations. Sec. 3
covers the main method for calculating approximations of minimum explana-
tions, and Sec. 4 covers methods for improving the efficiency of calculating these
approximations. Sec. 5 covers the use of bundles in constructing “high-level”,
provable explanations. Next, we present our evaluation in Sec. 6. Related work
is covered in Sec. 7, and we conclude in Sec. 8.

2 Background

DNNs. A deep neural network (DNN) [47] is a directed graph composed of
layers of nodes, commonly called neurons. In feed-forward NNs the data flows
from the first (input) layer, through intermediate (hidden) layers, and onto an
output layer. A DNN’s output is calculated by assigning values to its input
neurons, and then iteratively calculating the values of neurons in subsequent
layers. In the case of classification, which is the focus of this paper, each output
neuron corresponds to a specific class, and the output neuron with the highest
value corresponds to the class the input is classified to.
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Fig. 1: A simple DNN.

Fig. 1 depicts a simple, feed-forward
DNN. The input layer includes three neu-
rons, followed by a weighted sum layer,
which calculates an affine transformation
of values from the input layer. Given the
input V1 = [1,1,1]T , the second layers
computes the values V2 = [6,9,11]T . Next
comes a ReLU layer, which computes the
function ReLU(x) = max(0, x) for each
neuron in the preceding layer, resulting in
V3 = [6,9,11]T . The final (output) layer then computes an affine transformation,
resulting in V4 = [15,−4]T . This indicates that input V1 = [1,1,1]T is classified
as the category corresponding to the first output neuron, which is assigned the
greater value.

DNN Verification. A DNN verification query is a tuple ⟨P,N,Q⟩, where N is a
DNN that maps an input vector x to an output vector y = N(x), P is a predicate



on x, and Q is a predicate on y. A DNN verifier needs to decide whether there
exists an input x0 that satisfies P (x0) ∧Q(N(x0)) (the SAT case) or not (the
UNSAT case). Typically, P and Q are expressed in the logic of real arithmetic [50].
The DNN verification problem is known to be NP-Complete [40].

Formal Explanations. We focus here on explanations for classification prob-
lems, where a model is trained to predict a label for each given input. A clas-
sification problem is a tuple ⟨F,D,K,N⟩ where (i) F = {1, ...,m} denotes the
features; (ii) D = {D1,D2...,Dm} denotes the domains of each of the features,
i.e. the possible values that each feature can take. The entire feature (input)
space is hence F = D1 ×D2 × ... ×Dm; (iii) K = {c1, c2, ..., cn} is a set of classes,
i.e. the possible labels; and (iv) N ∶ F → K is a (non-constant) classification
function (in our case, a neural network). A classification instance is the pair
(v, c), where v ∈ F, c ∈ K, and c = N(v). In other words, v is mapped by the
neural network N to class c.

Looking at (v, c), we often wish to know why v was classified as c. Informally,
an explanation is a subset of features E ⊆ F , such that assigning these features
to the values assigned to them in v already determines that the input will be
classified as c, regardless of the remaining features F ∖E. In other words, even
if the values that are not in the explanation are changed arbitrarily, the classifi-
cation remains the same. More formally, given input v = (v1, ...vm) ∈ F with the
classification N(v) = c, an explanation (sometimes referred to as an abductive
explanation, or an AXP) is a subset of the features E ⊆ F , such that:

∀(x ∈ F). [⋀
i∈E

(xi = vi)→ (N(x) = c)] (1)

We continue with the running example from Fig. 1. For simplicity, we assume
that each input neuron can only be assigned the values 0 or 1. It can be observed
that for input V1 = [1,1,1]T , the set {v11 , v21} is an explanation; indeed, once the
first two entries in V1 are set to 1, the classification remains the same for any
value of the third entry (see Fig. 2). We can prove this by encoding a verification
query ⟨P,N,Q⟩ = ⟨E = v,N,Q¬c⟩, where E is the candidate explanation, and
E = v means that we restrict the features in E to their values in v; and Q¬c
implies that the classification is not c. An UNSAT result for this query indicates
that E is an explanation for instance (v, c).

Clearly, the set of all features constitutes a trivial explanation. However,
we are interested in smaller explanation subsets, which can provide useful in-
formation regarding the decision of the classifier. More precisely, we search for
minimal explanations and minimum explanations. A subset E ⊆ F is a minimal
explanation (also referred to as a local-minimal explanation, or a subset-minimal
explanation) of instance (v, c) if it is an explanation that ceases to be an expla-
nation if even a single feature is removed from it:

(∀(x ∈ F).[∧i∈E(xi = vi)→ (N(x) = c)])∧
(∀(j ∈ E).[∃(y ∈ F).[∧i∈E∖j(yi = vi) ∧ (N(y) ≠ c)])

(2)

Fig. 3 demonstrates that {v11 , v21} is a minimal explanation in our running ex-
ample: removing any of its features allows mis-classification.
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Fig. 2: {v11 , v21} is an explanation for input V1 = [1,1,1]T
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Fig. 3: {v11 , v21} is a minimal explanation for input V1 = [1,1,1]T .

A minimum explanation (sometimes referred to as a cardinal minimal ex-
planation or a PI-explanation) is defined as a minimal explanation of minimum
size; i.e., if E is a minimum explanation, then there does not exist a minimal
explanation E′ ≠ E such that ∣E′∣ < ∣E∣. Fig. 4 demonstrates that {v31} is a
minimum explanation for our running example.
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Fig. 4: {v31} is a minimum explanation for input V1 = [1,1,1]T .

Contrastive Example. A subset of features C ⊆ F is called a contrastive exam-
ple or a contrastive explanation (CXP) if altering the features in C is sufficient
to cause the misclassification of a given classification instance (v, c):

∃(x ∈ F).[∧i∈F∖C(xi = vi) ∧ (N(x) ≠ c)] (3)
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Fig. 5: {v21 , v31} is a contrastive ex-
ample for V1 = [1,1,1]T .

A contrastive example for our running ex-
ample is shown in Fig. 5. Notice that the
question of whether a set is a contrastive
example can be encoded into a verification
query ⟨P,N,Q⟩ = ⟨(F ∖ C) = v,N,Q¬c⟩,
where a SAT result indicates that C is
a contrastive example. As with explana-
tions, smaller contrastive examples are
more valuable than large ones. One useful
notion is that of a contrastive singleton: a
contrastive example of size one. A contrastive singleton could represent a specific
pixel in an image, the alteration of which could result in misclassification. Such
singletons are leveraged in “one-pixel attacks” [65] (see Fig. 16 in the appendix).
Contrastive singletons have the following important property:

Lemma 1. Every contrastive singleton is contained in all explanations.

The proof appears in Sec. A of the appendix. Lemma 1 implies that each con-
trastive singleton is contained in all minimal/minimum explanations.

We consider also the notion of a contrastive pair, which is a contrastive ex-
ample of size 2. Clearly, for any pair of features (u, v) where u or v are con-
trastive singletons, (u, v) is a contrastive pair; however, when we next refer to
contrastive pairs, we consider only pairs that do not contain any contrastive
singletons. Likewise, for every k > 2, we can consider contrastive examples of
size k, and we exclude from these any contrastive examples of sizes 1, . . . , k − 1
as subsets.

We state the following theorem, whose proof also appears in Sec. A of the
appendix:

Lemma 2. All explanations contain at least one element of every contrastive
pair.

The theorem can be generalized to any k > 2; and can be used in showing that the
minimum hitting set (MHS) of all contrastive examples is exactly the minimum
explanation [30,55] (see Sec. B of the appendix). Further, the theorem implies a
duality between contrastive examples and explanations [31,35]: a minimal hitting
set of all contrastive examples constitutes a minimal explanation, and a minimal
hitting set of all explanations constitutes a minimal contrastive example.

3 Provable Approximations for Minimal Explanations

State-of-the-art approaches for finding minimum explanations exploit the MHS
duality between explanations and contrastive examples [32]. The idea is to it-
eratively compute contrastive examples, and then use their MHS as an under-
approximation for the minimum explanation. Finding this MHS is an NP-complete
problem, and is difficult in practice as the number of contrastive examples in-
creases [21]; and although the MHS can be approximated using maximum satis-
fiability (MaxSAT) or mixed integer linear programming (MILP) solvers [27,48],



existing approaches tackle simpler ML models, such as decision trees [34,37], but
face scalability limitations when applied to DNNs [32,59]. Further, enumerating
all contrastive examples may in itself take exponential time. Finally, recall that
DNN verification is an NP-Complete problem [40]; and so dispatching a veri-
fication query to identify each explanation or contrastive example is also very
slow, when the feature space is large. Finding minimal explanations may be
easier [32], but may converge to larger and less meaningful explanations, while
still requiring a linear number of calls to the underlying verifier. Our approach,
described next, seeks to mitigate these difficulties.

