
Computing rewards in probabilistic
pushdown systems

Javier Esparza
Software Reliability and Security Group

University of Stuttgart

Joint work with

Tomáš Brázdil Antonı́n Kučera Richard Mayr

1

Motivation for pushdown systems

Model checkers of the first generation (SPIN, SMV, Murphi, . . .) only work for
systems (programs) with finitely many states.

Systems with recursive procedures may be infinite-state, even if all variables
have a finite range (unbounded call stack).

Systems with non-recursive procedures can be “flattened” using inlining.
However, inlining may cause an exponential blow-up in the size of the system.
This is inefficient and unnecessary!

Goal: Design verifiers that work directly on the procedural representation.

Formalisms: pushdown systems and recursive Markov chains.

2

Pushdown systems

A pushdown system (PDS) is a triple (P,Γ, δ), where

• P is a finite set of control locations

• Γ is a finite stack alphabet

• δ ⊆ (P × Γ)× (P × Γ∗) is a finite set of rules (notation: pX ↪−→qα).

A configuration is a pair pα, where p ∈ P and α ∈ Γ∗.

Semantics: A (possibly infinite) transition system with configurations as states
and transitions given by:

If pX ↪−→qα ∈ δ then pXβ −→ qαβ for every β ∈ Γ∗

Normalization: |α| ≤ 2, termination only by empty stack.

3

From procedural programs to pushdown systems

Full state of a procedural programs: (g, n, l, (n1, l1) . . . (nk , lk)), where

• g is a valuation of the global variables,

• n is the value of the program pointer,

• l is a valuation of local variables of the current active procedure,

• ni is a return address, and

• li is a saved valuation of the local variables of the caller procedures.

Modelled as a configuration pXY1 . . . Yk where

p = g X = (n, l) Yi = (ni , li)

pX (the configuration’s head) contains the current program state.

Y1 . . . Yk (the configuration’s tail) contains activation records.

4

Correspondence between program instructions and PDS rules:

procedure call pX ↪−→qYZ

return pX ↪−→qε

assignment pX ↪−→qY

In this talk: probabilistic pushdown systems as a model of probabilistic programs
with procedures.

• Probabilities postulated, guessed, or estimated.

5

Probabilistic pushdown systems

A probabilistic pushdown system (PPDS) is a tuple (P,Γ, δ, Prob), where

• (P,Γ, δ) is a PDS, and

• Prob : δ → (0..1] such that for every pair pX :∑
pX ↪−→qα

Prob(pX ↪−→qα) = 1

Notation: We write pX
x

↪−→ qα for Prob(pX ↪−→qα) = x .

Semantics: A (possibly infinite) Markov chain with configurations as states and
transition probabilities given by

If pX
x

↪−→ qα ∈ δ then pXβ
x−−−→ qαβ for every β ∈ Γ∗

6

A small example

pX
x

↪−→ pXX

pX
1−x

↪−−−→ pε

x

1−x1−x 1−x

x x

1−x

. . .X XX XXXε

7

Questions

Correctness properties:

• Will the program terminate?
(Is the measure of the terminating runs at least ρ?)

Will every request be granted?
(Is the measure of the infinite runs in which requests are granted at least ρ?)

Performance properties:

• How long will it take the program to terminate?
(Which is the expected running time)

How long will it take in average to serve a request?
(Which is the expected limit of the service time?)

8

Rewards

Let (S,→, Prob) be a (finite or infinite) Markov chain.

A reward function is a function f : S → IR+ that assigns to each state a
nonnegative real number.

• Average time spent in the state, costs or gains collected by visiting the state,
0 or 1 according to whether the state is “important” or not.

Rewards could also be assigned to transitions.

The function F assigns to each finite path of the chain its accumulated reward
(initial state not included).

The gain is the random variable G(w) that assigns to an infinite run
w = s0s1s2 . . . the value

G(w) =


lim

n→∞
F(s0 . . . sn)

n
if the limit exists

⊥ otherwise

9

Rewards in probabilistic pushdown systems

In PPDS the states of the Markov chain are configurations pα.

