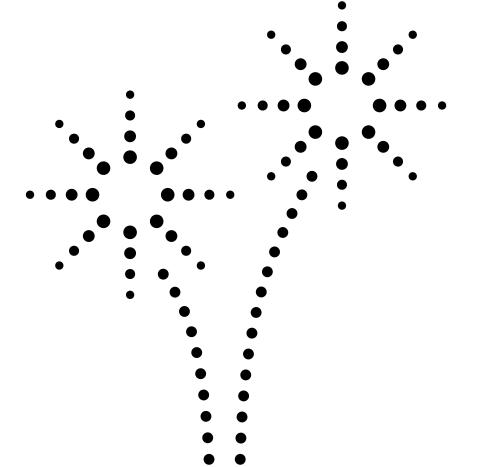
On the Home-Space Problem for Petri Nets

Jérôme Leroux (LaBRI, CNRS, Univ. Bordeaux, France)

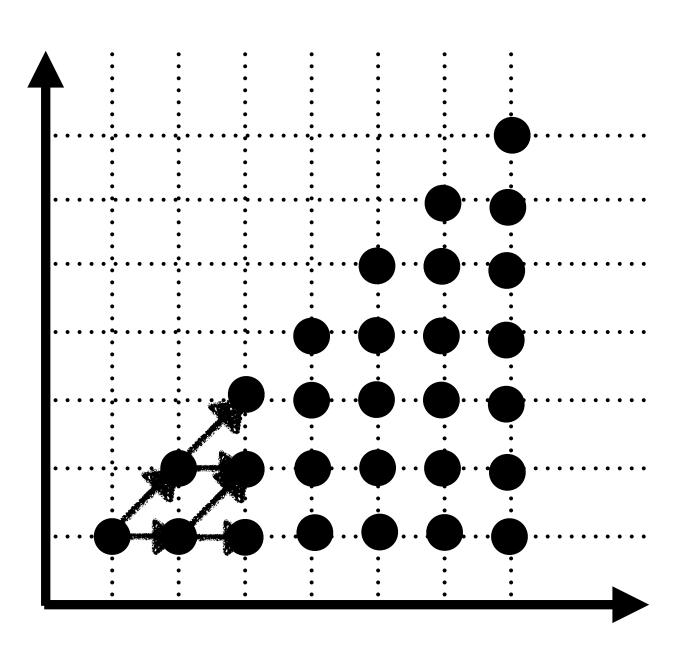
Joint work with Petr Jančar (Dept of Comp. Sci., Faculty of Science, Palacky Univ. Olomouc, Czechia)



Semilinear Sets

Linear Sets

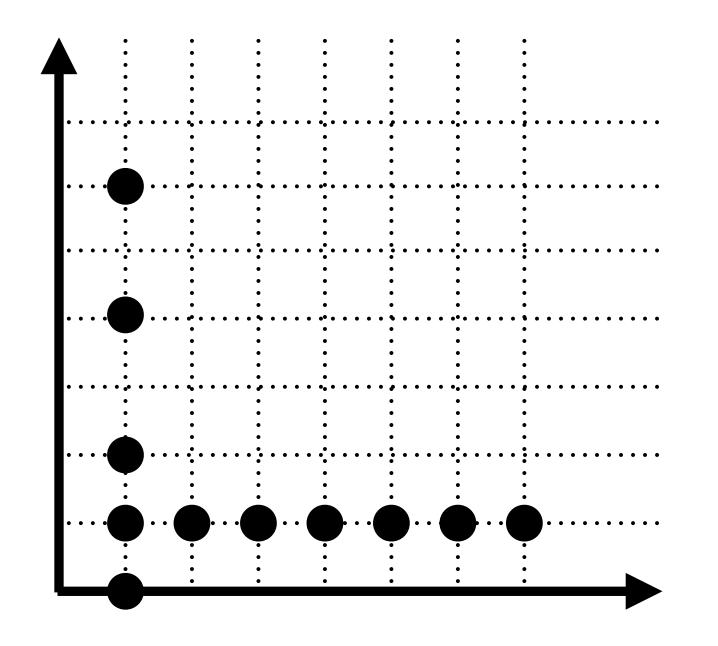
A linear set of \mathbb{N}^d is a set of the form $b + \mathbb{N}p_1 + \cdots + \mathbb{N}p_k$ where $b, p_1, \ldots, p_k \in \mathbb{N}^d$.



