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Logic

If all bandersnatches are borogoves
and all borogoves are slithy, 

then all bandersnatches are slithy.
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If all bandersnatches are borogoves
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then all bandersnatches are slithy.

„True“



Logic

If all X are Y and
all Y are Z, 

then all X are Z.



Logic

Logic is the subject of identifying
true statements in a language of
which you only know a few words.



Temporal Logic

Different logics study different language
fragments:

– Propositional logic: and, or, not, 
if … then

– Temporal logic: propositional logic
+ today, tomorrow, eventually, 
never, …

Studied within mathematical logic since the
end of the XIX century.

Clarence Lewis 
(1883-1964)

Arthur Prior
(1914-1969)



Temporal logic in computer science

• Amir Pnueli proposes in 1977 to use temporal logic
to reason about computer programs

פנואליאמיר 
Amir Pnueli
(1941-2009)
Turing Award 1996



Temporal logic in computer science

A worker that succeeds in acquiring a 
lock will eventually release it, 
assuming its "doResult" call returns.

The req_close_state is always
in close_enabled state.

If artist1 registers for event2 
before artist2 does, then once
dispatcher receives event2 from 
the ADT, it will first send it 
to artist1 and then to artist2. The OK button on the login 

window is enabled as soon as 
the application is started 
and the login window is first
displayed to the user.

None of the available methods 
can be called until connect is 
called.

Mathew Dwyer, Temporal Specification Patterns, https://matthewbdwyer.github.io/psp/

https://matthewbdwyer.github.io/psp/


Linear Temporal Logic (LTL)

• LTL extends propositional logic with temporal 
operators.

• Syntax:

휑 ∶= 퐭퐫퐮퐞 | 퐟퐚퐥퐬퐞  푝  ¬푝  휑 ∧ 휑  휑 ∨ 휑

퐗휑  휑 퐔휑   휑 퐖휑

휑 퐑휑  | 휑 퐌휑 | past operators (Past LTL)

퐅휑 ≔ 퐭퐫퐮퐞 U 휑 (eventually 휑 or finally 휑).
퐆휑 ≔ 휑 W false (always 휑 or globally 휑).



Temporal logic in computer science

If artist1 registers for event before artist2 does, then 
once dispatcher receives event from the ADT, it will first
notify artist1 and then artist2.

퐆((reg. a ∧   (¬unreg. a  퐔 (reg. a ∧   ¬unreg. a ∧ ¬unreg. a  퐔 notify)))
→

퐅 (notify ∧ (¬notify. a  퐔 notify. a )))

A worker that succeeds in acquiring a lock will eventually
release it, assuming its "doResult" call returns.

퐆(call → 퐅 return ) → 퐆(return → 퐅 call )



Specifying and verifying reactive systems

זוהר מנה
Zohar Manna
(1939-2018)

אמיר פנואלי
Amir Pnueli
(1941-2009)

1992 1995



The Safety-Progress Hierarchy

휙 and 휓
are past formulas

Proof rules for different classes
in the hierarchy:



The Safety-Progress Hierarchy

휙 and 휓
are past formulas

Normal form theorem
Every formula is equivalent
to a reactivity formula.



Proving the Normal Form Theorem

„The proof […] is based on many previous results, 
including [Buc], [MNP], [C], [T] and [GPSS] which, when
combined, yield the theorems almost immediately.“

Lichtenstein, Pnueli, Zuck: Logic of Programs, 1985



Proving the Normal Form Theorem

Past LTL 
formula

Zuck, PhD Thesis, 1986



Proving the Normal Form Theorem

Past LTL 
formula

Counter-free
semi-automaton

Chapter 4

Zuck, PhD Thesis, 1986



Proving the Normal Form Theorem
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Proving the Normal Form Theorem

Past LTL formula
in normal form

Chapter 5

Star-free
regular expression

Past LTL 
formula

Counter-free
semi-automaton

Krohn-Rhodes 
Decomposition Theorem

Chapter 4

Maler,  Essays in Memory 
of Amir Pnueli, 2010

Zuck, PhD Thesis, 1986



… and the rest is silence.

No further attempts to improve on these bounds, even
though there is no lower bound!

How come?



… and the rest is silence.

Gödel Prize 
2000

LICS ‘86

No further attempts to improve on these bounds, even
though there is no lower bound!