We restrict ourselves to

• Simple reward functions:

f(pα) = g(p)

• Linear reward functions:

f(pα) = g(p) +
∑

X∈Γ

h(X) ·#X(α)

We consider the following problems:

• Compute the expected accumulated reward of the terminating runs.

• Compute the expected gain of the infinite runs.

10

Preliminaries: Termination probabilities

pX
x

↪−→ pXX

pX
1−x

↪−−−→ pε

x

1−x1−x 1−x

x x

1−x

. . .X XX XXXε

The PPDS terminates with probability 1 iff x ≤ 1/2

Termination probabilities no loner determined by the chain’s topology only, as in
the finite state case.

11

A basic result

Let [pXq] be the probability of, starting at the configuration pX , eventually
reaching the configuration qε (i.e., terminating in state q).

Theorem: The [pXq] are the least solution of the following system of equations
on the variables {〈pXq〉 | p, q ∈ P, X ∈ Γ}:

〈pXq〉 =
∑

pX
x

↪−→ qε

x

+
∑

pX
x

↪−→ rY

x · 〈rYq〉

+
∑

pX
x

↪−→ rYZ

x ·
∑
s∈P

〈rYs〉 · 〈sZq〉

The system has the form
→
x = F(

→
x) for a quadratic form F .

12

Solving the system

Theorem: The problem [pXq]
?
< ρ can be solved in PSPACE for every 0 ≤ ρ ≤ 1.

Reduction to the decision problem for the existential theory of the reals,
(first-order logic over the signature (0,1,+, ∗, <), interpreted on the reals)

The [pXq]s can be approximated using Newton’s method [EY05].

13

Expected accumulated reward

Let E f(pXq) be the conditional expected accumulated reward of a path from pX
to qε w.r.t. a simple reward function f .

Theorem [EKM05]:

E f(pXq) =
1

[pXq]
·
(∑

pX
x

↪−→ qε

x · f(q)

+
∑

pX
x

↪−→ rY

x · [rYq] · (f(r) + E f(rYq))

+
∑

pX
x

↪−→ rYZ

x ·
∑
s∈P

[rYs] · [sZq] · (f(r) + E f(rYs) + E f(sZq))

)

14

Expected gain: The finite case

Recall that for σ = s0s1s2 . . . :

G(σ) =


lim

n→∞
F(s0 . . . sn)

n
if the limit exists

⊥ otherwise

If the chain has a stationary distribution π then

E(G) =
∑
s∈S

π(s) · f(s)

If the chain is not strongly connected, then compute for each bottom strongly
connected C

• C’s stationary distribution,

• the gain of a trajectory that gets trapped in C, and

• the probability of getting trapped in C.

15

Expected gain: The PPDS case

PPDS chains may have infinitely many bottom strongly connected components.

Irreducible PPDS-chains may have no stationary distribution.

Even if the stationary distribution π exists, we are not yet done. We have

E(G) =
∑

pα∈PΓ∗
f(pα) · π(pα) =

∑
p∈P

f(p) ·
∑

α∈Γ∗
π(pα)

and computing ∑
α∈Γ∗

π(pα)

may be complicated!

16

And yet . . .

Theorem [EKM05,BEK05] (loosely formulated):
E(G) exists for every simple or linear reward function and every PPDS such that
E1(pXq) are finite for every pXq. Moreover:

• E(G) is expressible in the first-order theory of the reals, and

• E(G) can be obtained by solving a system of linear equations whose
coefficients are functions of the [pXq].
(Computing the [pXq] remains the only difficult problem.)

Sketch of the computational procedure:

• Compute a finite-state abstraction A of the infinite Markov chain.

• Compute E(G) from the stationary distribution of the (bottom strongly
connected components of the) chain A.

17

The abstraction I: Minima of an infinite run

Let w = p0α0 p1α1 p2α2 · · · be an infinite run of a PPDS, where |α0| = 1.

piαi is a minimum of w if |αj | ≥ |αi | for all j ≥ i . (The tail ‘stays in the stack’).

1 92 3 4 5 6 7 8

Time

height
Stack

The i-th minimum of w is the i-th configuration of the subsequence of minima.
Observe: the first minimum is p0α0.

Let piαi and pi+1αi+1 be the i-th and (i + 1)-th minima, respectively.
pi+1αi+1 is a jump if |αi | < |αi+1|, and a bump if |αi | = |αi+1|.