$(1,1) + \mathbb{N}(1,1) + \mathbb{N}(1,0)$

Sereir Sets

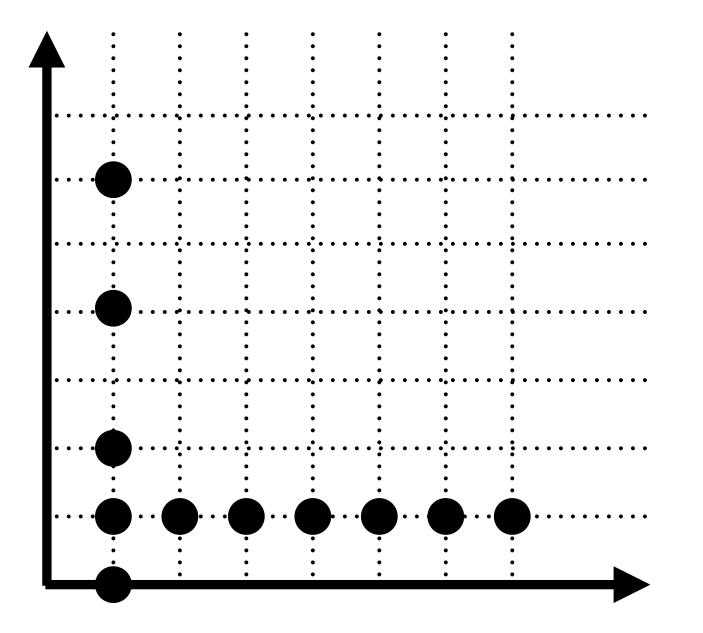
A semilinear set is a finite union of linear sets.



 $(1,1) + \mathbb{N}(1,0) \cup (1,0) + \mathbb{N}(0,2)$

Presburger Arithmetic

1966, Ginsburg and Spanier : Sets definable in the Presburger arithmetic $FO(\mathbb{N}, +, 0, 1, \leq , (\equiv_k)_{k \in \mathbb{N}})$ are precisely the semilinear sets.

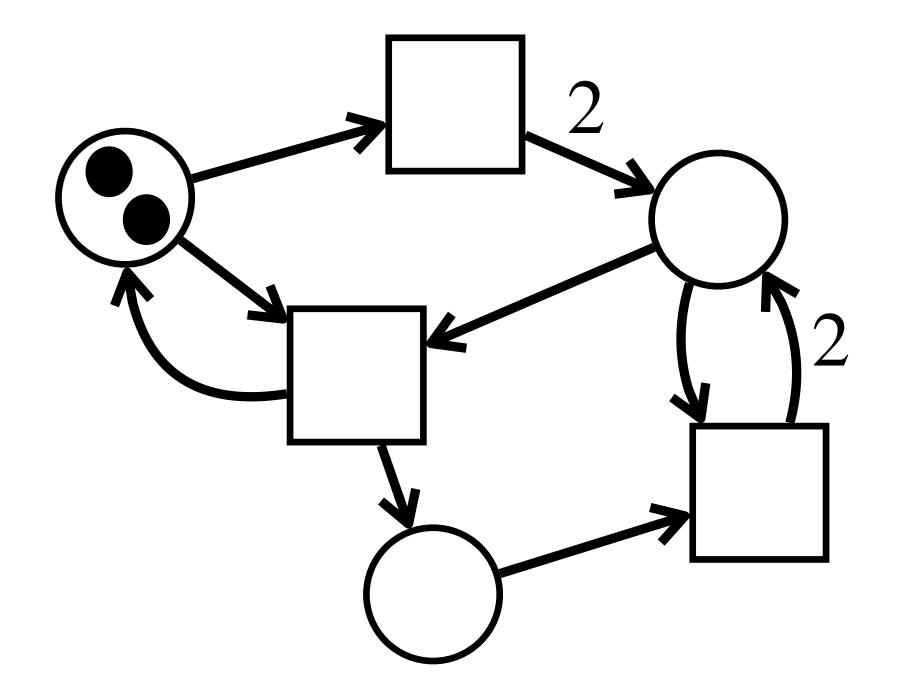


 $\{(x, y) \in$

$$(1,1) + \mathbb{N}(1,0) \cup (1,0) + \mathbb{N}(0,2) =$$
$$\mathbb{N}^2 \mid (x \ge 1 \land y = 1) \lor (x = 1 \land y \equiv_2 0) \}$$

Petri Nets

Petri Nets



Petri Nets

Model of concurrency with extensive applications:

- hardware and software,
- database systems,
- chemical, biological and business processes.

Reachability Problem

INPUT:

- A Petri net and two configurations *x*, *y*. OUTPUT:
- Decide whether $x \rightarrow y$.

Central Problem

Many problems reduce to the Petri net reachability problem:

- Formal languages.
- Logic.
- Concurrent systems.
- Process calculi.
- Population protocols.

Short History

- 1976, Lipton : Expspace lower-bound.
- 1981, Mayr : Decidable.
- 1982, Kosaraju and in 1992 Lambert clarified the algorithm.
- 2015, L. and Schmitz : Cubic-Ackermann upper-bound.
- 2019, L. and Schmitz : Ackermann upper-bound.
- 2019, Czerwinski, Lasota, Lazic, L., and Mazowiecki : Tower lower-bound.
- 2021, L., and Czerwinski and Orlikowski : Ackermann lower-bound.

 \Rightarrow The Petri net reachability problem is Ackermann-complete.

