
Verification of Infinite-state Systems

Javier Esparza

Software Reliability and Security Group

Institute for Formal Methods in Computer Science

University of Stuttgart

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software.

Three main research questions:

Integration of the techniques in the system development process.

- PathStar [Holzmann, Smith, IEEE Trans. on Soft. Eng.]:
Checking Lucent’s PathStar access server.

- Slam [Ball, Rajamani, POPL’02.]: Checking Windows XP drivers.

Automatic extraction of formal models from code.

- Work of the abstract interpretation and static analysis community.

- Bandera [Corbett,Dwyer,Hatcliff et al., ICSE’00]:
From Java code to model-checkable models through abstraction/static
analysis.

Exploration of infinite-state spaces.

1

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software.

Three main research questions:

Integration of the techniques in the system development process.

- PathStar [Holzmann, Smith, IEEE Trans. on Soft. Eng.]:
Checking Lucent’s PathStar access server.

- Slam [Ball, Rajamani, POPL’02.]: Checking Windows XP drivers.

Automatic extraction of formal models from code.

- Work of the abstract interpretation and static analysis community.

- Bandera [Corbett,Dwyer,Hatcliff et al., ICSE’00]:
From Java code to model-checkable models through abstraction/static
analysis.

Exploration of infinite-state spaces.

2

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software.

Three main research questions:

Integration of the techniques in the system development process.

- PathStar [Holzmann, Smith, IEEE Trans. on Soft. Eng.]:
Checking Lucent’s PathStar access server.

- Slam [Ball, Rajamani, POPL’02.]: Checking Windows XP drivers.

Automatic extraction of formal models from code.

- Work of the abstract interpretation and static analysis community.

- Bandera [Corbett,Dwyer,Hatcliff et al., ICSE’00]:
From Java code to model-checkable models through abstraction/static
analysis.

Exploration of infinite-state spaces.

3

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software.

Three main research questions:

Integration of the techniques in the system development process.

- PathStar [Holzmann, Smith, IEEE Trans. on Soft. Eng.]:
Checking Lucent’s PathStar access server.

- Slam [Ball, Rajamani, POPL’02.]: Checking Windows XP drivers.

Automatic extraction of formal models from code.

- Work of the abstract interpretation and static analysis community.

- Bandera [Corbett,Dwyer,Hatcliff et al., ICSE’00]:
From Java code to model-checkable models through abstraction/static
analysis.

Exploration of infinite-state spaces.

4

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software.

Three main research questions:

Integration of the techniques in the system development process.

- PathStar [Holzmann, Smith, IEEE Trans. on Soft. Eng.]:
Checking Lucent’s PathStar access server.

- Slam [Ball, Rajamani, POPL’02.]: Checking Windows XP drivers.

Automatic extraction of formal models from code.

- Work of the abstract interpretation and static analysis community.

- Bandera [Corbett,Dwyer,Hatcliff et al., ICSE’00]:
From Java code to model-checkable models through abstraction/static
analysis.

Exploration of infinite-state spaces.

5

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software.

Three main research questions:

Integration of the techniques in the system development process.

- PathStar [Holzmann, Smith, IEEE Trans. on Soft. Eng.]:
Checking Lucent’s PathStar access server.

- Slam [Ball, Rajamani, POPL’02.]: Checking Windows XP drivers.

Automatic extraction of formal models from code.

- Work of the abstract interpretation and static analysis community.

- Bandera [Corbett,Dwyer,Hatcliff et al., ICSE’00]:
From Java code to model-checkable models through abstraction/static
analysis.

Exploration of infinite-state spaces.

6

Integration in the system development process

PathStar
Checking a telephone switch.

- One system
- Verification interleaved with
design (300 versions)

- Highly concurrent code
- Complex specification
(80/200 properties)

Slam
Checking Windows XP drivers.

- Many systems
- Post-mortem verification

- Sequential code
- Simple specification
(i.e.,correct locking/unlocking)

7

Sources of infinity in software systems

Data manipulation: integers, lists, trees, more general pointer structures, . . .

Control structures: procedures , process creation, . . .

Asynchronous communication: unbounded FIFO queues.

Parameters: number of processes, duration of delays . . .

Real-time: discrete or dense domains.

8

Current approach of (most of) the ISMC community

Model data abstractions of the program by means of extended automata or
equivalent models.

Using the automata theoretic-approach to model checking, reduce the
verification problem to reachability or repeated reachability problems.
(See Moshe Vardi’s course.)

Develop algorithms or semi-algorithms for these problems using symbolic
search, accelerations, and learning.
(See this course.)

Reintroduce the abstracted data incrementally by means of predicate abstraction
and counterexample-guided abstraction refinement.
(See Orna Grumberg’s course.)

9

Current approach of (most of) the ISMC community

Model data abstractions of the program by means of extended automata or
equivalent models.

Using the automata theoretic-approach to model checking, reduce the
verification problem to reachability or repeated reachability problems.
(See Moshe Vardi’s course.)

Develop algorithms or semi-algorithms for these problems using symbolic
search, accelerations, and learning.
(See this course.)

Reintroduce the abstracted data incrementally by means of predicate abstraction
and counterexample-guided abstraction refinement.
(See Orna Grumberg’s course.)

10

Current approach of (most of) the ISMC community

Model data abstractions of the program by means of extended automata or
equivalent models.

Using the automata theoretic-approach to model checking, reduce the
verification problem to reachability or repeated reachability problems.
(See Moshe Vardi’s course.)

Develop algorithms or semi-algorithms for these problems using symbolic
search, accelerations, and learning.
(See this course.)

Reintroduce the abstracted data incrementally by means of predicate abstraction
and counterexample-guided abstraction refinement.
(See Orna Grumberg’s course.)

11

Current approach of (most of) the ISMC community

Model data abstractions of the program by means of extended automata or
equivalent models.

Using the automata theoretic-approach to model checking, reduce the
verification problem to reachability or repeated reachability problems.
(See Moshe Vardi’s course.)

Develop algorithms or semi-algorithms for these problems using symbolic
search, accelerations, and learning.
(See this course.)

Reintroduce the abstracted data incrementally by means of predicate abstraction
and counterexample-guided abstraction refinement.
(See Orna Grumberg’s course.)

12

Extended automata: Syntax

Extended automaton = automaton whose transitions are

guarded by and operate on data structures.

An extended automaton is a tuple E = (X , Q, T , G, A) where

• X = {x1, . . . , xn} is a finite set of variables over sets V1, . . . , Vn of values,

• Q is a finite set of control states,

• T ⊆ Q × Q is a set of transitions or rules,

• G associates to each transition a guard
(a predicate over X , the condition under which the transition can be taken),

• A associates to each transition an action
(a possibly nondeterministic assignment to X)

Notation for transitions: q g−→
a

q′, where g guard and a action.

Remark: variables over finite sets of values can be encoded into the states.

13

Extended automata: Semantics

A configuration is a tuple 〈q, v1, . . . , vn〉, where

• q is a state, and

• v1, . . . , vn is a valuation of x1, . . . , xn (i.e., vi ∈ Vi for every 1 ≤ i ≤ n).

The transition system TE of an extended automaton E has:

• the set of all configurations as nodes, and

• an edge 〈q, v1, . . . , vn〉 −→ 〈q′, v ′1, . . . , v ′n〉 iff E has a transition q g−→
a

q′

such that

- v1, . . . , vn satisfies the guard g, and

- v ′1, . . . , v ′n is one of the possible results of applying a to v1, . . . , vn.

14

Some classes of extended automata

Automata Variables Transition

Timed automata clocks (reals) q c1≥2−−−−→
c2:=0

q′

Pushdown automata stack q top=a−−−−−→
a/ba

q′

(Ext. of) Petri nets counters (integers) q
x1=0−−−−−−→

x2:=x2+x3
q′

FIFO automata queues q l1 6=ε−−−−−−−→
l2?a

q′

15

Networks of extended automata

A network of extended automata (or just a network) is a tuple 〈E1, . . . , Em〉 of
extended automata over the same set of variables X .

The asynchronous product of a network 〈E1, . . . , Em〉 is the extended automaton
having

• the set Q = Q1 × . . .× Qm as states, where Q1, . . . , Qm are the sets of
states of E1, . . . , Em, and

• for every i ∈ {1, . . . , m}, every state 〈q1, q2, . . . , qm〉 ∈ Q and every
transition qi

g−→
a

q′i of Ei , a transition

〈q1, . . . , qi−1, qi , qi+1, . . . , qm〉 g−→
a
〈q1, . . . , qi−1, q′i , qi+1, . . . , qm〉

16

The reachability problem

Let c, c′ be two configurations of an extended automaton E . We say that c′ is
reachable from c if there is a path in TE leading from c to c′.

We consider the following problem:

• Given: An extended automaton E , a set I of initial configurations,

a set D of dangerous configurations.

• Decide: Is some dangerous configuration reachable

from some initial configuration ?

The sets I and D may be infinite.

17

Symbolic search

A general framework for the reachability problem

Let post(C) denote the immediate successors of a (possibly infinite!) set C of
configurations

Forward symbolic search

Initialize C := I

Iterate C := C ∪ post(C) until

C ∩ D 6= ∅; return “reachable”, or

a fixpoint is reached; return “non-reachable”

Backward search: exchange I and D, replace post by pre.

Question: when is symbolic search effective?

18

(Forward) Symbolic search effective if . . .

1. each C ∈ C has a symbolic finite representation,

2. I ∈ C,

3. if C ∈ C, then C ∪ post(C) ∈ C (and effectively computable),

4. emptiness of C ∩ D is decidable,

5. C1 = C2 is decidable (to check if fixpoint has been reached),, and

6. any chain C1 ⊆ C2 ⊆ C3 . . . reaches a fixpoint after finitely many steps.

19

Remarks

Similar conditions for backward search.

The shape of I is determined by the model.

The shape of D is determined by the specification.

This asymmetry can make one of the two searches far more useful than the
other.

20

Program for the rest of the course

We consider four classes of systems, and use them to illustrate four different
techniques to obtain an effective symbolic search.

• Timed automata: Finite partitions.

• Broadcast protocols: Well quasi-orders.

• Pushdown automata: Accelerations.

• (Lossy) channel systems: Learning.

21

Timed automata

Timed automata

q0 q1

q2

q3
true/y := 0

y = 1 / id

x < 1 / id

x < 1 / id

y < 1 / y := 0

x > 1 / id

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

Automata extended with clocks (non-negative real variables).

Time-elapse transitions: self-loops, no guard, the action adds an arbitrary
positive real to all clocks (same for all).

Location-switch transitions: guarded by boolean combination of comparisons
with integer bounds, the action resets a subset of clocks.

22

Timed automata

q0 q1

q2

q3
true/y := 0

y = 1 / id

x < 1 / id

x < 1 / id

y < 1 / y := 0

x > 1 / id

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

Automata extended with clocks (non-negative real variables).

Time-elapse transitions: self-loops, no guard, the action adds an arbitrary
positive real to all clocks (same for all).

Location-switch transitions: guarded by boolean combination of comparisons
with integer bounds, the action resets a subset of clocks.

