Stabilization of Branching Queueing Networks

Tomáš Brázdil1 Stefan Kiefer2

1Masaryk University, Brno, Czech Republic
2University of Oxford, UK

STACS, Paris
02 March 2012
Queueing networks are simple and general.

Attractive for modeling parallelism:

- **Hardware**, especially large-scale multi-core systems:
 - Full-system performance simulators do not scale.
 - Queueing theory gives a more abstract analysis.

- **Software**, especially message passing:
 - asynchronous programs on multi-core computers
 - distributed programs on a network
Example: Router

Continuous-Time Markov Chain – Infinite-State!

Tomáš Brázdil, Stefan Kiefer
Stabilization of Branching Queueing Networks
Example: Router

Textual representation of the same thing:

\[0 \overset{1}{\rightarrow} A \]
\[A \overset{0.25}{\rightarrow} S_1 \]
\[A \overset{0.25}{\rightarrow} S_2 \]
\[A \overset{0.5}{\rightarrow} D \]
\[A \overset{0.25}{\rightarrow} S_1 \]
\[D \overset{0.7}{\rightarrow} M \]
\[D \overset{0.3}{\rightarrow} C \]
\[S_1 \overset{1}{\rightarrow} D \]
\[S_2 \overset{1}{\rightarrow} D \]
\[C \overset{1}{\rightarrow} M \]
\[M \overset{1}{\rightarrow} \varepsilon \]
Example: Router

Textual representation of the same thing:

\[
\begin{align*}
0 & \xrightarrow{1} A \\
A & \xrightarrow{0.25} S_1 \\
A & \xrightarrow{0.25} S_2 \\
A & \xrightarrow{0.5} D \\
D & \xrightarrow{0.7} M \\
D & \xrightarrow{0.3} C \\
S_1 & \xrightarrow{1} D \\
S_2 & \xrightarrow{1} D \\
C & \xrightarrow{1} M \\
M & \xrightarrow{1} \varepsilon
\end{align*}
\]

Also given: arrival rate α_A
queue rates μ_A, μ_{S_1}, \ldots of busy queues
Continuous-Time Markov Chain – Infinite-State!
Such networks are called **Jackson networks** (classical model).

Nice properties:

- **Stability** is easy to determine.
- **Product form solutions in “steady state”:**

 \[
 \Pr(S_1 = 3 \text{ and } D = 2) = \Pr(S_1 = 3) \cdot \Pr(D = 2)
 \]

But shortcomings in modeling:

- just one new task per one old task
- no (dynamic) control of the network
New model: Branching Queueing Networks (BQNs)

\[
\begin{align*}
0 & \xrightarrow{1} A \\
A & \xleftarrow{4/5} \varepsilon \\
B & \xleftarrow{1/6} A, B \\
A & \xrightarrow{1/5} B, B \\
B & \xleftarrow{5/6} \varepsilon
\end{align*}
\]

Rates as before: \(\alpha_A, \mu_A, \mu_B > 0\)

Similar models:
- a bit like pushdown systems, but parallel
- a bit like stochastic Petri nets, but of a special form
New model: Branching Queueing Networks (BQNs)

\[
0 \xrightarrow{1} A \\
A \xrightarrow{4/5} \varepsilon \\
B \xrightarrow{1/5} B, B \\
B \xrightarrow{1/6} A, B \\
B \xrightarrow{5/6} \varepsilon
\]

Rates as before: \(\alpha_A, \mu_A, \mu_B > 0 \)

Topic of this talk: Is a given BQN stable?

Stabilization of Branching Queueing Networks
New model: **Branching Queueing Networks (BQNs)**

\[0 \xrightarrow{1} A \]
\[A \xleftarrow{4/5} \varepsilon \]
\[A \xrightarrow{1/5} B, B \]
\[B \xleftarrow{1/6} A, B \]
\[B \xrightarrow{5/6} \varepsilon \]

Rates as before: \(\alpha_A, \mu_A, \mu_B > 0 \)
New model: Branching Queueing Networks (BQNs)

\[
\begin{align*}
0 & \xrightarrow{1} A \\
A & \xrightarrow{4/5} \varepsilon \\
B & \xrightarrow{1/5} B, B \\
A & \xrightarrow{1/6} B, B \\
B & \xrightarrow{5/6} \varepsilon \\
B & \xrightarrow{5/6} \varepsilon
\end{align*}
\]

Rates as before: \(\alpha_A, \mu_A, \mu_B > 0 \)

Topic of this talk: Is a given BQN stable??