Semilinear Reachability Problem

INPUT:

- A Petri net and two semilinear sets X, Y of configurations. OUTPUT:
- Decide whether $X \xrightarrow{*} Y$.

i.e. $\exists x \in X \ \exists y \in Y \ x \xrightarrow{*} y$

Home-Space

Home-Space

Given a Petri net and two sets of configurations X, H. H is called an home-space for X if:

 $\forall y \quad X \xrightarrow{*} y \quad \Rightarrow \quad y \xrightarrow{*} H$

Semilinear Home-Space Problem

INPUT:

- A Petri net and two semilinear sets of configurations X, H. OUTPUT:
- Decide whether *H* is an home-space for *X*.

Semilinear Non-Reachability Problem \sim **Semilinear Home-Space Problem**

- H home-space for X iff $post^*(X) \subseteq pre^*(H)$

 $\neg(X \xrightarrow{*} Y)$ iff post*(X) \subseteq pre*(Y)

History

- 1973, Henry G. Baker Jr : $post_A^*(x) \subseteq pre_B^*(y)$ undecidable if $A \neq B$
- decidable for hybrid linear sets H.

Our main contributions :

- The semilinear home-space problem is decidable.
- Moreover it is Ackermann-complete.

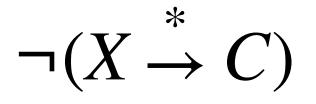
1989, Davide de Frutos Escrig and Colette Johnen : Home-space problem is

Inductive Non-Reachability Cores

C is called an inductive non-reachability core for H if:

- $post^*(C) = C$
- $C \cap H = \emptyset$
- $\forall x \quad x \xrightarrow{*} (H \cup C)$

In that case *H* is an home-space for *X* iff $\neg(X \rightarrow C)$



Stability Property

Theorem

If C_i is an inductive non-reachability core for H_i for every $1 \le i \le n$ then $C_1 \cap \ldots \cap C_n$ is an inductive non-reachability core for $H_1 \cup \ldots \cup H_n$.

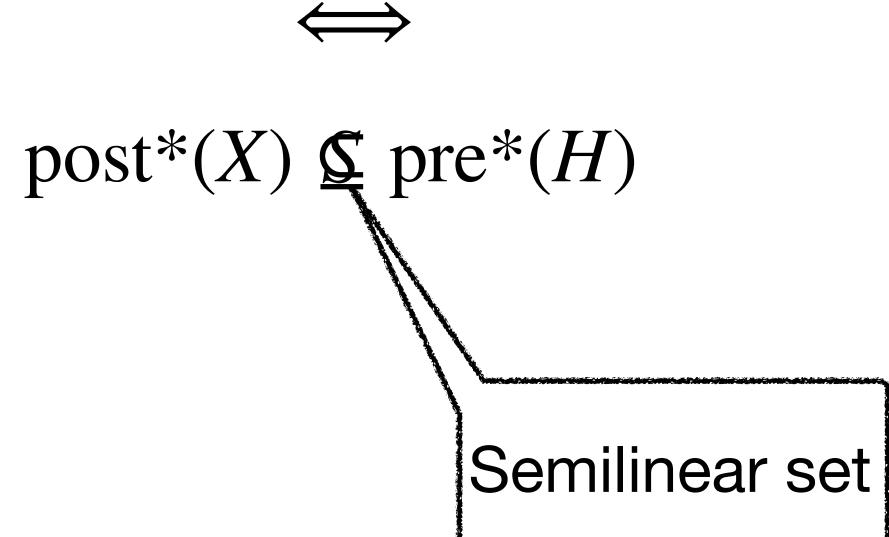
1st Result

computable.

• Semilinear inductive non-reachability cores for semilinear sets are effectively

2nd Result

A semilinear set H is an home-space for a semilinear set X

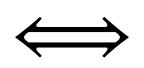


Refined 2nd Result

there exists a semilinear inductive invariant I and words w_1, \ldots, w_k such that:

 $X \subseteq I \subseteq \operatorname{pre}(H, w_1^* \dots w_k^*)$

A semilinear set H is an home-space for a semilinear set X



Future Work & Open Problems

Variants

does there exist a configuration h such that $\{h\}$ is an home-space.

Open variant :

Given a Petri net and a semilinear set X of initial configurations, does there exists a semilinear set $H \subseteq \text{post}^*(X)$ that is an home-space for X.

2016, Eike Best and Javier Esparza : The existential variant is decidable i.e. :

Inductive Non-reachability Core Problem

INPUT:

- A Petri net and two semilinear sets C, H of configurations. OUTPUT:
- Decide whether C is an inductive non-reachability core for H.

Universal Reachability Problem

INPUT:

- A Petri net and a semilinear set X of configurations. OUTPUT:
- Decide whether $post^*(X)$ is the full set of configurations.

2018, Petr Jančar, L., Grégoire Sutre: Expspace-complete for singleton X and decidable in general.

for Petri Nets



Joint work with Petr Jančar (Dept of Comp. Sci., Faculty of Science, Palacky Univ. Olomouc, Czechia)