Our overall approach is described in Algorithm 1. It is comprised of two sep-
arate threads, intended to be run in parallel. The upper bounding thread (TUB) is
responsible for computing a minimal explanation. It starts with the entire feature
space, and then gradually reduces it, until converging to a minimal explanation.
The size of the presently smallest explanation is regarded as an upper bound
(UB) for the size of the minimum explanation. Symmetrically, the lower bounding
thread (TLB) attempts to construct small contrastive sets, used for computing a
lower bound (LB) on the size of the minimum explanation. Together, these two
bounds allow us to compute the approximation ratio between the minimal ex-
planation that we have discovered and the minimum explanation. For instance,
given a minimal explanation of size 7 and a lower bound of size 5, we can deduce
that our explanation is at most UB

LB
= 7

5
times larger than the minimum. The

two threads share global variables that indicate the set of contrastive singletons
(Singletons), the set of contrastive pairs (Pairs), the upper and lower bounds
(UB, LB), and the set of features that were determined not to participate in
the explanation and are “free” to be set to any value (Free). The output of our
algorithm is a minimal explanation (F∖Free), and the approximation ratio (UB

LB
).

We next discuss each of the two threads in detail.

Algorithm 1 Minimal Explanation Search

Input N (Neural network), F (features), v (input values), c (class prediction)

1: Singletons, Pairs, Free ← ∅, UB ← ∣F ∣, LB ← 0 ▷ Global variables
2: Launch thread TUB

3: Launch thread TLB

4: return F∖Free, UB
LB

The Upper Bounding Thread (TUB). This thread, whose pseudocode ap-
pears in Algorithm 2, follows the framework proposed by Ignatiev et al. [32]: it
seeks a minimal explanation by starting with the entire feature space, and then
iteratively attempting to remove individual features. If removing a feature allows
misclassification, we keep it as part of the explanation; otherwise, we remove it
and continue. This process issues a single verification query for each feature, un-
til converging to a minimal explanation (lines 2–8). Although this näıve search
is guaranteed to converge to a minimal explanation, it needs not to converge to



a minimum explanation; and so we apply a more sophisticated ordering scheme,
similar to the one proposed by [33], where we use some heuristic model as a
way for assigning weights of importance to each input feature. We then check
the “least important” input features first, since freeing them has a lower chance
of causing a misclassification, and they are consequently more likely to be suc-
cessfully removed. We then continue iterating over features in ascending order
of importance, hopefully producing small explanations.

Algorithm 2 TUB: Upper Bounding Thread

1: Use a heuristic model to sort F ’s features by ascending relevance
2: for each f ∈ F do
3: Explanation ← F∖Free
4: if Verify((Explanation∖{f})=v,N,Q¬c) is UNSAT then
5: Free ← Free ∪ {f}
6: UB← UB − 1
7: end if
8: end for

The Lower Bounding Thread (TLB). The pseudocode for the lower bound-
ing thread (TLB) appears in Algorithm 3. In lines 1–6, the thread searches for
contrastive singletons. Neural networks were shown to be very sensitive to ad-
versarial attacks [26] — slight input perturbations that cause misclassification
(e.g., the aforementioned one-pixel attack [65]) — and this suggests that con-
trastive sets, and in particular contrastive singletons, exist in many cases. We
observe that identifying contrastive singletons is computationally cheap: by en-
coding Eq. 3 as a verification query, once for each feature, we can discover all
singletons; and in these queries all features but one are fixed, which empirically
allows verifiers to dispatch them quickly.

The rest of TLB (lines 9–13) performs a similar process, but with contrastive
pairs (which do not contain contrastive singletons as one of their features). We
use verification queries to identify all such pairs, and then attempt to find their
MHS. We observe that finding the MHS of all contrastive pairs is the 2-MHS
problem, which is a reformalization of the minimum vertex cover problem (see
Sec. B of the appendix). Since this is an easier problem than the general MHS
problem, solving it with MAX-SAT or MILP often converges quickly. In addi-
tion, the minimum vertex cover algorithm has a linear 2-approximating greedy
algorithm, which can be used for finding a lower bound in cases of large feature
spaces.

More formally, TLB performs an efficient computation of the following bound:

LB = ∣Singletons∣ + ∣MVC(Pairs)∣ ≤ MHS(Cxps) = EM (4)

where MVC is the minimum vertex cover, Cxps denotes the set of all contrastive
examples, and EM is the size of the minimum explanation.



Algorithm 3 TLB : Lower Bounding Thread

1: for each f ∈ F do ▷ Find all singletons
2: if Verify((F∖{f}=v,N,Q¬c) is SAT then
3: Singletons ← Singletons ∪ {f}
4: LB ← LB +1
5: end if
6: end for
7:
8: AllPairs ← Distinct pairs of F∖Singletons
9: for each (a,b) ∈ AllPairs do ▷ Find all pairs

10: if Verify((F∖{a,b}=v,N,Q¬c) is SAT then
11: Pairs ←Pairs ∪ {(a, b)}
12: end if
13: end for
14: LB ← LB + MVC(Pairs)

It is worth mentioning that this approach can be extended to use contrastive
examples of larger sizes (k = 3,4, . . .), as specified in Sec. C of the appendix. The
fact that small contrastive examples, such as singletons, exist in large, state-
of-the-art DNNs with large inputs [22, 65] suggests that useful approximations
exist in large DNNs. In our experiments, we observed that using only single-
tons and pairs affords good approximations, without incurring overly expensive
computations by the underlying verifier.

4 Finding Minimal Explanations Efficiently

Algorithm 1 is the backbone of our approach, but it suffers from limited scalabil-
ity — particularly, in TUB. As the execution of TUB progresses, and as additional
features are “freed”, the quickly growing search space slows down the underlying
verifier. Here we propose three different methods for expediting this process, by
reducing the number of verification queries required.

Method 1: Using Information from TLB. We suggest to leverage the con-
trastive examples found by TLB to expedite TUB. The process is described in
Algorithm 4. In line 3, TLB is queried for the current set of contrastive sin-
gletons, which we know must be part of any minimal explanation. These are
subtracted from the RemainingFeatures set (features left for TUB to query), and
consequently will not be added to the Free set — i.e., they are marked as part
of the current explanation. In addition, for any contrastive pair (a, b) found by
TLB, either a or b must appear in any minimal explanation; and so, our algorithm
skips checking the case where both a and b are removed from F (Line 8). (the
method could also be extended to contrastive sets of greater cardinality.)

Method 2: Binary Search. Sorting the features being considered in ascending
order of importance can have a significant effect on the size of the explanation
found by Algorithm 2. Intuitively, a “perfect” heuristic model would assign the



Algorithm 4 TUB using information from TLB

1: Use a heuristic model to sort F by ascending relevance
2: RemainingFeatures ← F∖Singletons
3: for each f ∈ RemainingFeatures do
4: Explanation ← F∖Free
5: if Verify((Explanation∖{f})=v,N,Q¬c) is UNSAT then
6: Free ← Free ∪ {f}
7: UB← UB − 1
8: Delete all features in a pair with f from RemainingFeatures
9: end if

10: end for

greatest weights to all features in the minimum explanation, and so traversing
features in ascending order would first discover all the features that can be
removed (UNSAT verification queries), followed by all the features that belong in
the explanation (SAT queries). In this case, a sequential traversal of the features
in ascending order is quite wasteful, and it is much better to perform a binary
search to find the point where the answer flips from UNSAT to SAT.

Of course, in practice, the heuristic models are not perfect, leading to poten-
tial cases with multiple “flips” from SAT to UNSAT, and vice versa. Still, if the
heuristic is good in practice (which is often the case; see Sec. 6), these flips are
scarce. Thus, we propose to perform multiple binary searches, each time identi-
fying one SAT query (i.e., a feature added to the explanation). Observe that each
time we hit an UNSAT query, this indicates that all the queries for features with
lower priorities would also yield UNSAT — because if “freeing” multiple features
cannot change the classification, changing fewer features certainly cannot. Thus,
we are guaranteed to find the first SAT query in each iteration, and soundness
is maintained. This process is described in Algorithm. 6 and in Fig.14 in the
appendix.