23

Case study: Fischer’s mutex protocol

A simplified version (so that the analysis can be visualized in one slide).

var v: {1,2 } init 1;

delay < 1; delay < 1;

v:= 1; v:= 2;

delay > 1; delay > 1;

if v = 1 then goto cs1 if v = 2 then goto cs2

24

Model

var v : {1, 2} init 1

var c1, c2 : clock init 0

A1 B1 CS1

A2 B2 CS2

c1 < 1
v := 1, c1 := 0

c1 > 1 ∧ v = 1

c2 < 1
v := 2, c2 := 0

c2 > 1 ∧ v = 2

Network of 2 timed automata.

Equivalent to one single automaton with 9 states.

25

Symbolic search for timed automata

The set I of initial configurations is usually of the form

{〈q,0, . . . ,0〉 | q ∈ QI}

The set D of dangerous final configurations is usually of the form

{〈q, t1, . . . , tn〉 | q ∈ QD and t1, . . . , tn ≥ 0}

Question: Is reachability decidable for I and D of this form?

26

Regions

Consider a timed automaton with clocks x1, . . . , xn.

Let max be the maximal constant appearing in the syntactic description of the
automaton

Let Γ be the set of all constraints of the form

xi ≤ k or xi ≥ k or xi − xj ≤ k

where k ∈ {0,1, . . . , max}.

Two configurations 〈q, t〉 and 〈r ,u〉 are equivalent, denoted by 〈q, t〉 ∼ 〈r ,u〉, if

• q = r , and

• for every constraint γ ∈ Γ: t satisfies γ iff u satisfies γ.

An equivalence class of configurations is called a region.

27

Regions

Consider a timed automaton with clocks x1, . . . , xn.

Let max be the maximal constant appearing in the syntactic description of the
automaton

Let Γ be the set of all constraints of the form

xi ≤ k or xi ≥ k or xi − xj ≤ k

where k ∈ {0,1, . . . , max}.

Two configurations 〈q, t〉 and 〈r ,u〉 are equivalent, denoted by 〈q, t〉 ∼ 〈r ,u〉, if

• q = r , and

• for every constraint γ ∈ Γ: t satisfies γ iff u satisfies γ.

An equivalence class of configurations is called a region.

28

Regions

Consider a timed automaton with clocks x1, . . . , xn.

Let max be the maximal constant appearing in the syntactic description of the
automaton

Let Γ be the set of all constraints of the form

xi ≤ k or xi ≥ k or xi − xj ≤ k

where k ∈ {0,1, . . . , max}.

Two configurations 〈q, t〉 and 〈r ,u〉 are equivalent, denoted by 〈q, t〉 ∼ 〈r ,u〉, if

• q = r , and

• for every constraint γ ∈ Γ: t satisfies γ iff u satisfies γ.

An equivalence class of configurations is called a region.

29

Regions

Consider a timed automaton with clocks x1, . . . , xn.

Let max be the maximal constant appearing in the syntactic description of the
automaton

Let Γ be the set of all constraints of the form

xi ≤ k or xi ≥ k or xi − xj ≤ k

where k ∈ {0,1, . . . , max}.

Two configurations 〈q, t〉 and 〈r ,u〉 are equivalent, denoted by 〈q, t〉 ∼ 〈r ,u〉, if

• q = r , and

• for every constraint γ ∈ Γ: t satisfies γ iff u satisfies γ.

An equivalence class of configurations is called a region.

30

Characterizing regions

Given a real number z, let bzc denote its integer and z its fractional part.

〈q, t〉 ∼ 〈r ,u〉 holds iff q = r and for every i, j ∈ {0,1, . . . , max}:

(a) btic = buic or ti > max and ui > max ,

(because k − 1 ≤ ti ≤ k iff k − 1 ≤ ui ≤ k for all k ∈ {1, . . . , max})

(b) if ti , ui ≤ max , then ti = 0 iff ui = 0,

(because k ≤ ti ≤ k iff k ≤ ui ≤ k for all k ∈ {0, . . . , max}))

(c) if ti , ui , tj , uj ≤ max , then ti < tj iff ui < uj .

(because of (a), (b), and ti − tj ≤ 0 iff ui − uj ≤ 0)

Example: 〈q 3.2 4.7 3.5〉 ∼ 〈q 3.7 4.9 3.8〉
〈q 3.2 4.7 3.5〉 6∼ 〈q 3.2 4.7 3.9〉

31

Two observations

The number of regions is bounded by (2max + 2)n · n! · 2n (exercise).

• Exponential in both the number of clocks n and in the maximal constant max
when written in binary.

Two equivalent configurations enable exactly the same transitions.

• Because they satisfy exactly the same guards.

32

Two observations

The number of regions is bounded by (2max + 2)n · n! · 2n (exercise).

• Exponential in both the number of clocks n and in the maximal constant max
when written in binary.

Two equivalent configurations enable exactly the same transitions.

• Because they satisfy exactly the same guards.

33

Effectiveness of forward and backward search

We choose C as the powerset of the set of regions.

Theorem [Alur, Dill, TCS 1994]:
Both forward and backward search satisfy conditions (1) - (6).

Proof for forward search in the next slides, for backward search analogous.

34

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

35

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

36

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

37

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

38

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

39

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

40

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

41

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

42

Proof

1. A region can be finitely represented by

the set of constraints it satisfies (by definition).

√

2. The set I of initial configurations is a union of regions.
√

(0, . . . ,0) is the only time-vector satisfying xi ≤ 0 for i ∈ {1, . . . , n},
and so {〈q,0, . . . ,0〉} is a region for each state q.

3. If C is the union of a set of regions, then so is C ∪ post(C).

It suffices to prove that if C is a region then post(C) is a union of regions.
Take 〈r ,u〉 ∈ post(C) and 〈r ,u′〉 ∼ 〈r ,u〉. We show 〈r ,u′〉 ∈ post(C).
Since 〈r ,u〉 ∈ post(C), there is 〈q, t〉 ∈ C such that 〈q, t〉 −→ 〈r ,u〉.
We consider the cases of time-elapse and location-switch transitions
separately.

43

Time-elapse transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u3 < u1 < 1

〈 q t1 t2 t3 〉 bτc+ τ−−−−−−−−→ 〈 r u1 u2 u3 〉
〈 q 3.1 1.5 2.7 〉 1 + 0.5−−−−−−−−→ 〈 r 4.7 3.0 4.3 〉

∼ ∼
〈 q 3.05 1.25 2.95 〉 1 + 0.75−−−−−−−−−→ 〈 r 4.8 3.0 4.7 〉
〈 q t ′1 t ′2 t ′3 〉 bτc+ δ−−−−−−−−→ 〈 r u′1 u′2 u′3 〉

0 < t ′1 < t ′2 < t ′3 < 1 u′3 < δ < u′1 0 = u′2 < u′3 < u′1 < 1

44

Time-elapse transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u3 < u1 < 1

〈 q t1 t2 t3 〉 bτc+ τ−−−−−−−−→ 〈 r u1 u2 u3 〉
〈 q 3.1 1.5 2.7 〉 1 + 0.5−−−−−−−−→ 〈 r 4.7 3.0 4.3 〉

∼ ∼
〈 q 3.05 1.25 2.95 〉 1 + 0.75−−−−−−−−−→ 〈 r 4.8 3.0 4.7 〉
〈 q t ′1 t ′2 t ′3 〉 bτc+ δ−−−−−−−−→ 〈 r u′1 u′2 u′3 〉

0 < t ′1 < t ′2 < t ′3 < 1 u′3 < δ < u′1 0 = u′2 < u′3 < u′1 < 1

45

Time-elapse transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u3 < u1 < 1

〈 q t1 t2 t3 〉 bτc+ τ−−−−−−−−→ 〈 r u1 u2 u3 〉
〈 q 3.1 1.5 2.7 〉 1 + 0.5−−−−−−−−→ 〈 r 4.7 3.0 4.3 〉

∼ ∼
〈 q 3.05 1.25 2.95 〉 1 + 0.75−−−−−−−−−→ 〈 r 4.8 3.0 4.7 〉
〈 q t ′1 t ′2 t ′3 〉 bτc+ δ−−−−−−−−→ 〈 r u′1 u′2 u′3 〉

0 < t ′1 < t ′2 < t ′3 < 1 u′3 < δ < u′1 0 = u′2 < u′3 < u′1 < 1

46

Time-elapse transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u3 < u1 < 1

〈 q t1 t2 t3 〉 bτc+ τ−−−−−−−−→ 〈 r u1 u2 u3 〉
〈 q 3.1 1.5 2.7 〉 1 + 0.5−−−−−−−−→ 〈 r 4.7 3.0 4.3 〉

∼ ∼
〈 q 3.05 1.25 2.95 〉 1 + 0.75−−−−−−−−−→ 〈 r 4.8 3.0 4.7 〉
〈 q t ′1 t ′2 t ′3 〉 bτc+ δ−−−−−−−−→ 〈 r u′1 u′2 u′3 〉

0 < t ′1 < t ′2 < t ′3 < 1 u′3 < δ < u′1 0 = u′2 < u′3 < u′1 < 1

47

Time-elapse transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u3 < u1 < 1

〈 q t1 t2 t3 〉 bτc+ τ−−−−−−−−→ 〈 r u1 u2 u3 〉
〈 q 3.1 1.5 2.7 〉 1 + 0.5−−−−−−−−→ 〈 r 4.7 3.0 4.3 〉

∼ ∼
〈 q 3.05 1.25 2.95 〉 1 + 0.75−−−−−−−−−→ 〈 r 4.8 3.0 4.7 〉
〈 q t ′1 t ′2 t ′3 〉 bτc+ δ−−−−−−−−→ 〈 r u′1 u′2 u′3 〉

0 < t ′1 < t ′2 < t ′3 < 1 u′3 < δ < u′1 0 = u′2 < u′3 < u′1 < 1

48

Time-elapse transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u3 < u1 < 1

〈 q t1 t2 t3 〉 bτc+ τ−−−−−−−−→ 〈 r u1 u2 u3 〉
〈 q 3.1 1.5 2.7 〉 1 + 0.5−−−−−−−−→ 〈 r 4.7 3.0 4.3 〉

∼ ∼
〈 q 3.05 1.25 2.95 〉 1 + 0.75−−−−−−−−−→ 〈 r 4.8 3.0 4.7 〉
〈 q t ′1 t ′2 t ′3 〉 bτc+ δ−−−−−−−−→ 〈 r u′1 u′2 u′3 〉

0 < t ′1 < t ′2 < t ′3 < 1 u′3 < δ < u′1 0 = u′2 < u′3 < u′1 < 1

49

Time-elapse transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u3 < u1 < 1

〈 q t1 t2 t3 〉 bτc+ τ−−−−−−−−→ 〈 r u1 u2 u3 〉
〈 q 3.1 1.5 2.7 〉 1 + 0.5−−−−−−−−→ 〈 r 4.7 3.0 4.3 〉

∼ ∼
〈 q 3.05 1.25 2.95 〉 1 + 0.75−−−−−−−−−→ 〈 r 4.8 3.0 4.7 〉
〈 q t ′1 t ′2 t ′3 〉 bτc+ δ−−−−−−−−→ 〈 r u′1 u′2 u′3 〉

0 < t ′1 < t ′2 < t ′3 < 1 u′3 < δ < u′1 0 = u′2 < u′3 < u′1 < 1

50

Time-elapse transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u3 < u1 < 1