\text{stable} \overset{\text{def}}{=} \text{expected return time to “completely empty” is finite}
Consider the BQN

\[
0 \xleftarrow{1} A \xrightarrow{1} B, C \quad B \xrightarrow{1} \varepsilon \quad C \xrightarrow{1} \varepsilon
\]

No product form: Take \(\alpha_A = 1, \mu_A = \mu_B = \mu_C = 3 \).
Then in steady-state:

\[
\Pr(C \geq 1) = \frac{1}{3} \\
\Pr(C \geq 1 \mid B \geq 1) \geq \frac{3}{7}
\]
Consider the BQN

\[
0 \xleftarrow{1} A \xrightarrow{1} B, C \xleftarrow{1} \varepsilon \xrightarrow{1} C
\]

No product form: Take \(\alpha_A = 1, \mu_A = \mu_B = \mu_C = 3 \).
Then in steady-state:

\[
\Pr(C \geq 1) = \frac{1}{3} \\
\Pr(C \geq 1 \mid B \geq 1) \geq \frac{3}{7}
\]

Analysis of BQNs harder than for Jackson networks
(Pre-)Suppose a form of balance:

\[
\text{# tasks processed at } X \text{ per sec} = \text{# tasks arriving at } X \text{ per sec}
\]

Here:

\[
\lambda_A = 0.2 + \lambda_B \cdot (1/6)
\]

\[
\lambda_B = \lambda_A \cdot (1/5) \cdot 2 + \lambda_B \cdot (1/6)
\]

We call the solution \(\lambda \) the “throughput”.

Note: the speeds of the queues \(\mu_A, \mu_B \) do not occur.

Here:

\[
\lambda_A = 0.22
\]

\[
\lambda_B = 0.10
\]
Proposition

Given a BQN.

- Let λ be the **throughput**, i.e., λ solves the balance equations $\lambda = \alpha + M\lambda$.
- Suppose $\lambda < \mu$ (in all components).
 Then the BQN is stable.

- Conversely, if the BQN is stable, then there is λ with $\lambda = \alpha + M\lambda < \mu$.
A Stability Result

Proposition

Given a BQN.

- Let λ be the throughput, i.e., λ solves the balance equations $\lambda = \alpha + M\lambda$.

 Suppose $\lambda < \mu$ (in all components).

 Then the BQN is stable.

- Conversely, if the BQN is stable, then there is λ with $\lambda = \alpha + M\lambda < \mu$.

Theorem

Stability of a BQN can be decided in polynomial time.

Proposition

If a BQN is stable, it is “very much so”: in steady state there is an exponential moment of the total queue size, i.e., there is $\delta > 0$ such that $\sum_{x \in \mathbb{N}^n} \exp(\delta \|x\|) \Pr(x)$ exists.
The stability result requires a delicate proof (no product form).

Consider “drift” for all points:
The stability result requires a delicate proof (no product form).

Consider “drift” for all points:

For \((0, 0)\): \([0] = \begin{pmatrix} \alpha A \\ 0 \end{pmatrix}\)
Proof of the Stability Result

The stability result requires a delicate proof (no product form).

Consider “drift” for all points:

For \((0, 0)\): \([0] = \begin{pmatrix} \alpha A \\ 0 \end{pmatrix}\)

For \((+, 0)\): \([0A] = [0] + [A]\) with \([A] = \mu_A \cdot \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}\)

\([0A] = \mu_A \cdot \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}\)
Proof of the Stability Result

The stability result requires a delicate proof (no product form).

\[
\begin{array}{c|cccc}
0 & A & B, B & A, B & \varepsilon \\
0 & 1 & 1/5 & 1/6 & 4/5 & 5/6 \\
A & B & A & \varepsilon & \varepsilon \\
\end{array}
\]

Consider “drift” for all points:

For \((0, 0)\): \([0] = \begin{pmatrix} \alpha A \\ 0 \end{pmatrix}\)

For \((+, 0)\): \([0A] = [0] + [A]\) with

\([A] = \mu_A \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ (1/5) \cdot 2 \end{pmatrix}\)

For \((0, +)\): \([0B] = [0] + [B]\)

Find a Lyapunov function w.r.t. which the drift is negative.
The stability result requires a delicate proof (no product form).