Method 3: Local-Singleton Search. Let N be a DNN, and let x be an input
point whose classification we seek to explain. As part of Algorithm 2, TUB iter-
atively “frees” certain input features, allowing them to take arbitrary values, as
it continues to search for features that must be included in the explanation. The
increasing number of free features enlarges the search space that the underlying
verifier must traverse, thus slowing down verification. We propose to leverage
the hypothesis that input points nearby x that are misclassified tend to be clus-
tered; and so, it is beneficial to fix the free features to “bad” values, as opposed
to letting them take on arbitrary values. We speculate that this will allow the
verifier to discover satisfying assignments much more quickly.

This enhancement is shown in Algorithm 5. Given a set Free of features that
were previously freed, we fix their values according to some satisfying assignment
previously discovered. Thus, the verification of any new feature that we consider
is similar to the case of searching for contrastive singletons, which, as we already
know, is fairly fast. See Fig. 15 in the appendix for an illustration. The process
can be improved further by fixing the freed features to small neighborhoods of



the previously discovered satisfying assignment (instead of its exact values), to
allow some flexibility while still keeping the query’s search space small.

Algorithm 5 TUB using local-singleton search

1: Use a heuristic model to sort F by ascending relevance
2: RemainingFeatures ← F∖Singletons
3: for each f ∈ RemainingFeatures do
4: Explanation ← F∖Free
5: if Verify((Explanation∖{f})=v,N,Q¬c) is UNSAT then
6: Free ← Free ∪ {f}
7: UB← UB − 1
8: else
9: Extract counter example C

10: LocalSingletons ← ∅

11: for each f ′ ∈ RemainingFeatures do
12: if Verify(Explanation∖{f ′} = C,N,Q¬c) is SAT then
13: LocalSingletons ← LocalSingletons ∪ {f ′}
14: end if
15: end for
16: RemainingFeatures ← RemainingFeatures ∖ LocalSingletons
17: end if
18: end for

5 Minimal Bundle Explanations

Fig. 6: Partition
input’s features
into bundles.

So far, we presented methods for generating explanations
within a given approximation ratio of the minimum expla-
nation (Sec. 3), and for expediting the computation of these
explanations (Sec. 4) — in order to improve the scalability of
our explanation generation mechanism. Next, we seek to tackle
the second challenge from Sec. 1, namely that these explana-
tions may be too low-level for many users. To address this chal-
lenge, we focus on bundles, which is a topic well covered in the
ML [64] and heuristic XAI literature [51,56] (commonly known
as “super-pixels” for computer-vision tasks). Intuitively, bun-
dles are a partitioning of the features into disjoint sets (an
illustration appears in Fig. 6). The idea, which we later validate empirically, is
that providing explanations in terms of bundles is often easier for humans to
comprehend. As an added bonus, using bundles also curtails the search space
that the verifier must traverse, expediting the process even further.

Given a feature space F = {1, ...,m}, a bundle b is just a subset b ⊆ F . When
dealing with the set of all bundles B = {b1, b2, ...bn}, we require that they form
a partitioning of F , namely F = ⊍bi. We define a bundle explanation EB for a



classification instance (v, c) as a subset of bundles, EB ⊆ B, such that:

∀(x ∈ F).[∧i∈∪EB
(xi = vi)→ (N(x) = c)] (5)

The following theorem then connects bundle explanations and explicit, non-
bundle explanations:

Theorem 1. The union of features in a bundle explanation is an explanation.

The proof directly follows from Eqs. 1 and 5. We note that this definition of
bundles implies that features that are not part of the bundle explanation (i.e.
features contained in “free” bundles) are “free” to be set to any possible value.
Another possible alternative for defining bundles could be to allow features in
“free” bundles to only change in the same, coordinated manner. We focus here
on the former definition, and leave the alternative definition for future work.

Many of the aforementioned results and definitions for explanations can be
extended to bundle explanations. In a similar manner to Eq. 5, we can define
the notions of minimal and minimum bundle explanations, a contrastive bundle
singleton, and contrastive bundle pairs (see Sec. D of the appendix). Theorems 1
and 2 can be extended to bundle explanations in a straightforward manner.
It then follows that all bundle explanations contain all contrastive singleton
bundles, and that all bundle explanations contain at least one bundle of any
contrastive bundle pair.

Our method from Secs. 3 and 4 can be similarly performed on bundles rather
than on features, and TUB would then be used for calculating a minimal bundle
explanation, rather than a minimal explanation. Regarding the aforementioned
approximation ratio, we discuss and evaluate two different methods for obtaining
it. The first, natural approach is to apply our techniques from Sec. 3 on bundle
explanations, thus obtaining a provable approximation for a minimum bundle
explanation. The upper bound is trivially derived by the size of the bundle ex-
planation found by TUB, whereas the lower bound calculation requires assigning
a cost to each bundle, representing the number of features it contains. This is
done via a known notion of minimum hitting sets of bundles (MHSB) [7] and
using minimum weighted vertex cover for the approximation of contrastive bun-
dle pairs. This method, which is almost identical to the one mentioned in Sec. 3,
is formalized in Sec. E of the appendix.

The second approach is to calculate an approximation ratio with respect to
a regular, non-bundle minimum explanation. The minimal bundle explanation
found by TUB is an upper bound on the minimum non-bundle explanation follow-
ing theorem 5. For computing a lower bound, we can analyze contrastive bundle
examples; extract from them contrastive non-bundle examples; and then use the
duality property, compute an MHS of these contrastive examples, and derive
lower bounds for the size of the minimum explanation. We formalize techniques
for performing this calculation in Sec. E of the appendix.



6 Evaluation

Implementation and Setup. For evaluation purposes, we created a proof-of-
concept implementation of our approach as a Python framework. Currently, the
framework uses the Marabou verification engine [42] as a backend, although other
engines may be used. Marabou is a Simplex-based DNN verification framework
that is sound and complete [3, 6, 40–42, 69, 70], and which includes support for
proof production [36], abstraction [16, 17, 53, 61, 68, 73], and optimization [63];
and has been used in various settings, such as ensemble selection [4], simpli-
fication [23, 44] repair [24, 54], and verification of reinforcement-learning based
systems [2,5,18]. For sorting features by their relevance, we used the popular XAI
method LIME [56]; although again, other heuristics could be used. The MVC
was calculated using the classic 2-approximating greedy algorithm. All experi-
ments reported were conducted on x86-64 Gnu/Linux-based machines, using a
single Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz core, with a 1-hour timeout.

Benchmarks. As benchmarks, we used DNNs trained over the MNIST dataset
for handwritten digit recognition [46]. These networks classify 28 × 28 grayscale
images into the digits 0, . . . ,9. Additionally, we used DNNs trained over the
Fashion-MNIST dataset [72], which classify 28 × 28 grayscale images into 10
clothing categories (“Dress”, “Coat”, etc.) For each of these datasets we trained
a DNN with the following architecture: (i) an input layer (which corresponds
to the image) of size 784; (ii) a fully connected hidden layer with 30 neurons;
(iii) another fully connected hidden layer, with 10 neurons; and (iv) a final,
softmax layer with 10 neurons, corresponding to the 10 possible output classes.
The accuracy of the MNIST DNN was 96.6%, whereas that of the Fashion-
MNIST DNN was 87.6%. (We note that we configured LIME to ignore the
external border pixels of each input, as these are not part of the actual image.)

In selecting the classification instances to be explained for these networks,
we targeted input points where the network was not confident — i.e., where
the winning label did not win by a large margin. The motivation for this choice
is that explanations are most useful and relevant in cases where the network’s
decision is unclear, which is reflected in lower confidence scores. Additionally,
explanations of instances with lower confidence tend to be larger, facilitating
the process of extensive experimentation. We thus selected the 100 inputs from
the MNIST and the Fashion-MNIST datasets where the networks demonstrated
the lowest confidence scores — i.e., where the difference between the winning
output score and the runner-up class score was minimal.

Experiments. Our first goal was to compare our approach to that of Ignatiev
et al. [32], which is the current state of the art in verification-based explain-
ability of DNNs. Other approaches consider other ML types, such as descision
trees [34,37], or focus on alternative definitions for abductive explanations [43,71]
and are thus not comparable. Because the implementation used in [32] is unavail-
able, we implemented their approach, using Marabou as the underlying verifier
for a fair comparison. In addition, we used the same heuristic model, LIME,



(a) Average portion of features veri-
fied to participate in the explanation.

(b) Average explanation size.