〈 q t1 t2 t3 〉 bτc+ τ−−−−−−−−→ 〈 r u1 u2 u3 〉
〈 q 3.1 1.5 2.7 〉 1 + 0.5−−−−−−−−→ 〈 r 4.7 3.0 4.3 〉

∼ ∼
〈 q 3.05 1.25 2.95 〉 1 + 0.75−−−−−−−−−→ 〈 r 4.8 3.0 4.7 〉
〈 q t ′1 t ′2 t ′3 〉 bτc+ δ−−−−−−−−→ 〈 r u′1 u′2 u′3 〉

0 < t ′1 < t ′2 < t ′3 < 1 u′3 < δ < u′1 0 = u′2 < u′3 < u′1 < 1

51

Location-switch transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u1 < u3 < 1

〈 r t1 t2 t3 〉 x2 := 0−−−−−−−−→ 〈 r t1 0 t3 〉
〈 r 3.1 1.5 2.7 〉 x2 := 0−−−−−−−−→ 〈 r 3.1 0 2.7 〉

∼ ∼
〈 r 3.3 1.35 2.4 〉 x2 := 0−−−−−−−−→ 〈 r 3.3 0 2.4 〉
〈 r t ′1 t ′2 t ′3 〉 x2 := 0−−−−−−−−→ 〈 r u′1 0 u′3 〉

0 < t ′1 = u′1 < t ′2 < t ′3 = u′3 < 1 0 = u′2 < u′1 < u′3 < 1

52

Location-switch transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u1 < u3 < 1

〈 r t1 t2 t3 〉 x2 := 0−−−−−−−−→ 〈 r t1 0 t3 〉
〈 r 3.1 1.5 2.7 〉 x2 := 0−−−−−−−−→ 〈 r 3.1 0 2.7 〉

∼ ∼
〈 r 3.3 1.35 2.4 〉 x2 := 0−−−−−−−−→ 〈 r 3.3 0 2.4 〉
〈 r t ′1 t ′2 t ′3 〉 x2 := 0−−−−−−−−→ 〈 r u′1 0 u′3 〉

0 < t ′1 = u′1 < t ′2 < t ′3 = u′3 < 1 0 = u′2 < u′1 < u′3 < 1

53

Location-switch transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u1 < u3 < 1

〈 r t1 t2 t3 〉 x2 := 0−−−−−−−−→ 〈 r t1 0 t3 〉
〈 r 3.1 1.5 2.7 〉 x2 := 0−−−−−−−−→ 〈 r 3.1 0 2.7 〉

∼ ∼
〈 r 3.3 1.35 2.4 〉 x2 := 0−−−−−−−−→ 〈 r 3.3 0 2.4 〉
〈 r t ′1 t ′2 t ′3 〉 x2 := 0−−−−−−−−→ 〈 r u′1 0 u′3 〉

0 < t ′1 = u′1 < t ′2 < t ′3 = u′3 < 1 0 = u′2 < u′1 < u′3 < 1

54

Location-switch transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u1 < u3 < 1

〈 r t1 t2 t3 〉 x2 := 0−−−−−−−−→ 〈 r t1 0 t3 〉
〈 r 3.1 1.5 2.7 〉 x2 := 0−−−−−−−−→ 〈 r 3.1 0 2.7 〉

∼ ∼
〈 r 3.3 1.35 2.4 〉 x2 := 0−−−−−−−−→ 〈 r 3.3 0 2.4 〉
〈 r t ′1 t ′2 t ′3 〉 x2 := 0−−−−−−−−→ 〈 r u′1 0 u′3 〉

0 < t ′1 = u′1 < t ′2 < t ′3 = u′3 < 1 0 = u′2 < u′1 < u′3 < 1

55

Location-switch transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u1 < u3 < 1

〈 r t1 t2 t3 〉 x2 := 0−−−−−−−−→ 〈 r t1 0 t3 〉
〈 r 3.1 1.5 2.7 〉 x2 := 0−−−−−−−−→ 〈 r 3.1 0 2.7 〉

∼ ∼
〈 r 3.3 1.35 2.4 〉 x2 := 0−−−−−−−−→ 〈 r 3.3 0 2.4 〉
〈 r t ′1 t ′2 t ′3 〉 x2 := 0−−−−−−−−→ 〈 r u′1 0 u′3 〉

0 < t ′1 = u′1 < t ′2 < t ′3 = u′3 < 1 0 = u′2 < u′1 < u′3 < 1

56

Location-switch transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u1 < u3 < 1

〈 r t1 t2 t3 〉 x2 := 0−−−−−−−−→ 〈 r t1 0 t3 〉
〈 r 3.1 1.5 2.7 〉 x2 := 0−−−−−−−−→ 〈 r 3.1 0 2.7 〉

∼ ∼
〈 r 3.3 1.35 2.4 〉 x2 := 0−−−−−−−−→ 〈 r 3.3 0 2.4 〉
〈 r t ′1 t ′2 t ′3 〉 x2 := 0−−−−−−−−→ 〈 r u′1 0 u′3 〉

0 < t ′1 = u′1 < t ′2 < t ′3 = u′3 < 1 0 = u′2 < u′1 < u′3 < 1

57

Location-switch transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u1 < u3 < 1

〈 r t1 t2 t3 〉 x2 := 0−−−−−−−−→ 〈 r t1 0 t3 〉
〈 r 3.1 1.5 2.7 〉 x2 := 0−−−−−−−−→ 〈 r 3.1 0 2.7 〉

∼ ∼
〈 r 3.3 1.35 2.4 〉 x2 := 0−−−−−−−−→ 〈 r 3.3 0 2.4 〉
〈 r t ′1 t ′2 t ′3 〉 x2 := 0−−−−−−−−→ 〈 r u′1 0 u′3 〉

0 < t ′1 = u′1 < t ′2 < t ′3 = u′3 < 1 0 = u′2 < u′1 < u′3 < 1

58

Location-switch transitions (“proof by example”):
√

0 < t1 < t2 < t3 < 1 0 = u2 < u1 < u3 < 1

〈 r t1 t2 t3 〉 x2 := 0−−−−−−−−→ 〈 r t1 0 t3 〉
〈 r 3.1 1.5 2.7 〉 x2 := 0−−−−−−−−→ 〈 r 3.1 0 2.7 〉

∼ ∼
〈 r 3.3 1.35 2.4 〉 x2 := 0−−−−−−−−→ 〈 r 3.3 0 2.4 〉
〈 r t ′1 t ′2 t ′3 〉 x2 := 0−−−−−−−−→ 〈 r u′1 0 u′3 〉

0 < t ′1 = u′1 < t ′2 < t ′3 = u′3 < 1 0 = u′2 < u′1 < u′3 < 1

59

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

60

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

61

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

62

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

63

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

64

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

65

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

66

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

67

4. Emptiness of C ∩ D is decidable.
√

Just check if C contains some configuration with some state of QD as first
element.

5. C1 = C2 is decidable.
√

A region is represented by the constraints it satisfies.
Two regions are equal iff their representations are equal.
Two sets of regions are equal iff they contain the same regions.

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint.
√

Follows from the fact that the set of regions is finite.

68

(One half of) The region graph of Fischer’s protocol

A1, A2, v = 1
c1 = c2 = 0

A1, A2, v = 1
0 < c1 = c2 < 1

A1, A2, v = 1
c1 = c2 = 1

A1, A2, v = 1
1 < c1, c2

A1, B2, v = 2
c1 = c2 = 0

A1, B2, v = 2
0 < c1 < 1, c2 = 0

A1, B2, v = 2
0 < c2 < c1 < 1

A1, B2, v = 2
0 < c2 < c1 = 1

A1, B2, v = 2
0 < c2 < 1 < c1

A1, B2, v = 2
c2 = 1 < c1

A1, B2, v = 2
1 < c1, c2

A1, CS2, v = 2
1 < c1, c2

69

Complexity of the reachability problem

The reachability problem is PSPACE-complete.

Reason: exponential dependence in the number of clocks or the size of max is
unavoidable.

The problem remains PSPACE-hard if the constants or the number of clocks (but
not both) are bounded.

70

Repeated reachability for timed automata

A control state is repeatedly reachable if some non-zeno infinite execution
containing infinitely many location-switch transitions visits the control state
infinitely often.

The repeated reachability problem can be solved easily using the region graph.

71

To know more

Tutorial slides by Rajeev Alur, available at
http://www.cis.upenn.edu/ alur/talks.html

Check the publications of: Alur, Asarin, Bouyer, Courcoubetis, Dill, Henzinger,
Laroussinie, Larsen, Maler, Sifakis, Wilke

UPPAAL is a popular tool for verification of timed automata,
http://www.uppaal.com/

72

Broadcast protocols

Broadcast protocols

Introduced by Emerson and Namjoshi in LICS ’98.

All processes execute the same algorithm, i.e., all finite automata are identical.

Processes are indistinguishable (no IDs).

Communication mechanisms:

Rendezvous: two processes exchange a message and move to new states.

Broadcasts: a process sends a message to all others,

all processes move to new states.

We introduce syntax and semantics and show translation into extended
automata.

73

Syntax

q1

q2q3

a!!

a??

a??

a??

b?

c

b!

a!! : broadcast a message along (channel) a

a?? : receive a broadcasted message along a

b! : send a message to one process along b

b? : receive a message from one process along b

c : change state without communicating with anybody

74

Semantics

The global state of a broadcast protocol is completely
determined by the number of processes in each state.

Configuration: mapping c : Q → IN

represented by the vector (c(q1), . . . , c(qn)).

Semantics for a given initial configuration: finite transition system with

configurations as nodes.

75

q1

q2q3

a!!

a??

a??

a??

b?

c

b!

(3,1,2) −→ (4,0,2) (silent move c)

(3,1,2) −→ (3,2,1) (rendezvous b)

(3,1,2) −→ (2,1,3) (broadcast a)

(185,3425,17) −→ (17,1,3609) (broadcast a)

76

Parametrized configuration: partial mapping p : Q → IN.

• Intuition: “configuration with holes”.

• Formally: set of configurations (total mappings matching p).

Infinite transition system of the broadcast protocol:

• Fix an initial parametrized configuration p0.

• Take the union of all finite transition systems for each configuration c ∈ p0.

77

Case study: A MESI cache-coherence protocol

I S

M E

w??
rm??

rh

w

rm??

w??

rh

w!!

rm!!

w??

w!!

rh

rh : read hit

rm : read miss

w : write hit/write miss

78

Broadcast protocols as extended automata

We translate the MESI-protocol into an extended automaton.

We take:

• One (non-negative) integer variable per state of the protocol: m, e, s, i .

• One single control state q.

• One transition q g−→
a

q for each send transition or silent move of the protocol,
see next slide.

A configuration (n1, . . . , nk) of a broadcast protocol corresponds to the
configuration 〈q, n1, . . . , nk〉 of the extended automaton.