Automata-theoretic approach

• Translates the formula
into an 휔-automaton
(automaton on infinite 
words) and „throws the
formula away“  

• Proofs replaced by
automata-theoretic
algorithms

• No need for hierarchies, 
proof rules, or axiom
systems

• LTL ``demoted‘‘ to
syntax for automata

Duret-Lutz: Spot Online Translator
https://spot.lrde.epita.fr/app/

https://spot.lrde.epita.fr/app/
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During the next decades the automata-theoretic approach

• is implemented in sophisticated, very successful tools

• is extended to the verification of probabilistic systems

• is applied to reactive synthesis: automatic synthesis of systems
from LTL specifications
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Automata-theoretic approach

During the next decades the automata-theoretic approach

• is implemented in sophisticated, very successful tools

• is extended to the verification of probabilistic systems

• is applied to reactive synthesis: automatic synthesis of reactive
systems from LTL specifications

2004 2008 2014-today



The challenge

• Probabilistic verification requires to
translate LTL into limit deterministic (or
deterministic) 휔-automata

• Reactive synthesis requires to translate
LTL into deterministic 휔-automata



The theoretical challenge

FOCS 1988: Determinization procedure for 휔-automata

JACM 1995: Limit-determinization procedure for휔-automata

(see also 
Vardi 1985)



The algorithmic challenge

These translations

• have double-exponential blow-up.
(contrary to single-exponential for LTL → nondet. automata)

• are „monolithic“ and very combinatorial

e.g. states of Safra‘s det. automaton are
trees of sets of states of the nondet. automaton

⟹
Implementations struggle to control 
combinatorial explosion



The algorithmic challenge

S. Sickert, J. Esparza, S. Jaax and J. Kretinsky. CAV 2016

Safra
(spot+ltl2dstar)



How can I do better in the future?



How can I do better in the future?

Do better in the past!
@ Universal Pictures and Amblin Entertainment



@ Universal Pictures and Amblin Entertainment



Back to the 1980s: The Safety-Progress Hierarchy

휙 and 휓
are past formulas

Normal form theorem
Every formula is equivalent
to a reactivity formula.



The Alternation Hierarchy

Δ

ΠΣ

Δ

Σ Δ only W, e.g.
휙 퐖 (휓 퐖 휒)

only U, e.g.     
휙 퐔 (휓 퐔 휒)

boolean combination
of Σ and Π

at most 
one alternation

from U to W, e.g.
휙 퐔 (휓 퐔 (휒 퐖 휌)

at most 
one alternation
from W to U, e.g.
휙 퐖 (휓 퐔 (휒 퐔 휌)

boolean combination
of Σ and Π



The Alternation Hierarchy

Δ

ΠΣ

Δ

Σ Δ

=
=
=
=

Chang, Manna, and Pnueli, ICALP 1992. 
Pelánek and Strejček, CIAA 2005



The Alternation Hierarchy

Δ

ΠΣ

Δ

Σ Δ

Normal form theorem
Every formula is equivalent
to a Δ -formula.



Demystifying normalization

퐅 푎 ∧ 퐆 푏 ∨ 퐅푐
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Demystifying normalization

퐅 푎 ∧ 퐆 푏 ∨ 퐅푐

Case 1: 퐅푐 holds infinitely often (퐆퐅푐 holds)
Then  퐆 푏 ∨ 퐅 푐 ≡퐆퐅 퐭퐫퐮퐞

Case 2: 퐅푐 only holds finitely often (¬퐆퐅푐 holds)

Then  퐆 푏 ∨ 퐅 푐 ≡¬퐆퐅 푏 ∨ 퐅 푐  퐔 (퐆 푏)
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Demystifying normalization

퐅 푎 ∧ 퐆 푏 ∨ 퐅푐

Case 1: 퐅푐 holds infinitely often (퐆퐅푐 holds)
Then 퐆 푏 ∨ 퐅 푐 ≡퐆퐅 퐭퐫퐮퐞

Case 2: 퐅푐 only holds finitely often (¬퐆퐅푐 holds)

Then  퐆 푏 ∨ 퐅 푐 ≡¬퐆퐅 푏 ∨ 퐅 푐  퐔 (퐆 푏)

WU → UW !!
Photo by freepik –
www.freepik.com

http://www.freepik.com
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Demystifying normalization

퐅 푎 ∧ 퐆 푏 ∨ 퐅푐 ≡ 퐆퐅푐 ∧ 퐅 푎 ∧ 퐭퐫퐮퐞
∨

¬퐆퐅푐 ∧ 퐅 푎 ∧ 푏 ∨ 퐅푐 퐔 퐆푏

Correct because ¬퐆퐅푐
holds at some moment 
iff it holds at every moment!



… et voilá!