Fig. 7: Our full and ablation-based results, compared to the state of the art for
finding minimal explanations on the MNIST dataset.

for sorting the input features’ relevance. Fig. 7 depicts a comparison of the
two approaches, over the MNIST benchmarks. The Fashion-MNIST results were
similar, but since the Fashion-MNIST network had lower accuracy it tended to
produce larger explanations with lower run-times, resulting in less meaningful
evaluations (due to space limitations, these results appear in Fig. 10 in the ap-
pendix). We compared the approaches according to two criteria: the portion of
input features whose participation in the explanation was verified, over time
(part (a) of Fig. 7), and the average size of the presently obtained explanation
over time, also presented as a fraction of the total number of input features (part
(b)). The results indicate that our method significantly improves over the state
of the art, verifying the participation of 40.4% additional features, on average,
and producing explanations that are 9.7% smaller, on average, at the end of
the 1-hour time limit. Furthermore, our method timed out on 10% fewer bench-
marks. We regard this as compelling evidence of the potential of our approach
to produce more efficient verification-based XAI.

We also looked into comparing our approach to heuristic, non-verification-
based approaches, such as LIME itself; but these comparisons did not prove
to be meaningful, as the heuristic approaches typically solved benchmarks very
quickly, but very often produced incorrect explanations. This matches the find-
ings reported in previous work [14,33].

Next, we set out to evaluate the contribution of each of the components
implemented within our framework to overall performance, using an ablation
study. Specifically, we ran our framework with each of the components mentioned
in Sec. 4, i.e. (i) information exchange between TUB and TLB; (ii) the binary
search in TUB; and (iii) local-singleton search, turned off. The results on the
MNIST benchmarks appear in Fig. 7; see Fig. 10 in the appendix for the Fashion-
MNIST results. Our experiments revealed that each of the methods mentioned
in Sec. 4 had a favorable impact on both the average portion of features verified,
and the average size of the discovered explanation, over time. Fig 7a indicates



that the local-singleton search method, used for efficiently proving that features
are bound to be included in the explanation, was the most significant in reducing
the number of features remained for verifying, thus substantially increasing the
portion of verified features. Moreover, Fig. 7b indicates that the binary search
method, which is used for grouping UNSAT queries and proving the exclusion
of features from the explanation, was the most significant for more efficiently
obtaining smaller-sized explanations, over time.

Fig. 8: Average approximation
of minimum explanation over
time.

Our second goal was to evaluate the qual-
ity of the minimum explanation approxima-
tion of our method (using the lower/upper
bounds) over time. Results are averaged over
all benchmarks of the MNIST dataset and are
presented in Fig. 8 (similar results on Fashion-
MNIST appear in Fig. 11 in the appendix).
The upper bound represents the average size
of the explanation discovered by TUB over
time, whereas the lower bound represents the
average lower bound discovered by TLB over
time. It can be seen that initially, there is a
steep increase in the size of the lower bound,
as TLB discovered many contrastive singletons. Later, as we begin iterating over
contrastive pairs, the verification queries take longer to solve, and progress be-
comes slower. The average approximation ratio achieved after an hour was 1.61
for MNIST and 1.19 for Fashion-MNIST.

For our third experiment, we set out to assess the improvements afforded by
bundles. We repeated the aforementioned experiments, this time using sets of
features representing bundles instead of the features themselves. The segmenta-
tion into bundles was performed using the quickshift method [66], with LIME
again used for assigning relevance to each bundle [56]. We approximate the sizes
of the bundle explanations in terms of both the minimum bundle explanation
as well as the minimum (non-bundle) explanation (as mentioned in Sec. 5 and
in Sec. E of the appendix). The bundle configuration showed drastic efficiency
improvements, with none of the experiments timing out within the 1-hour time
limit, thus improving the portion of timeouts on the MNIST dataset by 84%.
The efficiency improvement was obtained at the expense of explanation size, re-
sulting in a decrease of 352% in the approximation ratios obtained for MNIST
and 39% for Fashion-MNIST. Nevertheless, when calculating the approximation
in terms of the minimum bundle explanation, an increase of 12% and 8% was
obtained for MNIST and Fashion-MNIST (results are summarized in Table. 1
in the appendix). For a visual evaluation, we performed the same set of exper-
iments for both bundle and non-bundle implementations, using instances with
high confidence rates to obtain smaller-sized explanations that could be more
easily interpreted. A sample of these results is presented in Fig. 9. Empirically,
we observe that the bundle-produced explanations are less complex and more
comprehensible.



(a) Original Image (b) Explanation (c) Bundle explanation

Fig. 9: Minimal explanations and bundle explanations found by our method on
the Fashion-MNIST dataset. White pixels are not part of the explanation.

Overall, we regard our results as compelling evidence that verification-based
XAI can soundly produce meaningful explanations, and that our improvements
can indeed significantly improve its runtime.

7 Related Work

Our work is another step in the ongoing quest for formal explainability of DNNs,
using verification [20, 28, 32, 59]. Related approaches have applied enumeration
of contrastive examples [31, 32], which is also an ingredient of our approach.
Other approaches focus on producing abductive explanations around an epsilon
environment [43, 71]. Similar work has been carried out for decision sets [34],
lists [29] and trees [37], where the problem appears to be simpler to solve [37].
Our work here tackles DNNs, which are known to be more difficult to verify [40].

Prior work has also sought to produce approximate explanations, e.g., by us-
ing δ-relevant sets [38,67]. This line of work has focused on probabilistic methods
for generating explanations, which jeopardizes soundness. There has also been
extensive work in heuristic XAI [51, 56, 57, 62], but here, too, the produced ex-
planations are not guaranteed to be correct.

8 Conclusion

Although DNNs are becoming crucial components of safety-critical systems, they
remain “black-boxes”, and cannot be interpreted by humans. Our work seeks to
mitigate this concern, by providing formally correct explanations for the choices
that a DNN makes. Since discovering the minimum explanations is difficult, we
focus on approximate explanations, and suggest multiple techniques for expedit-
ing our approach — thus significantly improving over the current state of the art.
In addition, we propose to use bundles to efficiently produce more meaningful
explanations. Moving forward, we plan to leverage lightweight DNN verification
techniques for improving the scalability of our approach [50], as well as extend
it to support additional DNN architectures.
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70. H. Wu, A. Zeljić, G. Katz, and C. Barrett. Efficient Neural Network Analysis with
Sum-of-Infeasibilities. In Proc. 28th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 143–163, 2022.

71. M. Wu, H. Wu, and C. Barrett. Verix: Towards verified explainability of deep
neural networks. arXiv preprint arXiv:2212.01051, 2022.

72. H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNist: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms, 2017. Technical Report. http://

arxiv.org/abs/1708.07747.

http://arxiv.org/abs/2004.02082
http://arxiv.org/abs/1805.03364
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747


73. T. Zelazny, H. Wu, C. Barrett, and G. Katz. On Reducing Over-Approximation Er-
rors for Neural Network Verification. In Proc. 22nd Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD), pages 17–26, 2022.

74. Z. Zhou and L. Sun. Metamorphic Testing of Driverless Cars. Communications of
the ACM, 62(3):61–67, 2019.



Appendix

A Explanations and Contrastive Examples

Lemma 1. Every contrastive singleton is contained in all explanations.

Proof. Let N be a classification function, (v, c) a classification instance, and S ∈
F a contrastive singleton. Assume towards contradiction that S is not contained
in some explanation E ⊆ F of instance (v, c), namely S /⊆ E. This means that
E ⊆ F ∖ S, and from Theorem 3 we can conclude that:

∃(x ∈ F).[∧i∈E(xi = vi) ∧ (N(x) ≠ c)]

which is a contradiction to Eq. 1. ⊓⊔

Lemma 2. All explanations contain at least one element of every contrastive
pair.

Proof. The proof is almost identical to that of Lemma 1. Let N be a classification
function, (v, c) a classification instance, P ∈ F a contrastive pair and E ⊆ F an
explanation of instance (v, c). Assume towards contradiction that there does not
exist any element from the pair P that is contained in E, meaning that P /⊆ E.
Hence, E ⊆ F ∖ P , and from Theorem 3 we can conclude that:

∃(x ∈ F).[∧i∈E(xi = vi) ∧ (N(x) ≠ c)]

which is a contradiction to Eq. 1. ⊓⊔

See Fig. 12 for an illustration of contrastive singletons and pairs.

B Minimum Hitting Set (MHS) and Minimum Vertex
Cover (MVC)

Minimum Hitting Set (MHS). Given a collection S of sets from a universe
U, a hitting set h for S is a set such that ∀S ∈ S, h ∩ S ≠ ∅. A hitting set h is
said to be minimal if none of its subsets is a hitting set, and minimum when it
has the smallest possible cardinality among all hitting sets.

K Minimum Hitting Set (K-MHS). K-MHS denotes the same problem as
MHS, but when sets are at the size of at most k. This is a re-formalization of
the minimum vertex cover (MVC) problem on a k-hyper-graph, where sets are
treated as edges and elements in sets are treated as vertices. This implies that a
2-MHS problem is simply the classic minimum vertex cover (MVC) problem.