79

Transition Guard Action

I rm!!−−−→ S i ≥ 1 m′ = m e′ = 0 s′ = m + e + s + 1 i ′ = i − 1

I w!!−−−→ E i ≥ 1 m′ = 0 e′ = 1 s′ = 0 i ′ = m + e + s + i − 1

S w!!−−−→ E s ≥ 1 m′ = 0 e′ = 1 s′ = 0 i ′ = m + e + s + i − 1

S rh−−→ S s ≥ 1 m′ = m e′ = e s′ = s i ′ = i

E w−−→ M e ≥ 1 m′ = m + 1 e′ = e − 1 s′ = s i ′ = i

E rh−−→ E e ≥ 1 m′ = m e′ = e s′ = s i ′ = i

M rh−−→ M m ≥ 1 m′ = m e′ = e s′ = s i ′ = i

80

Reachability in broadcast protocols

Typical set I of initial configurations: parametrized configuration.

Typical set D of final configurations: upward-closed sets.

• U is an upward-closed set of configurations if

c ∈ U and c′ ≥ c implies c′ ∈ U

where ≥ is the pointwise order on INn.

• Example: states M and S of MESI protocol should be mutually exclusive

D = {(m, e, s, i) | m ≥ 1 ∧ s ≥ 1}

Question: Is reachability decidable if I is a parametric configuration

and D is an upward-closed set?

81

First try: Forward search

Since I ∈ C is required by condition (2), the family C must contain all
parametrized configurations.

Satisfies (1) - (5) but not (6). Termination fails in very simple cases.

q1 q2

a?? a??

a!!

(t,0)
a−→ (t,1)

a−→ (t,2)
a−→ . . .

82

Second try: Backward search

Since D ∈ C is required by condition (2), the family C must contain all
upward-closed sets.

Theorem [Abdulla et al., I&C 160, 2000], [E. et al., LICS’99]
Backward search satisfies conditions (1) - (6).

Proof in the next slides.

83

Proof

1. An upward-closed set can be finitely represented by

its set of minimal elements w.r.t. the pointwise order ≤

√

- An upward-closed set is determined by its minimal elements

- Any subset of Nk has finitely many minimal elements

Every infinite sequence c1, c2, c3, . . . of vectors of Nk contains a
non-decreasing infinite subsequence ci1 ≤ ci2 ≤ ci3 . . . (Dickson’s lemma)

Assume some X ⊆ Nk has infinitely many minimal elements.
Enumerate them in a sequence m1, m2

By Dickson’s lemma, mi ≤ mj for some i < j .

But then mj is not minimal.

Contradiction.

84

Proof

1. An upward-closed set can be finitely represented by

its set of minimal elements w.r.t. the pointwise order ≤

√

- An upward-closed set is determined by its minimal elements

- Any subset of Nk has finitely many minimal elements

Every infinite sequence c1, c2, c3, . . . of vectors of Nk contains a
non-decreasing infinite subsequence ci1 ≤ ci2 ≤ ci3 . . . (Dickson’s lemma)

Assume some X ⊆ Nk has infinitely many minimal elements.
Enumerate them in a sequence m1, m2

By Dickson’s lemma, mi ≤ mj for some i < j .

But then mj is not minimal.

Contradiction.

85

Proof

1. An upward-closed set can be finitely represented by

its set of minimal elements w.r.t. the pointwise order ≤

√

- An upward-closed set is determined by its minimal elements

- Any subset of Nk has finitely many minimal elements

Every infinite sequence c1, c2, c3, . . . of vectors of Nk contains a
non-decreasing infinite subsequence ci1 ≤ ci2 ≤ ci3 . . . (Dickson’s lemma)

Assume some X ⊆ Nk has infinitely many minimal elements.
Enumerate them in a sequence m1, m2

By Dickson’s lemma, mi ≤ mj for some i < j .

But then mj is not minimal.

Contradiction.

86

Proof

1. An upward-closed set can be finitely represented by

its set of minimal elements w.r.t. the pointwise order ≤

√

- An upward-closed set is determined by its minimal elements

- Any subset of Nk has finitely many minimal elements

Every infinite sequence c1, c2, c3, . . . of vectors of Nk contains a
non-decreasing infinite subsequence ci1 ≤ ci2 ≤ ci3 . . . (Dickson’s lemma)

Assume some X ⊆ Nk has infinitely many minimal elements.
Enumerate them in a sequence m1, m2

By Dickson’s lemma, mi ≤ mj for some i < j .

But then mj is not minimal.

Contradiction.

87

Proof

1. An upward-closed set can be finitely represented by

its set of minimal elements w.r.t. the pointwise order ≤

√

- An upward-closed set is determined by its minimal elements

- Any subset of Nk has finitely many minimal elements

Every infinite sequence c1, c2, c3, . . . of vectors of Nk contains a
non-decreasing infinite subsequence ci1 ≤ ci2 ≤ ci3 . . . (Dickson’s lemma)

Assume some X ⊆ Nk has infinitely many minimal elements.
Enumerate them in a sequence m1, m2

By Dickson’s lemma, mi ≤ mj for some i < j .

But then mj is not minimal.

Contradiction.

88

Proof

1. An upward-closed set can be finitely represented by

its set of minimal elements w.r.t. the pointwise order ≤

√

- An upward-closed set is determined by its minimal elements

- Any subset of Nk has finitely many minimal elements

Every infinite sequence c1, c2, c3, . . . of vectors of Nk contains a
non-decreasing infinite subsequence ci1 ≤ ci2 ≤ ci3 . . . (Dickson’s lemma)

Assume some X ⊆ Nk has infinitely many minimal elements.
Enumerate them in a sequence m1, m2

By Dickson’s lemma, mi ≤ mj for some i < j .

But then mj is not minimal.

Contradiction.

89

Proof

1. An upward-closed set can be finitely represented by

its set of minimal elements w.r.t. the pointwise order ≤

√

- An upward-closed set is determined by its minimal elements

- Any subset of Nk has finitely many minimal elements

Every infinite sequence c1, c2, c3, . . . of vectors of Nk contains a
non-decreasing infinite subsequence ci1 ≤ ci2 ≤ ci3 . . . (Dickson’s lemma)

Assume some X ⊆ Nk has infinitely many minimal elements.
Enumerate them in a sequence m1, m2

By Dickson’s lemma, mi ≤ mj for some i < j .

But then mj is not minimal.

Contradiction.

90

Proof

1. An upward-closed set can be finitely represented by

its set of minimal elements w.r.t. the pointwise order ≤

√

- An upward-closed set is determined by its minimal elements

- Any subset of Nk has finitely many minimal elements

Every infinite sequence c1, c2, c3, . . . of vectors of Nk contains a
non-decreasing infinite subsequence ci1 ≤ ci2 ≤ ci3 . . . (Dickson’s lemma)

Assume some X ⊆ Nk has infinitely many minimal elements.
Enumerate them in a sequence m1, m2

By Dickson’s lemma, mi ≤ mj for some i < j .

But then mj is not minimal.

Contradiction.

91

2. D is upward-closed
√

3. If C is upward-closed then so is C ∪ pre(C).
√

Since union of upward-closed sets is upward-closed, it suffices to prove that
pre(C) is upward-closed.

Take c ∈ pre(C) and c′ ≥ c. We show c′ ∈ pre(C).
Key idea: “adding more processes to a configuration cannot disable any
transition”.

c −→ d ∈ C

≤ ≤
c′ −→ d ′∈ C

92

2. D is upward-closed
√

3. If C is upward-closed then so is C ∪ pre(C).
√

Since union of upward-closed sets is upward-closed, it suffices to prove that
pre(C) is upward-closed.

Take c ∈ pre(C) and c′ ≥ c. We show c′ ∈ pre(C).
Key idea: “adding more processes to a configuration cannot disable any
transition”.

c −→ d ∈ C

≤ ≤
c′ −→ d ′∈ C

93

2. D is upward-closed
√

3. If C is upward-closed then so is C ∪ pre(C).
√

Since union of upward-closed sets is upward-closed, it suffices to prove that
pre(C) is upward-closed.

Take c ∈ pre(C) and c′ ≥ c. We show c′ ∈ pre(C).
Key idea: “adding more processes to a configuration cannot disable any
transition”.

c −→ d ∈ C

≤ ≤
c′ −→ d ′∈ C

94

2. D is upward-closed
√

3. If C is upward-closed then so is C ∪ pre(C).
√

Since union of upward-closed sets is upward-closed, it suffices to prove that
pre(C) is upward-closed.

Take c ∈ pre(C) and c′ ≥ c. We show c′ ∈ pre(C).
Key idea: “adding more processes to a configuration cannot disable any
transition”.

c −→ d ∈ C

≤ ≤
c′ −→ d ′∈ C

95

2. D is upward-closed
√

3. If C is upward-closed then so is C ∪ pre(C).
√

Since union of upward-closed sets is upward-closed, it suffices to prove that
pre(C) is upward-closed.

Take c ∈ pre(C) and c′ ≥ c. We show c′ ∈ pre(C).
Key idea: “adding more processes to a configuration cannot disable any
transition”.

c −→ d ∈ C

≤ ≤
c′ −→ d ′∈ C

96

2. D is upward-closed
√

3. If C is upward-closed then so is C ∪ pre(C).
√

Since union of upward-closed sets is upward-closed, it suffices to prove that
pre(C) is upward-closed.

Take c ∈ pre(C) and c′ ≥ c. We show c′ ∈ pre(C).
Key idea: “adding more processes to a configuration cannot disable any
transition”.

c −→ d ∈ C

≤ ≤
c′ −→ d ′∈ C

97

2. D is upward-closed
√

3. If C is upward-closed then so is C ∪ pre(C).
√

Since union of upward-closed sets is upward-closed, it suffices to prove that
pre(C) is upward-closed.

Take c ∈ pre(C) and c′ ≥ c. We show c′ ∈ pre(C).
Key idea: “adding more processes to a configuration cannot disable any
transition”.

c −→ d ∈ C

≤ ≤
c′ −→ d ′∈ C

98

2. D is upward-closed
√

3. If C is upward-closed then so is C ∪ pre(C).
√

Since union of upward-closed sets is upward-closed, it suffices to prove that
pre(C) is upward-closed.

Take c ∈ pre(C) and c′ ≥ c. We show c′ ∈ pre(C).
Key idea: “adding more processes to a configuration cannot disable any
transition”.

c −→ d ∈ C

≤ ≤
c′ −→ d ′∈ C

99

4. C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

6. Any chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets

reaches a fixpoint after finitely many steps.

√

Assume this is not the case: U1 ⊂ U2 ⊂ U3 . . .

Pick some minimal element m1 ∈ U1.
Pick for every i > 1 some minimal element mi /∈ U1 ∪ . . . ∪ Ui−1 = Ui−1.
Consider the sequence m1, m2, m3, . . .

Let i, j be any two indices satisfying i < j .
Since mj /∈ Ui , we have mi 6≤ mj by upward-closedness of Ui .

Contradiction to Dickson’s lemma.

100

4. C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

6. Any chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets

reaches a fixpoint after finitely many steps.

√

Assume this is not the case: U1 ⊂ U2 ⊂ U3 . . .

Pick some minimal element m1 ∈ U1.
Pick for every i > 1 some minimal element mi /∈ U1 ∪ . . . ∪ Ui−1 = Ui−1.
Consider the sequence m1, m2, m3, . . .

Let i, j be any two indices satisfying i < j .
Since mj /∈ Ui , we have mi 6≤ mj by upward-closedness of Ui .

Contradiction to Dickson’s lemma.

101

4. C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

6. Any chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets

reaches a fixpoint after finitely many steps.