18

The abstraction II: The memoryless property

Recall: pX is the head of pXα, and α is its tail

Theorem [EKM04] (loosely formulated):
For every i ≥ 1, the probability that the (i + 1)-th minimum of a run has head
pX and is a jump (or a bump) depends only on the head of the i-th minimum (and
is in particular independent of i).

We define the finite-state Markov chain A as follows:

• the states are pairs 〈pX , m〉, where pX is a head and m ∈ {0,+};

• a transition 〈pX , m〉 ⇒ 〈qY ,+〉 is assigned the probability of reaching a jump
with head qY from a minimum with head pX ;

• a transition 〈pX , m〉 ⇒ 〈qY ,+〉 is assigned the probability of reaching a
bump with head qY from a minimum with head pX .

We also call a transition of this chain a macro-step.

19

The abstraction III: Computing transition probabilities

Let [〈pX , m〉 ⇒ 〈qY , m′〉] be the probability of 〈pX , m〉 ⇒ 〈qY , m′〉.

Define [pX↑] = 1−
∑
q∈P

[pXq] (This is the prob. of non-termination).

Theorem [EKM04]:

[〈pX , m〉 ⇒ 〈qY ,+〉] =
1

[pX↑]
∑

pX
x

↪−→ qYZ

x · [qY↑]

[〈pX , m〉 ⇒ 〈qY ,0〉] =
1

[pX↑]

(∑
pX

x
↪−→ rZY

x · [rZq] · [qY↑] +
∑

pX
x

↪−→ qY

x · [qY↑]
)

Again, computing the [pXq] remains the only difficult problem!

20

An example

sX 0.75−−−−−→ sX pI 0.75−−−−−→ pID pD 0.5−−−−→ pI pX 1−−−→ pX

sX 0.25−−−−−→ pIX pI 0.50−−−−−→ pε pD 0.5−−−−→ pDD

1

0.75 0.25

0.5

sX

pX

0.5
pIX pDX

0.5
pIDX

0.5
pDDX

0.5

0.5 0.50.5

21

The chain A

sX 0.75−−−−−→ sX pI 0.75−−−−−→ pID pD 0.5−−−−→ pI pX 1−−−→ pX

sX 0.25−−−−−→ pIX pI 0.50−−−−−→ pε pD 0.5−−−−→ pDD

<pI,+>

<pI,0>

b

0.5

b

b
<pD,0>

<pD,+>

b0.5

0.5

b
a

a
a0.5

<pX,0>

1

a

<sX,0>

a

a =

√
5− 1

2

b =
3−

√
5

4

Observe: there are runs not “represented” in A, but they have measure 0.

22

Accumulated reward along a macro-step

Let E f(〈pX , m〉 ⇒ 〈qY , m′〉) denote the conditional expected accumulated
reward along a macro-step 〈pX , m〉 ⇒ 〈qY , m′〉.

E f(〈pX , m〉 ⇒ 〈qY ,+〉) = f(q)

E f(〈pX , m〉 ⇒ 〈qY ,0〉) =

1

[〈pX , m〉 ⇒ 〈qY ,0〉]
·

(∑
pX

x
↪−→ rZY

x · [rZq] · [qY↑] · (f(q) + E f(rZq))

+
∑

pX
x

↪−→ qY

x · [qY↑] · f(q)

)

We look at these as (conditional) “macro-rewards”.

23

Computing the gain for irreducible A

E(G) = E

(
lim

n→∞
acc. reward after n steps

n

)

= lim
n→∞

(
E(acc. reward after n steps)

n

)

= lim
n→∞

(
E(acc. reward after n macro-steps)

E(steps executed after n macro-steps)

)

=
E(aver. macro-reward in steady st.)

E(aver. length of a macro-step in steady st.)

=

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E f(〈pX , m〉 ⇒ 〈qY , m′〉)

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E1(pXq)

24

Computing the gain for irreducible A

E(G) = E

(
lim

n→∞
acc. reward after n steps

n

)

= lim
n→∞

(
E(acc. reward after n steps)

n

)

= lim
n→∞

(
E(acc. reward after n macro-steps)

E(steps executed after n macro-steps)

)

=
E(aver. macro-reward in steady st.)