C Extending TLB beyond Contrastive Pairs

The lower bounding thread, TLB, (see Sec. 3) is used for computing a lower
bound on the size of the minimum explanation. This is done by computing con-
trastive singletons and contrastive pairs, and using them in calculating an under
approximation for the MHS of all contrastive examples. This approach can be
extended to use contrastive examples of larger sizes (k = 3,4, . . .). Finding these
contrastive examples may improve the approximation of the global minimum,
but may also render the approach less scalable. In the worst case, finding all
sets of size k requires performing O((m

k
)) queries to the underlying verifier.

Since the search space becomes larger as k increases, each query may become
more expensive as well. In case of a large feature spaces, if we are interested
in performing an approximation via a greedy algorithm, the quality of the ap-
proximation also deteriorates as k increases. The general K-MHS problem has a
polynomial k-approximating algorithm, and this bound was shown to be tight
for all k ≥ 3 [15]. Theoretically, if TLB continues finding contrastive examples
of larger sizes, k in the final step is the minimum k on which the MHS of all
contrastive examples of size k and less are equal to the minimum explanation.
The full, exact approximation can be summarized by the following formula:

LB = ∣Singletons∣ + ∣MVC(Pairs)∣

≤
k=maxk

∑
k=1

∣K-MHS(k-Cxps)∣

= MHS(Cxps) = EM

(6)

where k-Cxps denotes all contrastive examples of size k, and maxk denotes the
size of k in the final iteration.

D Minimal Bundle Explanations

Let v = (v1, ...vm) ∈ F be an input with classification N(v) = c, and let B be the
set of all bundles. The definition of a minimal bundle explanation EB ⊆ B for
instance (v, c) is:

(∀(x ∈ F).[∧i∈∪EB
(xi = vi)→ (N(x) = c)])∧

(∀(jB ∈ EB).[∃(y ∈ F).[∧i∈∪EB∖jB(yi = vi) ∧ (N(y) ≠ c)])
(7)

A minimum bundle explanation is a minimal bundle explanation of minimum
size. We define a contrastive bundle example CB for input (v, c) and the set of
all bundles B, as a subset of bundles CB ⊆ B such that:

∃(x ∈ F).[∧i∈∪B∖CB
(xi = vi) ∧ (N(x) ≠ c)] (8)

A contrastive bundle singleton is defined as a contrastive bundle example of
size 1, and a contrastive bundle pair as a contrastive bundle example of size 2
(which does not contain contrastive bundle singletons).



Minimum Hitting Set of Bundles (MHSB). We use the common definition
for a minimum hitting set of bundles (MHSB) [7], which is as follows. Given
a set of n elements E = {e1, e2, ..., en}, each element ei (i = 1, ...n) has a non-
negative cost ci. A bundle b is a subset of E . We are also given a collection
S = {S1, S2, ..., Sm} of m sets of bundles. More precisely, each set Sj (j = 1, ...,m)

is composed of g(j) distinct bundles b1jb
2
j , ..., b

g(j)
j . A solution to MHSB is a

subset E ′ ⊆ E such that for every Sj ∈ S, at least one bundle is covered, i.e,
blj ⊆ E ′ for some l ∈ {1,2, ..., g(j)}. The total cost of the solution, denoted by
C(E ′), is ∑{i ∣ ei∈e′} ci (a cost of an element appearing in several bundles is
counted once). The objective is to find a solution with minimum total cost.

Notice that this is a more general definition than our case, where each ele-
ment (feature) inside a bundle has a cost of 1, meaning that the cost of each
bundle is the number of features it contains. The proven dual MHS relation-
ship between explanations and contrastive examples [31] can thus be trivially
expanded to include bundles —i.e., that the MHSB of all contrastive bundle ex-
amples constitutes as the minimum bundle explanation and that the MHSB of
all bundle explanations constitutes as a minimum bundle contrastive example.

E Approximating Bundle Explanations

Method 1: Approximating Minimum Bundle Explanations. We first
discuss how to obtain a provable approximation for the minimum bundle ex-
planation. This is a trivial extension of our method suggested in Sec. 3. The
minimal bundle explanation found by TUB is clearly an upper bound for the
minimum bundle explanation. Regarding the lower bound computed by TLB,
the union of all bundle singletons is a lower bound, since every contrastive bun-
dle singleton is contained in the minimum bundle explanation. Moreover, the
minimum weighted vertex cover of all contrastive bundle pairs (where weights
indicate the number of features in each bundle) constitutes a lower bound for
the MHSB of all contrastive bundle examples. In cases of large feature spaces, a
2-approximating linear greedy algorithm can be used for the minimum weighted
vertex cover [11]. Overall, the following lower bound can be calculated:

LBBundle = ∣∪BSingletons∣ + ∣MWVC(BPairs)∣
≤ ∣MHSB(CxpsB)∣ = EMB

(9)

where LBBundle denotes the lower bound that is calculated for our evaluation,
BSingletons denotes the set of all contrastive bundle singletons, Bpairs denotes
the set of all contrastive bundle pairs, MWVC is the minimum weighted vertex
cover, CxpsB denotes the set of all contrastive bundle examples, and EMB is the
minimum bundle explanation.

Method 2: Approximating Minimum (Non-Bundle) Explanations. The
second approach is to calculate an approximation ratio with respect to a regular,
non-bundle minimum explanation. The minimal bundle explanation found by



TUB is an upper bound for the minimum non-bundle explanation, since the
minimal bundle explanation is also an explanation by itself (Theorem 5). For
obtaining the lower bound, we can analyze contrastive bundle examples found
by TLB for extracting contrastive non-bundle examples, and thus enabling the
computation of an under-approximation to the MHS of all contrastive examples
(an illustration is also depicted on Fig. 13).

For example, it is straightforward that every contrastive bundle singleton is
a contasrive example by itself, and thus at least one of the bundle’s elements is
contained in a minimum explanation. Likewise, for every contrastive bundle pair
(b1, b2) there exist at least two subsets, s1 ⊆ b1 and s2 ⊆ b2, such that s1 ∪ s2 is
a contrastive example. This means that a regular minimum (unweighted) vertex
cover can be calculated by the following approximation (used for our evaluation):

∣BSingletons∣ + ∣MVC(BPairs)∣ ≤ EM (10)

An additional, optional approach for tightening the bound even more is to
search for contrastive examples of features within each bundle. This can be done
for every contrastive bundle singleton, by calculating the MHS of all contrastive
examples within that certain bundle. Since bundles typically consist of small
feature sets, it may be computationally feasible to compute the MHS of all
features within each bundle. If not, the procedure that we suggested in Sec. 3 can
be repeated for each bundle. More precisely, we propose to iterate on all features
and pairs in each bundle, to find all contrastive singletons and pairs within that
bundle, and then to calculate a lower bound by solving an unweighted vertex
cover problem. Further, we can perform a similar process (of either calculating
the MHS or performing the lower bound procedure from Sec. 3) on the union
of all contrastive bundle pairs, as well. Notice that by doing so, we do not need
to iterate on the entire set of all pairs, since features that are within the same
contrastive bundle are necessarily not contrastive pairs (because otherwise, that
bundle would be a contrastive bundle singleton). Thus, we can arrive at the
following bound:

∣BSingletons∣ + ∣MVC(BPairs)∣
≤ ∣ ∑

BS⊆BSingletons

LB(BS)∣ + ∣LB(∪BPairs)∣

≤ ∑
BS⊆BSingletons

∣MHS(BS)∣ + ∣MHS(∪Bpairs)∣

≤ EM

(11)



F Additional Evaluation

Fashion-MNIST Evaluation. Figs. 10 and 11 depict the results of our evalu-
ation using the Fashion-MNIST network.

(a) Average portion of features verified to
be included/excluded from explanation

(b) Average size of explanation

Fig. 10: Our full and ablated results compared to the state-of-the-art for finding
minimal explanations over the Fashion-MNIST dataset

Fig. 11: Average approximation of minimum explanation over time on the
Fashion-MNIST dataset

Minimal Bundle Explanation Experiments. Table 1 summarizes the results
of our bundle explanation experiments.



Table 1: Bundle and non-bundle implementation results, evaluated using the
following criteria: (i) the proportion of completed tasks within a one hour time
limit; (ii) the average run-time per task, in seconds; (iii) the average final ap-
proximation ratio found of the minimum bundle explanation: EMB (lower bound
obtained per Eq. 10); and (iv) the average final approximation found of the
minimum explanation: EM (lower bound obtained per Eq. 9).