√

Assume this is not the case: U1 ⊂ U2 ⊂ U3 . . .

Pick some minimal element m1 ∈ U1.
Pick for every i > 1 some minimal element mi /∈ U1 ∪ . . . ∪ Ui−1 = Ui−1.
Consider the sequence m1, m2, m3, . . .

Let i, j be any two indices satisfying i < j .
Since mj /∈ Ui , we have mi 6≤ mj by upward-closedness of Ui .

Contradiction to Dickson’s lemma.

102

4. C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

6. Any chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets

reaches a fixpoint after finitely many steps.

√

Assume this is not the case: U1 ⊂ U2 ⊂ U3 . . .

Pick some minimal element m1 ∈ U1.
Pick for every i > 1 some minimal element mi /∈ U1 ∪ . . . ∪ Ui−1 = Ui−1.
Consider the sequence m1, m2, m3, . . .

Let i, j be any two indices satisfying i < j .
Since mj /∈ Ui , we have mi 6≤ mj by upward-closedness of Ui .

Contradiction to Dickson’s lemma.

103

4. C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

6. Any chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets

reaches a fixpoint after finitely many steps.

√

Assume this is not the case: U1 ⊂ U2 ⊂ U3 . . .

Pick some minimal element m1 ∈ U1.
Pick for every i > 1 some minimal element mi /∈ U1 ∪ . . . ∪ Ui−1 = Ui−1.
Consider the sequence m1, m2, m3, . . .

Let i, j be any two indices satisfying i < j .
Since mj /∈ Ui , we have mi 6≤ mj by upward-closedness of Ui .

Contradiction to Dickson’s lemma.

104

4. C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

6. Any chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets

reaches a fixpoint after finitely many steps.

√

Assume this is not the case: U1 ⊂ U2 ⊂ U3 . . .

Pick some minimal element m1 ∈ U1.
Pick for every i > 1 some minimal element mi /∈ U1 ∪ . . . ∪ Ui−1 = Ui−1.
Consider the sequence m1, m2, m3, . . .

Let i, j be any two indices satisfying i < j .
Since mj /∈ Ui , we have mi 6≤ mj by upward-closedness of Ui .

Contradiction to Dickson’s lemma.

105

4. C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

6. Any chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets

reaches a fixpoint after finitely many steps.

√

Assume this is not the case: U1 ⊂ U2 ⊂ U3 . . .

Pick some minimal element m1 ∈ U1.
Pick for every i > 1 some minimal element mi /∈ U1 ∪ . . . ∪ Ui−1 = Ui−1.
Consider the sequence m1, m2, m3, . . .

Let i, j be any two indices satisfying i < j .
Since mj /∈ Ui , we have mi 6≤ mj by upward-closedness of Ui .

Contradiction to Dickson’s lemma.

106

4. C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

6. Any chain U1 ⊆ U2 ⊆ U3 . . . of upward-closed sets

reaches a fixpoint after finitely many steps.

√

Assume this is not the case: U1 ⊂ U2 ⊂ U3 . . .

Pick some minimal element m1 ∈ U1.
Pick for every i > 1 some minimal element mi /∈ U1 ∪ . . . ∪ Ui−1 = Ui−1.
Consider the sequence m1, m2, m3, . . .

Let i, j be any two indices satisfying i < j .
Since mj /∈ Ui , we have mi 6≤ mj by upward-closedness of Ui .

Contradiction to Dickson’s lemma.

107

Complexity

Consider the sequences C = c1, c2, c3, . . ., where ci ∈ Nk for all i ≥ 1, that
satisfy:

• c1 ≤ (1, . . . ,1), and

• |ci(j)− ci+1(j)| ≤ 1 for every i ≥ 1,1 ≤ j ≤ k .

By Dickson’s lemma any such sequence contains indices i, j such that ci ≤ cj .

Let J(C) be the smallest j for which such an i exist.

Let G(k) be the maximum over all C’s of the index J(C).

How fast can G grow?

Theorem [Mayr,Meyer, JACM ’81]: The function G is non-primitive recursive.

Backward search may need a non-primitive recursive number of iterations.

However: Still useful in practice!

108

Complexity

Consider the sequences C = c1, c2, c3, . . ., where ci ∈ Nk for all i ≥ 1, that
satisfy:

• c1 ≤ (1, . . . ,1), and

• |ci(j)− ci+1(j)| ≤ 1 for every i ≥ 1,1 ≤ j ≤ k .

By Dickson’s lemma any such sequence contains indices i, j such that ci ≤ cj .

Let J(C) be the smallest j for which such an i exist.

Let G(k) be the maximum over all C’s of the index J(C).

How fast can G grow?

Theorem [Mayr,Meyer, JACM ’81]: The function G is non-primitive recursive.

Backward search may need a non-primitive recursive number of iterations.

However: Still useful in practice!

109

Complexity

Consider the sequences C = c1, c2, c3, . . ., where ci ∈ Nk for all i ≥ 1, that
satisfy:

• c1 ≤ (1, . . . ,1), and

• |ci(j)− ci+1(j)| ≤ 1 for every i ≥ 1,1 ≤ j ≤ k .

By Dickson’s lemma any such sequence contains indices i, j such that ci ≤ cj .

Let J(C) be the smallest j for which such an i exist.

Let G(k) be the maximum over all C’s of the index J(C).

How fast can G grow?

Theorem [Mayr,Meyer, JACM ’81]: The function G is non-primitive recursive.

Backward search may need a non-primitive recursive number of iterations.

However: Still useful in practice!

110

Application to the MESI-protocol

Are the states M and S mutually exclusive?

Check if the upward-closed set with minimal element

m = 1, e = 0, s = 1, i = 0

can be reached from the initial parametrized configuration

m = 0, e = 0, s = 0, i = t

Proceed as follows:

D: m ≥ 1 ∧ s ≥ 1

D ∪ pre(D): (m ≥ 1 ∧ s ≥ 1) ∨
(m = 0 ∧ e = 1 ∧ s ≥ 1)

D ∪ pre(D) ∪ pre2(D): D ∪ pre(D)

111

Application to the MESI-protocol

Are the states M and S mutually exclusive?

Check if the upward-closed set with minimal element

m = 1, e = 0, s = 1, i = 0

can be reached from the initial parametrized configuration

m = 0, e = 0, s = 0, i = t

Proceed as follows:

D: m ≥ 1 ∧ s ≥ 1

D ∪ pre(D): (m ≥ 1 ∧ s ≥ 1) ∨
(m = 0 ∧ e = 1 ∧ s ≥ 1)

D ∪ pre(D) ∪ pre2(D): D ∪ pre(D)

112

Application to the MESI-protocol

Are the states M and S mutually exclusive?

Check if the upward-closed set with minimal element

m = 1, e = 0, s = 1, i = 0

can be reached from the initial parametrized configuration

m = 0, e = 0, s = 0, i = t

Proceed as follows:

D: m ≥ 1 ∧ s ≥ 1

D ∪ pre(D): (m ≥ 1 ∧ s ≥ 1) ∨
(m = 0 ∧ e = 1 ∧ s ≥ 1)

D ∪ pre(D) ∪ pre2(D): D ∪ pre(D)

113

Application to the MESI-protocol

Are the states M and S mutually exclusive?

Check if the upward-closed set with minimal element

m = 1, e = 0, s = 1, i = 0

can be reached from the initial parametrized configuration

m = 0, e = 0, s = 0, i = t

Proceed as follows:

D: m ≥ 1 ∧ s ≥ 1

D ∪ pre(D): (m ≥ 1 ∧ s ≥ 1) ∨
(m = 0 ∧ e = 1 ∧ s ≥ 1)

D ∪ pre(D) ∪ pre2(D): D ∪ pre(D)

114

Case studies

Other cache-coherence protocols: Berkeley RISC, Illinois, Xerox PARC Dragon,
DEC Firefly, Futurebus +, etc.

[Delzanno, FMSD’03]:

• Model extended with more complicated guards.

• Termination guarantee gets lost.

• Upward-closed sets represented by linear constraints.

• Backward-search algorithm must be refined: Possibly more iterations, but
each iteration has lower complexity.

[Emerson,Kahlon, CHARME’03,TACAS’03]:

• Restricted models still able to model the cache-coherence protocols.

• Much faster algorithms.

115

Symbolic search for other models

Lossy channel systems [Abdulla and Jonsson, I&C ’93], [Abdulla et al, CAV’98].

• Configuration: 〈q,w〉, where q state and w = (w1, . . . , wn) vector

of words representing the current queue contents

• Family C: upward-closed sets with respect to the subsequence order

abba ≤ bbaabaaabbabb

Dickson’s lemma → Higman’s lemma

• Backward search satisfies (1) - (6).

Timed Petri nets [Abdulla and Nylén, ICATPN’01].

• Configuration: 〈q, B〉, where B finite bag of vectors of reals.

• Family C: existential zones.

116

Repeated reachability in broadcast protocols

The following problem is undecidable:

Given: a broadcast protocol,

an initial parametrized configuration p = (t,0, . . . ,0)

To decide: is there an integer n such that the transition system

with (n,0, . . . ,0) as initial configuration

has an infinite computation ?

Can be reformulated as a repeated reachability problem where
I = (t,0, . . . ,0) and D = set of all configurations.

117

Pushdown automata

Pushdown automata

Automata extended with one stack.

Transitions:

• Guards: check the topmost symbol in the stack.

• Actions: replace the topmost symbol by a fixed word.

• Notation: 〈p, γ〉 ↪→ 〈p′, v〉

• Normalization: |v | ≤ 2.

We use P, Γ, ∆ for the sets of control states, stack symbols, and rules,
respectively.

Configurations: pairs 〈p, w〉, where p is a control state and w is a word.

(Stack, topmost symbol is the first letter.)

118

PDAs as models of sequential programs

Programs determined by:

• Control flow: assignments, conditionals, loops ,

procedure calls with parameters/return values.

• Local variables of each procedure.

• Global variables.

State space determined by:

• Program pointer.

• Values of global variables.

• Values of local variables (of current procedure).

• Activation records (return addresses, copies of locals).

119

Interpretation of a configuration 〈q, γv〉:

q holds values of global variables.

γ holds (program pointer, values of local variables).

v holds stack of (return address, saved locals).

Restriction: finite datatypes.

Correspondence between statements and rules:

〈q, γ〉 ↪→ 〈q′, γ′〉 simple statement

〈q, γ〉 ↪→ 〈q′, γ′γ′′〉 procedure call

〈q, γ〉 ↪→ 〈q′, ε〉 return statement

120

Case study: Drawing skylines

void m() { void s() {
if (?) { if (?) return;

s(); right(); up(); m(); down();

if (?) m(); }
} else {

up(); m(); down(); main() {
} s();

} }

121

Model

void s() { var st: stack of {s0, . . . , s5, . . .}

s0: if (?) s1: return; 〈p, s0〉 ↪→ 〈p, s2〉 〈p, s0〉 ↪→ 〈p, ε〉

s2: up(); 〈p, s2〉 ↪→ 〈p, up0 s3〉

s3: m(); 〈p, s3〉 ↪→ 〈p, m0 s4〉

s4: down(); s5: 〈p, s4〉 ↪→ 〈p, down0 s5〉 〈p, s5〉 ↪→ 〈p, ε〉

}

122

Symbolic reachability in pushdown automata

A set of configurations C is regular if for every control point p, the set
{w ∈ Γ∗ | 〈p, w〉 ∈ C} is regular.