퐅 푎 ∧ 퐆 푏 ∨ 퐅푐 ≡ 퐆퐅푐 ∧ 퐅푎
∨

퐅 푎 ∧ 푏 ∨ 퐅푐 퐔 퐆푏



Demystifying normalization
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Demystifying normalization

퐅 푎 ∧ 퐆 푏 ∨ 퐅 푐 ∧ 퐆푑

≡ 퐅퐆푑 ∧  

퐆퐅푐 ∧ 퐅 푎 ∧ 퐭퐫퐮퐞
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… et voilá!

퐅 푎 ∧ 퐆 푏 ∨ 퐅 푐 ∧ 퐆푑

≡ 퐅퐆푑 ∧ 퐆퐅푐 ∧ 퐅푎
∨

퐅퐆푑 ∧ 퐅 푎 ∧  퐅 푐 ∧ 퐆푑  퐔 퐆 푏 ∨ 푐 ∧ 퐆푑

∨
퐅 푎 ∧ 퐆푏



Closed-form expression

Sickert and Esparza, LICS 2020
Esparza, Křetínský, and Sickert, JACM 2020

휑 ≡  휑 ∧  퐆퐅 휓
∈

∧   퐅퐆 휒
∈⊆퐔( )

⊆퐖( )



Closed-form expression

Formula of 
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푂 푛 conjuncts
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Closed-form expression

Formula of 
length 푂(2 )

푂 푛 conjuncts
of length 푂(푛)

Sickert and Esparza, LICS 2020
Esparza, Křetínský, and Sickert, JACM 2020

휑 ≡  휑 ∧  퐆퐅 휓
∈

∧   퐅퐆 휒
∈⊆퐔( )

⊆퐖( )

푂(2 ) disjuncts

2 length



Back from the past

@ Universal Pictures and Amblin Entertainment
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Formula
⟹ Δ -formula 
⟹ Limit-deterministic 

Büchi automaton 
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LTL ⇒ Limit-deterministic Büchi automata

퐅 푎 ∧ 퐆 푏 ∨ 퐅푐
≡

(퐆퐅푐 ∧ 퐅푎)   ∨    퐅 푎 ∧ 푏 ∨ 퐅푐  퐔 퐆푏



퐅 푎 ∧ 퐆 푏 ∨ 퐅푐
≡

(퐆퐅푐 ∧ 퐅푎)   ∨    퐅 푎 ∧ 푏 ∨ 퐅푐  퐔 퐆푏

LTL ⇒ Limit-deterministic Büchi automata

Guesses the point at 
which 퐆푏 starts to hold

Maintains the formula
휓 that must hold when
퐆푏 starts to hold

Checks 
휓 ∧ 퐆푏

휓

휓

휓



Size reduction

LDBA Safra
(spot+ltl2dstar)

Sickert, Esparza, Jaax, and Kretinsky, CAV 2016



LTL ⇒ deterministic Rabin automata



LTL ⇒ deterministic Rabin automata

Formula

⟹ Δ -formula 

⟹ very weak Δ -alternating 
Büchi automaton

⟹ deterministic Rabin automaton



From LTL to very weak alternating Büchi automata

true

푎

퐅 푎 ∧ 퐗퐆 푏 ∨ 퐗퐅 푐 ∧ 퐗퐆푑

퐆 푏 ∨ 퐗퐅 푐 ∧ 퐗퐆푑

퐅 푐 ∧ 퐗퐆푑

퐆푑

푏

푏

푑

푐

true



After Δ -normalization

Disjunction of VWAA 
with 푂(푛) states s.t.
each path has
only one alternation
between accepting and
non-accepting states



After Δ -normalization

Lemma: A Δ -VWAA 
accepts a word iff it has a 
run on it such that
- No level of the tree is

(equiv. to) false, and
- All states of some level

are accepting.

Equivalent deterministic
Büchi or co-Büchi
automaton using (a slight
reformulation of) the
breakpoint construction.

From trees of sets to 
pairs of sets.



Owl (owl.model.in.tum.de)

Křetínský , Meggendorfer, Sickert, ATVA 2018 



Strix (strix.model.in.tum.de)

Tool for reactive LTL synthesis
• direct translation LTL-to-DPA 
• multi-threaded, explicit-state 

solver for parity games.

Winner of the SYNTCOMP 
competition in 2018,2019, 2020

State-of-the-art in reactive LTL 
synthesis

Luttenberger, Meyer, Sickert, 
CAV 2018 and  Acta Informatica 2020
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A fresh look at LTL

Imagine SAT without CNF

That‘s what happened to LTL

Imagine FOL without skolemization