Dataset Criteria Bundle Explanation Non-Bundle Explanation

MNIST

Completed Portion 100% 16%

Run-time (Seconds) 115.3 3264.5

EMB Approx. 1.49 -

EM Approx. 5.13 1.61

Fashion-MNIST

Completed Portion 100% 100%

Run-time (Seconds) 119.6 140.82

EMB Approx. 1.15 -

EM Approx. 1.62 1.23

G Additional Figures

We present here additional illustrations that demonstrate contrastive examples
(specifically, contrastive singletons and pairs) (Fig. 12), an illustration of the bi-
nary search heuristic 14 and the local singleton search heuristic 15 for expediting
the search for minimal explanations, and minimal bundle explanation approx-
imations (Fig. 13). Additionally, we attach an illustration of one-pixel attacks,
which can be regarded as contrastive singletons (Fig. 16).

Explanation Explanation

Contrastive 
singletons

(a) Contrastive singletons

Explanation Explanation

Contrastive 
pairs

(b) Contrastive pairs

Fig. 12: An illustration of contrastive singletons and contrastive pairs. Every
singleton is contained in every explanation, and every pair holds at least one
feature in every explanation.



B-Pair

B-Singleton

B-Singleton

B-Pair B-Singleton

            Contrastive Singletons

Contrastive Pairs

Fig. 13: An illustration of a bundle explanation. B-Singletons and B-Pairs rep-
resent contrastive bundle singletons and pairs. A lower bound can be computed
either in terms of bundles, or in terms of the features that comprise them.

UNSAT UNSAT UNSAT UNSAT SAT UNSAT UNSAT SAT SAT

Features sorted by ascending order of importance

Fig. 14: Features are sorted in increasing order of importance. SAT queries in-
dicate features included in the explanation. We perform a sequence of binary
searches to identify these SAT queries.
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Search for 
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explanation
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explanation
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Counter-
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explanation

explanation

Counter-
example

explanation

explanation

Counter-
example

explanation

explanationexplanation

explanation

Fig. 15: An illustration of the local-singleton search. Elements in blue represent
features that are currently in the explanation (not “freed”), and are thus set to
the input value. We try to “free” a feature, find a counterexample, and search
for local singletons in the nearby area of that counter-example. These features
are bound to be part of the explanation, hence reducing the number of features
that remained for verifying.

Fig. 16: Examples of one-pixel-attacks on the Imagenet database, borrowed
from [65]. These represent contrastive singletons.



H Additional Pseudo-Codes

We present here additional pseudo-codes, specifically of the binary search heuris-
tic 6 for expediting the search for minimal explanations.

Algorithm 6 TUB using binary-search

1: Use a heuristic model to sort F by ascending relevance
2: L = 0
3: R = ∣F ∣ − 1
4: while L ≤ ∣F ∣ − 1 do
5: while L ≤ R do ▷ The inner loop is a single binary search
6: Mid ← L−R

2

7: Explanation ←F∖Free
8: if Verify((Explanation∖{L,L+1,...,Mid})=v,N,Q¬c) is UNSAT then
9: Free ← Free ∪ {L,L+1,...,Mid}

10: UB ← UB −∣{L,L+1, ...,Mid}∣
11: L ← Mid+1
12: else
13: R ← Mid−1
14: end if
15: end while
16: L ← L + 1
17: R ← ∣F ∣ − 1
18: end while
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Introduction

Deep learning methods, especially their most prominent representative (deep)
neural networks, have proved to be very successful in a broad range of appli-
cations, delivering impressive results Unsurprisingly, deep learning methods are
also used in safety-critical applications like early disease detection [6] or driving
assistants [2], which naturally leads to the need for safety certificates. Currently
very popular are so called Graph Neural Networks (GNN), a framework for
computing functions over graphs. While there is ongoing work on (formal) veri-
fication of GNN (see [4] for an overview), there is no work so far giving reliable
decidability or complexity bounds of corresponding problems Thus, there are
currently no fundamental results that frame and guide the development of GNN
verification algorithms.

We made a first contribution to this topic in [8] by establishing first (un-
)decidability results regarding the verification problem of common safety prop-
erties of so called Message Passing Neural Networks (MPNN), a popular GNN
model. We present these in more detail in the following section. After this we dis-
cuss promising next steps to unveil further decidability and complexity bounds
of GNN verification, using recently established results about the expressiveness
of different GNN models.

Fundamental Limits in Formal Verification of MPNN

As it turns out, it is particular difficult to establish broadly applicable decid-
ability or complexity bounds for GNN verification. The reason is that the GNN
framework is highly heterogeneous. Wu et al. [9] give a complex taxonomy of
models belonging to the GNN framework. Despite the differences between differ-
ent GNN models, their domain, roughly described as the class of vector-labelled
graphs, leads to a variety of different tasks, like classifying specific nodes, specific
edges or classifying whole graphs.

In order to address the aforementioned difficulties with the GNN framework,
our work [8] focuses on the presumably most popular group of GNN models and
applications: spatial-based GNN, represented by MPNN, and node as well as
whole-graph classification.



2 Sälzer & Lange

Theorem 1. [8] The problem of formally verifying output reachability proper-
ties of graph-classifying MPNN (with reasonable specifications) is undecidable.
On the other hand, the equivalent problem for node-classifying MPNN becomes
decidable as soon as we restrict it to graphs of bounded degree.

We refer to [8] for technical details. In addition, this work presents similar results
about a popular safety property called adversarial robustness.

Expressiveness of GNN Through the Lens of Formal Verification

The applicability of our findings in [8] has some obvious limitations: first, the
undecidability or decidability results apply without further ado only to GNN
models which are at least as expressive respectively at most as expressive as
MPNN.

Recently, there has been interest in questions about the expressibility of
GNN, comprehensively summarized in [3]. Here, expressibility means the ability
to distinguish pairs of nodes respectively pairs of whole graphs. Results from this
research can roughly be divided into two directions. First, the expressive power
of (mainly node-classifying) GNN is characterized by the Weisfeiler-Lemann al-
gorithm [7], a well-known algorithm for testing graph isomorphism. Second, the
expressibility of GNN is characterised in terms of finite variable counting logic
[1]. For our purpose, a logical characterisation seems more promising as their is
an obvious connection between the satisfiability problem (SAT) of logics and the
verification problem of output reachability properties of GNN.

To further motivate this approach, consider the following known connection
between node-classifying MPNN and a guarded, two-variable fragment of first
order logic, called graded modal logic (GC2).

Theorem 2. [1] For each query expressed by some φ ∈ GC2 there is a node-
classifying MPNN expressing the same query.

This means, that each class of graph-node pairs recognizable by some φ ∈ GC2

is also recognizable by some node-classifying MPNN. This result in combination
with the fact that SAT of GC2 is known to be PSPACE-hard [5], leads us to the
following conjecture.

Conjecture 1. The problem of verifying output-reachability and adversarial ro-
bustness properties of node-classifying MPNN is PSPACE-hard.

However, these logical characterizations do not directly yield results for upper
complexity or decidability bounds. The reason is that GNN can express prop-
erties of the type "node v has twice as many neighbours with label P as with
label Q". Such properties cannot be expressed in standard first order logic.
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Problem context. Delay-tolerant networks (DTNs) are time-evolving networks
lacking continuous and instantaneous end-to-end connectivity [3,9]. They in par-
ticular appear in deep-space [1] and near-Earth communication [2]. DTN com-
munication protocols work with data bundles that flow from node to node in a
store-carry-and-forward fashion. The possible communication episodes—the con-
tacts—and their reliabilities (with message loss randomly resulting from disturb-
ances, hardware failures, imprecise planning, etc.) are known a priori. To maxim-
ize the end-to-end delivery probability, a bounded network-wide number of mes-
sage copies are allowed. The resulting multi-copy routing optimization problem
is naturally modelled as a Markov decision process with distributed information.