Typically, I and D are regular sets of configurations.
(Even very simple ones, like 〈p,Γ∗〉.)

Family C: regular sets

123

Backward search: Do conditions (1) - (6) hold ?

1. Each regular set can be finitely represented by a NFA.
√

NFA for a pushdown system:

• P as set of initial states and Γ as alphabet.

• 〈p, v〉 recognized if p v−→ q for some final state q.

Example: P = {p0, p1} and Γ = {γ0, γ1}
Automaton coding the set 〈p0, γ0γ∗1γ0〉 ∪ 〈p1, γ1〉 :

p0

p1

γ0

γ0

γ1

γ1

124

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

true/y := 0

y = 1 / id

x < 1 / id

x < 1 / id

y < 1 / y := 0

x > 1 / id

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

125

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

true/y := 0

y = 1 / id

x < 1 / id

x < 1 / id

y < 1 / y := 0

x > 1 / id

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

126

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

γ0

γ0

γ1

γ1

127

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

128

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

129

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

130

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

131

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

132

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

133

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

134

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

135

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

γ0

γ1

136

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′
0

γ0

γ0

γ1

γ0

γ1

γ0

γ1

137

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

138

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

139

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

140

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

141

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1

142

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1

143

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1 γ1

144

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1 γ1

145

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

γ0

γ0

γ1

γ0

γ0γ0

γ0

γ0

γ1

γ1

γ1

γ1

146

2. F ∈ C
√

3. If C ∈ C, then C ∪ pre(C) ∈ C.
√

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0〉 }

p0

p1

γ0

γ0

γ1

γ0

γ0γ0

γ0

γ0

γ1

γ1

γ1

γ1

147

4. Emptiness of C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

148

4. Emptiness of C ∩ I is decidable.
√

5. C1 = C2 is decidable.
√

149

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint. FAILS!

P = {p0, p1}, Γ = {γ0, γ1}

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

C0 = D = 〈p0, γ0γ∗1γ0〉 ∪ 〈p1, γ1〉
C1 = C0 ∪ pre(C0) = 〈p0, (γ0 + γ2

0)γ
∗
1γ0〉 ∪

〈p1, γ1(ε + γ0)γ
∗
1(ε + γ0)〉

· · ·
Ci = Ci−1 ∪ pre(Ci−1) = 〈p0, (γ0 + . . . + γ i+1

0)γ∗1γ0〉 ∪
〈p1, γ1(ε + γ0 + . . . + γ i

0)γ
∗
1(ε + γ0)〉

· · ·

150

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint. FAILS!

P = {p0, p1}, Γ = {γ0, γ1}

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

C0 = D = 〈p0, γ0γ∗1γ0〉 ∪ 〈p1, γ1〉
C1 = C0 ∪ pre(C0) = 〈p0, (γ0 + γ2

0)γ
∗
1γ0〉 ∪

〈p1, γ1(ε + γ0)γ
∗
1(ε + γ0)〉

· · ·
Ci = Ci−1 ∪ pre(Ci−1) = 〈p0, (γ0 + . . . + γ i+1

0)γ∗1γ0〉 ∪
〈p1, γ1(ε + γ0 + . . . + γ i

0)γ
∗
1(ε + γ0)〉

· · ·

151

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint. FAILS!

P = {p0, p1}, Γ = {γ0, γ1}

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

C0 = D = 〈p0, γ0γ∗1γ0〉 ∪ 〈p1, γ1〉
C1 = C0 ∪ pre(C0) = 〈p0, (γ0 + γ2

0)γ
∗
1γ0〉 ∪

〈p1, γ1(ε + γ0)γ
∗
1(ε + γ0)〉

· · ·
Ci = Ci−1 ∪ pre(Ci−1) = 〈p0, (γ0 + . . . + γ i+1

0)γ∗1γ0〉 ∪
〈p1, γ1(ε + γ0 + . . . + γ i

0)γ
∗
1(ε + γ0)〉

· · ·

152

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint. FAILS!

P = {p0, p1}, Γ = {γ0, γ1}

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

C0 = D = 〈p0, γ0γ∗1γ0〉 ∪ 〈p1, γ1〉
C1 = C0 ∪ pre(C0) = 〈p0, (γ0 + γ2

0)γ
∗
1γ0〉 ∪

〈p1, γ1(ε + γ0)γ
∗
1(ε + γ0)〉

· · ·
Ci = Ci−1 ∪ pre(Ci−1) = 〈p0, (γ0 + . . . + γ i+1

0)γ∗1γ0〉 ∪
〈p1, γ1(ε + γ0 + . . . + γ i

0)γ
∗
1(ε + γ0)〉

· · ·

153

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint. FAILS!

P = {p0, p1}, Γ = {γ0, γ1}

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

C0 = D = 〈p0, γ0γ∗1γ0〉 ∪ 〈p1, γ1〉
C1 = C0 ∪ pre(C0) = 〈p0, (γ0 + γ2

0)γ
∗
1γ0〉 ∪

〈p1, γ1(ε + γ0)γ
∗
1(ε + γ0)〉

· · ·
Ci = Ci−1 ∪ pre(Ci−1) = 〈p0, (γ0 + . . . + γ i+1

0)γ∗1γ0〉 ∪
〈p1, γ1(ε + γ0 + . . . + γ i

0)γ
∗
1(ε + γ0)〉

· · ·

154

6. Any chain C1 ⊆ C2 ⊆ C3 . . . eventually reaches a fixpoint. FAILS!

P = {p0, p1}, Γ = {γ0, γ1}

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

C0 = D = 〈p0, γ0γ∗1γ0〉 ∪ 〈p1, γ1〉
C1 = C0 ∪ pre(C0) = 〈p0, (γ0 + γ2

0)γ
∗
1γ0〉 ∪

〈p1, γ1(ε + γ0)γ
∗
1(ε + γ0)〉

· · ·
Ci = Ci−1 ∪ pre(Ci−1) = 〈p0, (γ0 + . . . + γ i+1

0)γ∗1γ0〉 ∪
〈p1, γ1(ε + γ0 + . . . + γ i

0)γ
∗
1(ε + γ0)〉

· · ·

155

However, the fixpoint

pre∗(D) = 〈p0, γ+
0 γ∗1γ0〉 ∪

〈p1, γ1γ∗0γ∗1(ε + γ0)〉

is regular.

How can we compute it?

156

Accelerations

By definition, pre(D) =
⋃

i≥0 Ci
where C0 = D and Ci+1 = Ci ∪ pre(Ci) for every i ≥ 0

If convergence fails, try to compute an acceleration :
a sequence D0 ⊆ D1 ⊆ D2 . . . such that

(a) ∀i ≥ 0: Ci ⊆ Di

(b) ∀i ≥ 0: Di ⊆
⋃

j≥0 Cj = pre(D)

Property (a) ensures capture of (at least) the whole set pre(D)

Property (b) ensures that only elements of pre(D) are captured

The acceleration guarantees termination if

(c) ∃i ≥ 0: Di+1 = Di

157

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

true/y := 0

y = 1 / id

x < 1 / id

x < 1 / id

y < 1 / y := 0

x > 1 / id

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/y := 0

y = 1 / id

x < 1 / id

x < 1 / id

y < 1 / y := 0

x > 1 / id

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

158

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

γ0

γ0

γ1

γ1

p0

p1

γ0

γ0

γ1

γ1

159

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

p0

p1

γ0

γ0

γ1

γ1

160

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

p0

p1

γ0

γ0

γ1

γ1

161

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0 p0

p1

γ0

γ0

γ1

γ1

162

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0 p0

p1

γ0

γ0

γ1

γ1γ0

163

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0 p0

p1

γ0

γ0

γ1

γ1γ0

164

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

165

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

166

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

167

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

168

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′
0

p′
1

γ0

γ0

γ1

γ1

γ0

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

169

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

170

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

171

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0 p0

p1

γ0

γ0

γ1

γ1γ0

γ1

172

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0 p0

p1

γ0

γ0

γ1

γ1γ0

γ1

173

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

174

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

175

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1 γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1

176

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1 γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1 γ1

177

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

p′′
0

p′′
1

γ0

γ0

γ1

γ0

γ1

γ0

γ1

γ0

γ1 γ1

p0

p1

γ0

γ0

γ1

γ1γ0

γ1 γ1

178

An acceleration for pushdown automata

Idea: reuse the same states

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

true/y := 0

y = 1 / id

x < 1 / id

x < 1 / id

y < 1 / y := 0

x > 1 / id

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

p0

p1

γ0

γ0

γ1

γ1γ0

γ1 γ1

179

But does it work . . . ?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

true/y := 0

y = 1 / id

x < 1 / id

x < 1 / id

y < 1 / y := 0

x > 1 / id

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

true/x, y := x+?, y+?

Fortunately: correct if initial states have no incoming arcs.

180

But does it work . . . ?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

γ0

γ0

γ1

γ1

Fortunately: correct if initial states have no incoming arcs.

181

But does it work . . . ?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

γ0

γ0

γ1

γ1

Fortunately: correct if initial states have no incoming arcs.

182

But does it work . . . ?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

γ0

γ0

γ1

γ1γ0

Fortunately: correct if initial states have no incoming arcs.

183

But does it work . . . ?

All predecessors are computed, and termination guaranteed

But: we might be adding non-predecessors

∆ = { 〈p0, γ0〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p0, ε〉 , 〈p1, γ1〉 ↪→ 〈p1, γ1γ0 〉}

p0

p1

γ0

γ0

γ1

γ1γ0

Fortunately: correct if initial states have no incoming arcs.

184

The proof (1/4)

Input: Pushdown automaton (P,Γ,∆), NFA A = (Q,Γ,→0, P, F)

recognizing a regular set C.

Precondition: No transition of A leads to an initial state.

Output: NFA Apre∗ = (Q,Γ,→, P, F).

Postcondition: Apre∗ recognizes pre∗(C).

Algorithm: Add new transitions according to the following saturation rule

If 〈p, γ〉 ↪→ 〈p′, w〉 and p′ w−−→ q in the current automaton,
add a transition (p, γ, q).

185

The proof (2/4)

Goal: show that Apre∗ only recognizes words of pre∗(C).

(Showing that it recognizes all words of pre∗(C) is easy.)

Notation: −→
i

denotes the transition relation after adding i transitions to A.

We show: If p w−−→
i

q , then 〈p, w〉 ⇒∗ 〈p′, w ′〉 for some 〈p′, w ′〉
such that p′ w ′−−→

0
q; moreover, if q initial, then w ′ = ε.

Proof by induction on i . Basis i = 1 is easy.

i > 1. Let (p1, γ, q′) be the i-th transition added to A (p1 initial state!).
Let j be the number of times that (p1, γ, q′) is used in p w−−→

i
q.

By induction on j . Basis j = 0 is easy.

186

The proof (2/4)

Goal: show that Apre∗ only recognizes words of pre∗(C).

(Showing that it recognizes all words of pre∗(C) is easy.)

Notation: −→
i

denotes the transition relation after adding i transitions to A.