Consider “drift” for all points:

For $(0, 0)$: $[0] = \begin{pmatrix} \alpha_A \\ 0 \end{pmatrix}$

For $(+, 0)$: $[0A] = [0] + [A]$ with

$[A] = \mu_A \cdot \begin{pmatrix} -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ (1/5) \cdot 2 \end{pmatrix}$

For $(0, +)$: $[0B] = [0] + [B]$

For $(+, +)$: $[0AB] = [0] + [A] + [B]$
Proof of the Stability Result

The stability result requires a delicate proof (no product form).

Consider “drift” for all points:

For \((0, 0)\):
\[
[0] = \begin{pmatrix}
\alpha A \\
0
\end{pmatrix}
\]

For \((+, 0)\):
\[
[0A] = [0] + [A] \quad \text{with} \\
[A] = \mu_A \cdot \left(\begin{pmatrix}
-1 \\
0
\end{pmatrix} + \begin{pmatrix}
0 \\
(1/5) \cdot 2
\end{pmatrix} \right)
\]

For \((0, +)\):
\[
[0B] = [0] + [B]
\]

For \((+, +)\):
\[
[0AB] = [0] + [A] + [B]
\]

Find a Lyapunov function w.r.t. which the drift is negative.
Key steps:

- Construct **piecewise-linear Lyapunov function** w.r.t. which the drift is negative almost everywhere (hard).
 - use throughput λ and apply Farkas’ lemma (wouldn’t work for general stochastic Petri nets)
- Smooth the Lyapunov function (standard)
- Derive (strong) stability using Foster’s criterion (standard)
Continuous-Time Markov Decision Process – Infinite-State

Generalize balance equations:

Subdivide λ_B in $\lambda_B = \lambda_{B,1} + \lambda_{B,2}$.

Intention: $\lambda_{B,i}$ = rate of B-tasks processed according to σ_i.

$$\lambda_A = \alpha_A + \lambda_{B,1} \cdot (1/6) + \lambda_{B,2} \cdot (2/3)$$

$$\lambda_{B,1} + \lambda_{B,2} = \cdots$$

Similarly to the uncontrolled case:

\exists stabilizing scheduler

$\iff \exists$ solution λ with $\lambda_A < \mu_A$ and $\lambda_{B,1} + \lambda_{B,2} < \mu_B$
Continuous-Time Markov Decision Process – Infinite-State
Generalize balance equations:
Subdivide λ_B in $\lambda_B = \lambda_{B,1} + \lambda_{B,2}$.
Intention: $\lambda_{B,i} =$ rate of B-tasks processed according to σ_i.

$$\lambda_A = \alpha_A + \lambda_{B,1} \cdot (1/6) + \lambda_{B,2} \cdot (2/3)$$

$$\lambda_{B,1} + \lambda_{B,2} = \cdots$$

Similarly to the uncontrolled case:

\exists stabilizing scheduler

$\iff \exists$ solution λ with $\lambda_A < \mu_A$ and $\lambda_{B,1} + \lambda_{B,2} < \mu_B$

LP!!
General Main Result

Theorem

Given a controlled BQN.

1. It is decidable in polynomial time whether there exists an (arbitrary) stabilizing scheduler.

2. If it exists, one can compute in polynomial time a static randomized scheduler, which is stabilizing in a strong sense, i.e., in steady state there is an exponential moment of the total queue size.

The theorem implies:

Any stabilizing scheduler can efficiently be made

- static and – at the same time –
- “strongly” stabilizing.
Queueing networks can be used to model parallelism.

Classical Jackson networks lack branching and control.

→ New model: Branching Queueing Networks

Stability and existence of stabilizing schedulers can be determined in polynomial time.

If a stabilizing scheduler does exist, a static randomized scheduler suffices and can be computed in polynomial time.
Queueing networks can be used to model parallelism.

Classical Jackson networks lack branching and control.

New model: Branching Queueing Networks

Stability and existence of stabilizing schedulers can be determined in polynomial time.

If a stabilizing scheduler does exist, a static randomized scheduler suffices and can be computed in polynomial time.

Future work:

Performance beyond stability, e.g., long-term average queue size

Can non-static schedulers help to minimize it?
Thank you!