A:

B:

C:

D:

t0 t1 t2 t3 t4

0.1

0.1

0.5
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0.9

Consider the example contact plan with
nodes A, B, C, and D on the right. It spans
five time slots, t0 to t4. The contacts in each
slot are depicted by an arrow labelled with
the contact failure probability. Suppose we
want to transmit a bundle from A to D, al-
lowing two copies throughout the network. A state of the MDP consists of the
number of copies that each node holds at a given time slot. Initially, node A
has both copies, and three options: send one copy to B, send two copies to
B, or keep the two copies. The first option maximises the end-to-end delivery
probability. Then, in t2, node A can store its remaining copy or send it to C.
The optimal decision is to store if C has the other copy and send otherwise.
However, A cannot know whether the second copy is in B or C. This type of
problem, in which decisions in an MDP associated to a distributed system may
only be based on local knowledge, is known as distributed scheduling [4, 10, 11],
and is closely related to the model of decentralised partially observable Markov
decision processes (Dec-POMDPs) [14].
Existing approaches. The optimal global scheduler can be computed using any
probabilistic model checker (PMC) [8,12,13]. Yet these tools are not specialised
to DTNs, running into scalability limits, and only solve the global-information
case. The two existing MDP-based approaches for optimal DTN routing under
uncertain contact plans with local information are RUCoP [15] and lightweight
scheduler sampling (LSS) [5, 7]. We recently evaluated them [6] in terms of the
obtained message delivery probabilities as well as the computational effort using
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PMC Q-learning (100 k episodes) LSS (100 k schedulers)
global global local global local

p |S| t p |S| t p |S| t p |S| t p |S| t

example 0.493 131 0 s 0.489 37 1 s 0.456 14 1 s 0.495 0 6 s 0.472 0 6 s
walker 0.4375 64 k 1 s 0.375 < 25 k 41 s 0.440 < 250 46 s 0.246 0 170 s 0.379 0 269 s

an extensive benchmark set. The two approaches are both useful to solve the
problem, but expose a trade-off between scalability and solution quality. While
RUCoP delivers routes with 3-10% higher delivery probabilities, LSS needs only
30-40% of the computational effort. LSS also delivers a viable solution for the
most complex topologies, on which RUCoP runs out of memory.
Q-learning DTN routes. RUCoP and LSS are extremal in the sense that the
former is memory-limited due to is exhaustive state space exploration, while
the latter is time-limited as a purely simulation-based approach that needs to
sample as many schedulers as possible. We are currently experimenting with the
use of reinforcement learning techniques as a middle ground that stores inform-
ation about relevant states only, but hopefully achieves better probabilities than
LSS due to the extra storage (albeit offering the same weak formal guarantee
only). For the global-information case, we implemented standard table-based
Q-learning on the MDP’s state space. In the local-information case, we have a
multi-agent reinforcement learning (MARL) problem. We currently solve this
in a straightforward way by equipping every node in the DTN with its own
table-based Q-learner that operates on its local states, i.e. state vectors com-
prising only the values of those model variables visible to the respective node.
The good-for-distributed-scheduling restriction [5, Sect. 3.2] that our MDPs sat-
isfy entails that each node N ’s view is not corrupted by actions chosen by other
nodes performing transitions between any pair of states locally different for N .
Preliminary results. We have exercised our current prototype implementation
on the cases with unreliable communication considered in [5]. The table on top of
this page shows the obtained message delivery probabilities p, memory require-
ments (in terms of states stored |S|), and runtimes t of the different methods.
For the example contact plan (as shown on the first page), the optimal local-
information probability is 0.4645. We see that the distributed Q-learning ap-
proach delivers outstanding (essentially optimal with global information, whereas
the local-information walker optimum is unknown) results while requiring very
little memory due to storing local states. The local state spaces are small, with
the state space explosion resulting from their parallel composition.
Open questions. Our current approach to MARL using concurrent, independ-
ent Q-learning for the individual nodes is arguably naïve. There is a large corpus
of work on MARL, and different restrictions of Dec-POMDPs that lead to vastly
different complexities and limitations of learning approaches [14, Sect. 15.5.3].
It is not currently clear where our setting of simple distributed schedulers for
good-for-distributed-scheduling MDPs lies. We hope to engage with the LiVe
community to help us answer these questions, and learn about state-of-the-art
alternatives to our current approach.
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The development process for reinforcement learning (RL) applications is exploratory
rather than systematic, which reduces reuse between applications and increases the
chances of introducing errors into particular implementations, lowering trustworthiness
and effectiveness. This is especially important in areas where reinforcement learning is
used to control physical devices (e.g., embedded or cyber-physical systems, and robots).

RL research often focuses on evaluating the quality of obtained policies. However,
the results of even the most carefully designed evaluation experiments have little value
unless the evaluated methods are implemented correctly. Despite this, techniques and
tools for systematic quality assurance of RL applications are rare in the field.

In a RL problem, an agent learns from experience to achieve a goal. The agent inter-
acts with an environment, receiving rewards for its actions. The goal is to learn a policy
which maximizes the cumulative reward. As an example, consider a car moving that
needs to stop before reaching a static obstacle (Fig. 1). A RL algorithm for the car should
learn to halt before the obstacle and to avoid unnecessary sharp braking. Throughout
the learning process, the car starts from different states, i.e., positions and velocities,
and selects actions, values of deceleration, and observes the reward and change of state.
Sometimes the car stops before the obstacle, sometimes it crashes. The algorithm esti-
mates the long-term effect of taking an action in a specific state. The estimate is updated
by considering new rewards observed from the agent’s interactions with the environment.
This update step constitutes the core of each RL algorithm; the details of how and when
to perform the update vary depending on the specific algorithm.

In this talk, we present our ongoing work on a direct formal specification of cor-
rectness for reinforcement learning problem definitions and the learning algorithms
themselves, as opposed to the policies that they output. We show how to use the resulting
specification to automatically test reinforcement learning systems and show an example
of a property one can verify using the specification. We focus on table-based temporal
difference (TD) learning methods [2], a large and well-established class of model-free
methods. Instead of needing a complete model of the environment, these methods learn
from experience by sampling executions. They update an estimate of state action values
during an execution using prior estimates (bootstrapping).

We pay special attention to the update step in the algorithms commonly described
using update diagrams [2]. We present a compositional, domain-specific language for
describing update diagrams (and hence, update steps), which are generally defined
informally in the RL literature. As an example, SARSA [1] is a TD learning algorithm
which learns an optimal policy by considering a number of episodes. Each episode is
a sequence of states Si and actions Ai, generated based on the agent and environment
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Fig. 1: Example: A car moves with velocity v⃗ towards a fixed obstacle at distance ∆,
learning how to brake. The control policy chooses a deceleration with which to brake.
The agent receives a reward based on the location where stopped and updates the policy

interaction, leading to a final state. In table-based SARSA, a function, Q, is used to assign
long term reward values to each pair of state and action. The goal of SARSA is to obtain
an optimal policy by updating the Q function iteratively based on the rewards observed in
the episodes. In each step of the algorithm, an action is selected using an ε-greedy policy,
that is At that maximises the Q value in the current state St is selected (with a probability
1-ε). The value for the pair of state and action is updated using the difference of the old
estimate and the new estimate obtained by considering the new observed reward and the
Q value for the next state St+1 and selected action At+1 based on the policy. The rate by
which this difference effects the old estimate is called learning rate (α). The update step of
SARSA is commonly described as follows (γ defines the long term reward discount) [2]:

Q(St, At)← Q(St, At)− α(Rt + γQ(St+1, At+1)−Q(St, At))

Implementing the update step of the algorithm using the above description requires addi-
tional knowledge and understanding intricacies which are implicit such as the relation of
the policy and Q function. This is more problematic for algorithms that involve similar
updates but with multiple steps. To capture each component involved in the update
step of the TD algorithms, we provide a term language and a denotational semantics to
precisely define the meaning of each step. As an example the term describing SARSA in
the provided language is sampleγ Updateα sample, where each of sampleγ and Updateα,
represent sampling for selection of actions and updating the Q values, with formally
defined semantics. Due to commonalities between steps of TD learning algorithms,
this modular specification can be used for testing different TD learning algorithms. We
discuss how providing this formal semantics of TD learning components enables reuse
of partial specifications between RL algorithms and creating a configurable test harness
that can be tailored and extended to different applications.
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Abstract. Reinforcement-Learning-based solutions have achieved many
successes in numerous complex tasks. However, their training process
may be unstable, and achieving convergence can be difficult, expensive,
and in some instances impossible. We propose herein an approach that
enables the integration of strong formal verification methods in order to
improve the learning process as well as prove convergence. During the
learning process, formal methods serve as experts to identify weaknesses
in the learned model, improve it, and even lead it to converge. By evaluat-
ing our approach on several common problems, which have already been
studied and solved by classical methods, we demonstrate the strength
and potential of our core idea of incorporating formal methods into the
training process of Reinforcement Learning methods.

1 Introduction

Reinforcement Learning (RL) [1] is a paradigm of machine learning focused
on training intelligent agents leading to a strategy of selecting actions in an
environment to maximize their cumulative reward. RL involves an agent, a set
of states (S), and a set of actions per state (A). The transition of an agent
from state to state is effected by performing an action a ∈ A. Each (s, a) pair,
i.e. action execution in a specific state, provides the agent with a reward (r),
represented by a numerical score.