We show: If p w−−→
i

q , then 〈p, w〉 ⇒∗ 〈p′, w ′〉 for some 〈p′, w ′〉
such that p′ w ′−−→

0
q; moreover, if q initial, then w ′ = ε.

Proof by induction on i . Basis i = 1 is easy.

i > 1. Let (p1, γ, q′) be the i-th transition added to A (p1 initial state!).
Let j be the number of times that (p1, γ, q′) is used in p w−−→

i
q.

By induction on j . Basis j = 0 is easy.

187

The proof (2/4)

Goal: show that Apre∗ only recognizes words of pre∗(C).

(Showing that it recognizes all words of pre∗(C) is easy.)

Notation: −→
i

denotes the transition relation after adding i transitions to A.

We show: If p w−−→
i

q , then 〈p, w〉 ⇒∗ 〈p′, w ′〉 for some 〈p′, w ′〉
such that p′ w ′−−→

0
q; moreover, if q initial, then w ′ = ε.

Proof by induction on i . Basis i = 1 is easy.

i > 1. Let (p1, γ, q′) be the i-th transition added to A (p1 initial state!).
Let j be the number of times that (p1, γ, q′) is used in p w−−→

i
q.

By induction on j . Basis j = 0 is easy.

188

The proof (2/4)

Goal: show that Apre∗ only recognizes words of pre∗(C).

(Showing that it recognizes all words of pre∗(C) is easy.)

Notation: −→
i

denotes the transition relation after adding i transitions to A.

We show: If p w−−→
i

q , then 〈p, w〉 ⇒∗ 〈p′, w ′〉 for some 〈p′, w ′〉
such that p′ w ′−−→

0
q; moreover, if q initial, then w ′ = ε.

Proof by induction on i . Basis i = 1 is easy.

i > 1. Let (p1, γ, q′) be the i-th transition added to A (p1 initial state!).
Let j be the number of times that (p1, γ, q′) is used in p w−−→

i
q.

By induction on j . Basis j = 0 is easy.

189

The proof (2/4)

Goal: show that Apre∗ only recognizes words of pre∗(C).

(Showing that it recognizes all words of pre∗(C) is easy.)

Notation: −→
i

denotes the transition relation after adding i transitions to A.

We show: If p w−−→
i

q , then 〈p, w〉 ⇒∗ 〈p′, w ′〉 for some 〈p′, w ′〉
such that p′ w ′−−→

0
q; moreover, if q initial, then w ′ = ε.

Proof by induction on i . Basis i = 1 is easy.

i > 1. Let (p1, γ, q′) be the i-th transition added to A (p1 initial state!).
Let j be the number of times that (p1, γ, q′) is used in p w−−→

i
q.

By induction on j . Basis j = 0 is easy.

190

The proof (2/4)

Goal: show that Apre∗ only recognizes words of pre∗(C).

(Showing that it recognizes all words of pre∗(C) is easy.)

Notation: −→
i

denotes the transition relation after adding i transitions to A.

We show: If p w−−→
i

q , then 〈p, w〉 ⇒∗ 〈p′, w ′〉 for some 〈p′, w ′〉
such that p′ w ′−−→

0
q; moreover, if q initial, then w ′ = ε.

Proof by induction on i . Basis i = 1 is easy.

i > 1. Let (p1, γ, q′) be the i-th transition added to A (p1 initial state!).
Let j be the number of times that (p1, γ, q′) is used in p w−−→

i
q.

By induction on j . Basis j = 0 is easy.

191

The proof (2/4)

Goal: show that Apre∗ only recognizes words of pre∗(C).

(Showing that it recognizes all words of pre∗(C) is easy.)

Notation: −→
i

denotes the transition relation after adding i transitions to A.

We show: If p w−−→
i

q , then 〈p, w〉 ⇒∗ 〈p′, w ′〉 for some 〈p′, w ′〉
such that p′ w ′−−→

0
q; moreover, if q initial, then w ′ = ε.

Proof by induction on i . Basis i = 1 is easy.

i > 1. Let (p1, γ, q′) be the i-th transition added to A (p1 initial state!).
Let j be the number of times that (p1, γ, q′) is used in p w−−→

i
q.

By induction on j . Basis j = 0 is easy.

192

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

193

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

194

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

195

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

196

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

197

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

198

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

199

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

200

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

201

The proof (3/4)

Step. j > 0. So (p1, γ, q′) occurs in p w−−→
i

q. We have:

(1) p u−→
i−1

p1
γ−→
i

q′ v−→
i

q (by ‘zooming into’ p w−−→
i

q)

(2) 〈p1, γ〉 ↪→ 〈p2, w2〉
(3) p2

w2−−→
i−1

q′ v−→
i

q (by the saturation rule)

(4) 〈p, u〉 ⇒∗ 〈p1, ε〉 (by induction hypothesis on i)

(5) 〈p2, w2v〉 ⇒∗ 〈p′, w ′〉
(6) p′ w ′−−→

0
q (by induction hypothesis on j)

〈p, w〉 = 〈p, uγv〉 =⇒∗ 〈p1, γv〉 =⇒ 〈p2, w2v〉 =⇒∗ 〈p′, w ′〉
(1) (4) (2) (5)

Finally, if q initial then w ′ = ε because of (6) and precondition.

202

Forward search and complexity

Symbolic forward search with regular sets can be accelerated in a similar way

Recall input: Pushdown automaton (P,Γ,∆), NFA A = (Q,Γ,→0, P, F).

Complexity of backward search: O(|Q|2 · |∆|) time, O(|Q| · |∆|+ | →0 |) space.

Complexity of forward search: O(|P| · |∆| · (|Q \ P|+ |∆|) + |P| · | →0 |) time
and space.

203

Reachable configurations of the plotter program

q 〈q,m0〉 〈q, s0〉

〈q, u0〉

〈q, d0〉

〈q, r0〉

up0

down0

right0

m0. . .m7

s0. . .s5

, main1main0

s5

m4

m0,m1

main0

s4

s1

s1

m1

r5

204

Repeated reachability for pushdown systems

Let I = 〈p0, γ0〉 and D = 〈p,Γ∗〉.

D can be repeatedly reached from I iff

〈p0, γ0〉 −→∗ 〈p′, γw〉
and

〈p′, γ〉 −→∗ 〈p, v〉 −→∗ 〈p′, γu〉

for some p′, γ, w , v , u.

Repeated reachability can be reduced to computing several pre∗.

205

To know more

Pushdown automata usually called pushdown processes in our context.

They are equivalent to recursive state machines.

The class of one-state PDAs is interesting, usually studied under the name Basic
Process Algebra(BPA) or context-free processes

Some people: Alur, Baeten, Bouajjani, Caucal, E., Etessami, Schwoon, Steffen,
Stirling, Yannakakis, Walukiewicz . . .

Tools: Moped, available online at
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

Technology transfer: the Static Driver Verifier (Microsoft)
see http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

206

(Lossy) Channel Systems

(Lossy) Channel systems

q0 q1

q2

q3
c!a

c!b
c?a

c?a

c?b

c!a,c!b

loss

loss

loss

loss

Automata extended with channels (unbounded queues)

Send transitions: no guard, action sends message to the channel.

Receive transitions: guard checks if the channel is nonempty, action removes the
first message.

Loss transitions: self-loops, no guard, action removes an arbitrary message.

207

(Lossy) Channel systems

q0 q1

q2

q3
c!a

c!b
c?a

c?a

c?b

c!a,c!b

loss

loss

loss

loss

Automata extended with channels (unbounded queues)

Send transitions: no guard, action sends message to the channel.

Receive transitions: guard checks if the channel is nonempty, action removes the
first message.

Loss transitions: self-loops, no guard, action removes an arbitrary message.

208

Case study: A sliding window protocol

s1

s2s3

r1

r2r3

?a3 !m1 !m2

?a2

!m3 !m1 ?a1

!m2 !m3

?m3

?m2

!a3

!a1

?m1!m3

?m2

?m1 !a2

?a1

?a2 ?a3

?a2

?a1

?a3 ?m1

?m2

?m3

209

Symbolic reachability for (lossy) channel systems

Perfect channels: Turing powerful model, even with only one channel.

Lossy channels:

• Backward search: decidable for D upward-closed set

• Forward search: Choose C as the set of simple regular expressions (SREs).

Atomic expression: (a + ε) | (a1 + . . . + am)∗

Product: e1e2 . . . en

SRE: p1 + . . . + pn

SREs satisfy conditions (1)-(5) (exercise), but not (6).
The fixpoint is an SRE, but it cannot be effectively computed (!), and so no
‘perfect’ acceleration can exist.

210

Acceleration through loops

Compute a symbolic reachability graph with elements of C as nodes:

• Add I as first node

• For each node C and each transition t , add an edge C t−→ post[t](C)

Replace C σ−→ post[σ](C) by C σ−→ X , where X satisfies

• post[σ](C) ⊆ X , and

• X contains only reachable configurations.

A loop is a sequence of transitions leading from a control state to itself.

Acceleration: given a loop C σ−→ post[σ](C) , replace post[σ](C) by

X = post[σ∗](C) = C ∪ post[σ](C) ∪ post[σ2](C) ∪ . . .

Question: find a suitable class of loops such that post[σ∗](C) belongs to C.

211

Acceleration through loops

Compute a symbolic reachability graph with elements of C as nodes:

• Add I as first node

• For each node C and each transition t , add an edge C t−→ post[t](C)

Replace C σ−→ post[σ](C) by C σ−→ X , where X satisfies

• post[σ](C) ⊆ X , and

• X contains only reachable configurations.

A loop is a sequence of transitions leading from a control state to itself.

Acceleration: given a loop C σ−→ post[σ](C) , replace post[σ](C) by

X = post[σ∗](C) = C ∪ post[σ](C) ∪ post[σ2](C) ∪ . . .

Question: find a suitable class of loops such that post[σ∗](C) belongs to C.

212

Acceleration through loops

Compute a symbolic reachability graph with elements of C as nodes:

• Add I as first node

• For each node C and each transition t , add an edge C t−→ post[t](C)

Replace C σ−→ post[σ](C) by C σ−→ X , where X satisfies

• post[σ](C) ⊆ X , and

• X contains only reachable configurations.

A loop is a sequence of transitions leading from a control state to itself.

Acceleration: given a loop C σ−→ post[σ](C) , replace post[σ](C) by

X = post[σ∗](C) = C ∪ post[σ](C) ∪ post[σ2](C) ∪ . . .

Question: find a suitable class of loops such that post[σ∗](C) belongs to C.

213

Acceleration through loops

Compute a symbolic reachability graph with elements of C as nodes:

• Add I as first node

• For each node C and each transition t , add an edge C t−→ post[t](C)

Replace C σ−→ post[σ](C) by C σ−→ X , where X satisfies

• post[σ](C) ⊆ X , and

• X contains only reachable configurations.

A loop is a sequence of transitions leading from a control state to itself.

Acceleration: given a loop C σ−→ post[σ](C) , replace post[σ](C) by

X = post[σ∗](C) = C ∪ post[σ](C) ∪ post[σ2](C) ∪ . . .

Question: find a suitable class of loops such that post[σ∗](C) belongs to C.