E(aver. length of a macro-step in steady st.)

=

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E f(〈pX , m〉 ⇒ 〈qY , m′〉)

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E1(pXq)

25

Computing the gain for irreducible A

E(G) = E

(
lim

n→∞
acc. reward after n steps

n

)

= lim
n→∞

(
E(acc. reward after n steps)

n

)

= lim
n→∞

(
E(acc. reward after n macro-steps)

E(steps executed after n macro-steps)

)

=
E(aver. macro-reward in steady st.)

E(aver. length of a macro-step in steady st.)

=

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E f(〈pX , m〉 ⇒ 〈qY , m′〉)

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E1(pXq)

26

Computing the gain for irreducible A

E(G) = E

(
lim

n→∞
acc. reward after n steps

n

)

= lim
n→∞

(
E(acc. reward after n steps)

n

)

= lim
n→∞

(
E(acc. reward after n macro-steps)

E(steps executed after n macro-steps)

)

=
E(aver. macro-reward in steady st.)

E(aver. length of a macro-step in steady st.)

=

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E f(〈pX , m〉 ⇒ 〈qY , m′〉)

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E1(pXq)

27

Computing the gain for irreducible A

E(G) = E

(
lim

n→∞
acc. reward after n steps

n

)

= lim
n→∞

(
E(acc. reward after n steps)

n

)

= lim
n→∞

(
E(acc. reward after n macro-steps)

E(steps executed after n macro-steps)

)

=
E(aver. macro-reward in steady st.)

E(aver. length of a macro-step in steady st.)

=

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E f(〈pX , m〉 ⇒ 〈qY , m′〉)

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E1(pXq)

28

Computing the gain for irreducible A

E(G) = E

(
lim

n→∞
acc. reward after n steps

n

)

= lim
n→∞

(
E(acc. reward after n steps)

n

)

= lim
n→∞

(
E(acc. reward after n macro-steps)

E(steps executed after n macro-steps)

)

=
E(aver. macro-reward in steady st.)

E(aver. length of a macro-step in steady st.)

=

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E f(〈pX , m〉 ⇒ 〈qY , m′〉)

∑
〈pX ,m〉 x⇒〈qY ,m′〉

(π(〈pX , m〉) · x) · E1(pXq)

29

Linear reward functions

Recall: f(pα) = g(p) +
∑

X∈Γ

h(X) ·#X(α)

Key issue: compute E f(pXq).

E f(pXq) =
1

[pXq]
·
(∑

pX
x

↪−→ qε

x · f(q)

+
∑

pX
x

↪−→ rY

x · [rYq] · (f(rY) + E f(rYq))

+
∑

pX
x

↪−→ rYZ

x ·
∑
s∈P

[rYs] · [sZq] · (f(rYZ) + E f(rYs) + E f(sZq)) + h(Z) · E1(rYs)

)

30

Probability of performance

What is the probability that the average service time of a run is between 30 and
32 seconds?

What is the probability of those runs where the average service time is between
30 and 32 seconds, and the average deviation from 31 seconds is at most 5
seconds?

Theorem [BEK05] (very informally): Whether a run satisfies the property
depends only on

• the BSCC hit by its corresponding “macro-run”, and

• whether the stack content at the hit point belongs to an effectively computable
regular language.

31

Conclusions

PPDS are a “tractable” class of infinite-state Markov chains.

Classical performance evaluation problems solvable by means of a finite-state
abstraction.

Price to pay: from linear to quadratic systems of equations.

Thank you for your attention!

32

Conclusions

PPDS are a “tractable” class of infinite-state Markov chains.

Classical performance evaluation problems solvable by means of a finite-state
abstraction.

Price to pay: from linear to quadratic systems of equations.

Thank you for your attention!

33

The probability space

Run: maximal path of configurations (infinite or finite but ending at configuration
with empty stack)

Sample space: runs starting at an initial configuration p0α0

σ-algebra: generated by the basic cylinders Run(w), the set of runs that start
with the finite sequence w of configurations.

Probability function: the probability of Run(w) is the product of the probabilities
associated to the sequence of rules that ‘generate’ w

34