The agent’s goal is to maximize total reward over a complete trajectory, a
set of N steps defined by τ = {a0, s0, r0, ..., an, sn, rn}. Formally, the goal is to
find the steps that maximize the following expression:

N∑
t=1

rt

Despite its success in solving real-world problems, such as autonomous driv-
ing [2], natural language processing [3], genetics algorithms [4], and more, RL
faces several significant challenges. The algorithms do not use pure labeled data,
so they have to explore it themselves. A major challenge with RL solutions is
that the state distribution changes as policies change. Using some exploration
policy, sampling many states and actions, and then using that model to improve
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the policy will result in a revised distribution over states. The model may have
been fairly accurate for the previous distribution, but there is no guarantee that
it will be accurate for the updated distribution as well.

Rather than trying to learn only from sparse rewards or manually specifying a
reward function, Imitation Learning [5] provides us with a set of demonstrations
from an expert (typically a human). Following and imitating the expert’s deci-
sions, the agent attempts to learn the optimal policy. Behavioral cloning [6] is the
simplest type of imitation learning, which uses supervised learning to mimic the
expert’s policy. Using imitation learning methods tackles the mentioned chal-
lenge since learning from an expert reduces the changes in the environmental
distribution and allows for more stable and accurate learning. It is unfortunate
that experts can be expensive, and sometimes they are simply not available. One
can use Inverse Learning [7] to reduce the dependencies on experts, but it still
requires prior data.

In a recent published paper [8], we propose a method of learning through
imitation in which formal verification tools serve as experts. To demonstrate the
effectiveness of our approach, we examine several common tasks in the field of
RL. At the workshop we will discuss new empirical evaluation beyond results
reported in [8] including handling of stochastic agents.
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Reinforcement learning (RL) is the standard approach to solve sequential
decision-making problems when environment dynamics are unknown [8]. By in-
teracting with the environment and receiving feedback in the form of a reward,
an agent learns to optimize its behavior. However, direct interaction with the
environment as done in the standard RL paradigm, is not always desirable or
possible, as is the case in, for instance, robotics or healthcare applications.

In offline RL, the agent does not interact with the environment but instead is
given access to a fixed data set of past interactions with the environment using a
so-called behavior policy. Using this data set and behavior policy, the agent must
learn a new policy. Safe policy improvement (SPI) addresses the problem of how
to learn such a new policy such that it outperforms the behavior policy with a
high probability [9]. More precisely, SPI methods provide a formal probabilistic
guarantee that states that with high probability the newly learned policy has a
higher value than the behavior policy, up to a small error.

Our Contribution: SPI in POMDPs

SPI has been studied extensively over the past couple of years, leading to efficient
approaches that exploit the given knowledge of the behavior policy [3] or the
structure in the underlying environment [6]. Yet, all previous SPI approaches
assume the underlying environment is modeled as a fully observable Markov
decision process (MDP) [4].

In our recently published work [7], we present a first approach to the SPI
problem under partial observability, that is, environments modeled as partially
observable MDPs (POMDPs) [2]. Specifically, we apply the SPI with baseline
bootstrapping (SPIBB) [3] in a POMDP setting.

We note that a POMDP is in fact a fully observable, infinitely growing,
history MDP [5]. In this history MDP, states are sequences of observations and
actions that encode the agent’s past interactions. Directly applying SPIBB or
other SPI algorithms to this history MDP is practically infeasible since the state
space is infinite. We deal with this problem in the following way.

First, we represent finite-memory policies as finite-state controllers (FSCs).
We choose some memory size for our FSC, and then estimate the finite product
of that FSC and the data set. This gives us a maximum-likelihood estimate of
a finite part of the (infinite) history MDP. This finite part is a fully observable
MDP on which we can run standard safe policy improvement methods such as
SPIBB [3]. This approach is amenable to any POMDP, yet, in order to preserve
the theoretical guarantees from SPIBB, we need the following assumption.
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Fig. 1: SPI on the Tiger problem [2] and the Voicemail problem [10].

If we assume the chosen amount of memory is sufficient for an optimal policy
in our POMDP, we have the aforementioned probabilistic improvement guar-
antee on the resulting policy. We formalize this assumption via a stochastic
bisimulation [1] that states that the infinite histiory MDP has a finite bisimula-
tion quotient. This assumption is, however, unlikely to hold in practice. As such,
we evaluate our method on POMDP environments where the assumption does
not hold and still observe good performance in practice.

Experimental Results

We evaluate our method on several well-established POMDP environments across
different hyperparameters. An excerpt is presented in Figure 1.

The baseline policies used are memoryless (k = 1), and for the target policies
we consider memoryless policies (k′ = 1) and finite-memory policies that look
one observation back (k′ = 2). Note that these memory sizes are insufficient to
satisfy our assumption in these environments. We observe, however, that already
for small finite-memory policies (k′ = 2) we are able to infer well-performing
policies in both environments for relatively small data sets already (|D| ≥ 103).
Increasing the memory size of the policies also makes them more stable, as seen
in the conditional value at risk (CVaR) values (k′ = 1 versus k′ = 2).

Furthermore, we see the value of applying SPI methods such as SPIBB when
comparing with a basic RL approach, as SPI methods will stick to the baseline
policy, instead of learning from scratch.
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Abstract. Despite the advances in probabilistic model checking, the scal-
ability of the verification methods as well as the explainability of the results
remains limited. In particular, when instantiating parametrized Markov de-
cision processes (MDPs) even with moderate values, the state space often
becomes extremely large; similarly, the policy, if any is produced, can be
too large an object to be understood, or even implemented. To tackle these
issues, we propose a simple learning-based approach to construct often near-
optimal policies and their interpretable representations as decision trees,
even for huge MDPs. The main idea is to generalize optimal strategies from
smaller to larger instantiations, using decision-tree learning.

Markov decision processes (MDPs) are the model for combining non-determinism
and probabilistic uncertainty. MDPs come with a rich theory and algorithmics
developed over several decades with mature verification tools arising 20 years
ago [KNP02] and proliferating since then [BHK+20]. Despite all this effort, the
scalability of the methods is considerably worse than those used for the verification
of non-deterministic systems with no probabilities, even for basic problems.

Synthesizing practically good policies is often sufficient and also the only way
when the systems are too large. Consequently, many best-effort approaches, such
as reinforcement learning (RL) [SB98] and lightweight statistical model check-
ing [BDHS18] simply try to find a good policy while giving only empirically good
chances to be close to the optimum. This is perfectly sufficient in the setting of
policy synthesis, where a good enough, but not necessarily optimal, controller is
sought. However, the quality of the results rely on certain assumptions: RL results
suffer when the rewards in the model are sparse (e.g., in the case of reachability)
and lightweight statistical model checking requires near-optimal policies to be fre-
quent. The mentioned techniques yield policies that are: (i) far from optimum when
the system is extremely large; and (ii) not explainable. We tackle the former issue
through tackling the latter.

Looking at the structure of large MDPs in standard benchmark sets [HKP+19],
it is not so surprising that their huge sizes are typically not due to astronomically
large human-written code, but rather because the MDPs are parametrized (e.g., by
the number of participants in a protocol) and then instantiated with large values.



This paper thus proposes a new technique for dealing with large parametrized
MDPs. We focus on probabilistic reachability (i) for simplicity and (ii) because it
is a fundamental building block for many other problems.

The main idea is very simple: First, we construct optimal policies for the given
parametrized MDP by instantiating it with smaller numbers, and then we generalize
this information to the instantiation with the desired larger number. It is important
to note that we do not focus on generalizing the values of the states across different
parametrizations, rather we generalize the corresponding decisions (i.e., the policy
itself). This is because, while there is some regularity in the state space, it can
be hard to capture. To this end, we need a compact, symbolic representation of
a policy, which translates to policies over all instantiations. While binary decision
diagrams (BDDs) may be an obvious candidate, it has been shown that decision
trees (DTs) are more appropriate if adequately used [BCC+15,AJK+21], since they
capture naturally the structure of the decisions and provide an explainable policy.
Moreover, because the policies have this symbolic form, they can be applied to any
instantiation; and because they capture the essence of the decisions, not just a list
of state-action pairs, they are able to generalize well. Our new “generalization”
policy synthesis method, which has its own merit as it provides another means for
scalability, thus works via explainability (utilizing the literature on small decision-
tree representation). Explainable representations are important for further steps in
the system development, such as validating the model, implementing the policy,
certifying the whole system, or patching it after deployment, see e.g., [AJK+21].
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