214

An acceleration for lossy channel systems

Theorem [Abdulla, Bouajjani, Jonsson, CAV’98]: For any loop σ of a lossy
channel system and any SRE r , the set post[σ∗](r) is an SRE that can be
computed in quadratic time in the size of r .

Use in verification:

Preselect a set of loops (e.g., those corresponding to simple cycles).

Given a set of configurations, compute first the effect of executing each of the
loops infinitely often, and then compute for each transition the effect of
computing it.

Pray for termination.

215

An acceleration for lossy channel systems

Theorem [Abdulla, Bouajjani, Jonsson, CAV’98]: For any loop σ of a lossy
channel system and any SRE r , the set post[σ∗](r) is an SRE that can be
computed in quadratic time in the size of r .

Use in verification:

Preselect a set of loops (e.g., those corresponding to simple cycles).

Given a set of configurations, compute first the effect of executing each of the
loops infinitely often, and then compute for each transition the effect of
computing it.

Pray for termination.

216

An acceleration for lossy channel systems

Theorem [Abdulla, Bouajjani, Jonsson, CAV’98]: For any loop σ of a lossy
channel system and any SRE r , the set post[σ∗](r) is an SRE that can be
computed in quadratic time in the size of r .

Use in verification:

Preselect a set of loops (e.g., those corresponding to simple cycles).

Given a set of configurations, compute first the effect of executing each of the
loops infinitely often, and then compute for each transition the effect of
computing it.

Pray for termination.

217

An acceleration for lossy channel systems

Theorem [Abdulla, Bouajjani, Jonsson, CAV’98]: For any loop σ of a lossy
channel system and any SRE r , the set post[σ∗](r) is an SRE that can be
computed in quadratic time in the size of r .

Use in verification:

Preselect a set of loops (e.g., those corresponding to simple cycles).

Given a set of configurations, compute first the effect of executing each of the
loops infinitely often, and then compute for each transition the effect of
computing it.

Pray for termination.

218

An acceleration for lossy channel systems

Theorem [Abdulla, Bouajjani, Jonsson, CAV’98]: For any loop σ of a lossy
channel system and any SRE r , the set post[σ∗](r) is an SRE that can be
computed in quadratic time in the size of r .

Use in verification:

Preselect a set of loops (e.g., those corresponding to simple cycles).

Given a set of configurations, compute first the effect of executing each of the
loops infinitely often, and then compute for each transition the effect of
computing it.

Pray for termination.

219

Channel contents of the sliding window protocol

States Mess. channel Ack. channel

s1, r1 (m2 + m3)
∗(m1 + m3)

∗(m1 + m2)
∗ a∗3

s1, r2 (m1 + m3)
∗(m1 + m2)

∗ a∗3a∗1
s1, r3 (m1 + m2)

∗ a∗3a∗1a∗2
s2, r1 (m2 + m3)

∗ a∗1a∗2a∗3
s2, r2 (m1 + m3)

∗(m1 + m2)
∗(m2 + m3)

∗ a∗1
s2, r3 (m1 + m2)

∗(m2 + m3)
∗ a∗1a∗2

s3, r1 (m2 + m3)
∗(m1 + m3)

∗ a∗1a∗2
s3, r2 (m1 + m3)

∗ a∗2a∗3a∗1
s3, r3 (m1 + m2)

∗(m2 + m3)
∗(m1 + m3)

∗ a∗2

220

The learning approach

Problem of accelerations: your prayers may not be heard.

No results characterizing the cases for which they will be.
(The ways of God are inscrutable).

Recent alternative [Vardhan, Sen, Viswanathan, Agha, FSTTCS ’04]:
apply learning algorithms for regular languages.

221

The learning approach

Problem of accelerations: your prayers may not be heard.

No results characterizing the cases for which they will be.
(The ways of God are inscrutable).

Recent alternative [Vardhan, Sen, Viswanathan, Agha, FSTTCS ’04]:
apply learning algorithms for regular languages.

222

The learning approach

Problem of accelerations: your prayers may not be heard.

No results characterizing the cases for which they will be.
(The ways of God are inscrutable).

Recent alternative [Vardhan, Sen, Viswanathan, Agha, FSTTCS ’04]:
apply learning algorithms for regular languages.

223

Angluin’s learning setting [I&C ’87]

Two agents, the Teacher and the Learner.

The Teacher knows a regular language L ⊆ Σ∗.

The Learner knows Σ and wants to learn L.

The Learner is only allowed to ask the Teacher two types of questions:

Membership queries: The Learner produces w ∈ Σ∗, and asks if w ∈ L.
The Teacher answers yes/no.

Equivalence queries: The Learner produces a regular language H ⊆ Σ∗

(a hypothesis), and asks if L = H.
The Teacher answers either yes or no + counterexample (a word in the
symmetric difference of L and H).

Question: give an algorithm (a strategy) for the Learner.

224

Angluin’s learning setting [I&C ’87]

Two agents, the Teacher and the Learner.

The Teacher knows a regular language L ⊆ Σ∗.

The Learner knows Σ and wants to learn L.

The Learner is only allowed to ask the Teacher two types of questions:

Membership queries: The Learner produces w ∈ Σ∗, and asks if w ∈ L.
The Teacher answers yes/no.

Equivalence queries: The Learner produces a regular language H ⊆ Σ∗

(a hypothesis), and asks if L = H.
The Teacher answers either yes or no + counterexample (a word in the
symmetric difference of L and H).

Question: give an algorithm (a strategy) for the Learner.

225

Angluin’s learning setting [I&C ’87]

Two agents, the Teacher and the Learner.

The Teacher knows a regular language L ⊆ Σ∗.

The Learner knows Σ and wants to learn L.

The Learner is only allowed to ask the Teacher two types of questions:

Membership queries: The Learner produces w ∈ Σ∗, and asks if w ∈ L.
The Teacher answers yes/no.

Equivalence queries: The Learner produces a regular language H ⊆ Σ∗

(a hypothesis), and asks if L = H.
The Teacher answers either yes or no + counterexample (a word in the
symmetric difference of L and H).

Question: give an algorithm (a strategy) for the Learner.

226

Angluin’s learning setting [I&C ’87]

Two agents, the Teacher and the Learner.

The Teacher knows a regular language L ⊆ Σ∗.

The Learner knows Σ and wants to learn L.

The Learner is only allowed to ask the Teacher two types of questions:

Membership queries: The Learner produces w ∈ Σ∗, and asks if w ∈ L.
The Teacher answers yes/no.

Equivalence queries: The Learner produces a regular language H ⊆ Σ∗

(a hypothesis), and asks if L = H.
The Teacher answers either yes or no + counterexample (a word in the
symmetric difference of L and H).

Question: give an algorithm (a strategy) for the Learner.

227

Structure of Angluin’s algorithm

The Learner repeatedly asks membership queries until it has enough information
to state a hypothesis.

The hypothesis H1, H2, H3, . . . are presented as minimal DFAs.

The hypothesis satisfy n1 < n2 < n3 < . . ., where ni denotes the number of
states for Hi .

For every hypothesis H, either H = L or the minimal DFA for H has fewer states
than the minimal DFA for L.

If H 6= L, then the Learner uses the counterexample returned by the Teacher to
generate a new round of membership queries.

Completeness: the Learner eventually produces L as hypothesis.

Complexity: polynomial in the size of the minimal DFA for L.

228

Structure of Angluin’s algorithm

The Learner repeatedly asks membership queries until it has enough information
to state a hypothesis.

The hypothesis H1, H2, H3, . . . are presented as minimal DFAs.

The hypothesis satisfy n1 < n2 < n3 < . . ., where ni denotes the number of
states for Hi .

For every hypothesis H, either H = L or the minimal DFA for H has fewer states
than the minimal DFA for L.

If H 6= L, then the Learner uses the counterexample returned by the Teacher to
generate a new round of membership queries.

Completeness: the Learner eventually produces L as hypothesis.

Complexity: polynomial in the size of the minimal DFA for L.

229

Structure of Angluin’s algorithm

The Learner repeatedly asks membership queries until it has enough information
to state a hypothesis.

The hypothesis H1, H2, H3, . . . are presented as minimal DFAs.

The hypothesis satisfy n1 < n2 < n3 < . . ., where ni denotes the number of
states for Hi .

For every hypothesis H, either H = L or the minimal DFA for H has fewer states
than the minimal DFA for L.

If H 6= L, then the Learner uses the counterexample returned by the Teacher to
generate a new round of membership queries.

Completeness: the Learner eventually produces L as hypothesis.

Complexity: polynomial in the size of the minimal DFA for L.

230

Structure of Angluin’s algorithm

The Learner repeatedly asks membership queries until it has enough information
to state a hypothesis.

The hypothesis H1, H2, H3, . . . are presented as minimal DFAs.

The hypothesis satisfy n1 < n2 < n3 < . . ., where ni denotes the number of
states for Hi .

For every hypothesis H, either H = L or the minimal DFA for H has fewer states
than the minimal DFA for L.

If H 6= L, then the Learner uses the counterexample returned by the Teacher to
generate a new round of membership queries.

Completeness: the Learner eventually produces L as hypothesis.

Complexity: polynomial in the size of the minimal DFA for L.

231

Structure of Angluin’s algorithm

The Learner repeatedly asks membership queries until it has enough information
to state a hypothesis.

The hypothesis H1, H2, H3, . . . are presented as minimal DFAs.

The hypothesis satisfy n1 < n2 < n3 < . . ., where ni denotes the number of
states for Hi .

For every hypothesis H, either H = L or the minimal DFA for H has fewer states
than the minimal DFA for L.

If H 6= L, then the Learner uses the counterexample returned by the Teacher to
generate a new round of membership queries.

Completeness: the Learner eventually produces L as hypothesis.

Complexity: polynomial in the size of the minimal DFA for L.

232

Structure of Angluin’s algorithm

The Learner repeatedly asks membership queries until it has enough information
to state a hypothesis.

The hypothesis H1, H2, H3, . . . are presented as minimal DFAs.

The hypothesis satisfy n1 < n2 < n3 < . . ., where ni denotes the number of
states for Hi .

For every hypothesis H, either H = L or the minimal DFA for H has fewer states
than the minimal DFA for L.

If H 6= L, then the Learner uses the counterexample returned by the Teacher to
generate a new round of membership queries.

Completeness: the Learner eventually produces L as hypothesis.

Complexity: polynomial in the size of the minimal DFA for L.

233

Learning for (lossy) channel systems

First attempt: Learn the language of reachable configurations, under the
assumption that it is regular.

Does not work: answering a membership query is equivalent to solving the
reachability problem, and answering equivalence queries is equivalent to the
problem we wish to solve!

Second attempt:

Define an execution as a pair (σ, c) where c is a configuration and σ is a
witness, i.e., a sequence of transitions that can be executed from some initial
configuration and whose execution leads to c.

Learn the language Exec of all executions, under the assumption that it is
regular.

Membership queries: easy, simulate σ and check it leads to c.

. . . but equivalence queries still hopeless.

234

Learning for (lossy) channel systems

First attempt: Learn the language of reachable configurations, under the
assumption that it is regular.

Does not work: answering a membership query is equivalent to solving the
reachability problem, and answering equivalence queries is equivalent to the
problem we wish to solve!

Second attempt:

Define an execution as a pair (σ, c) where c is a configuration and σ is a
witness, i.e., a sequence of transitions that can be executed from some initial
configuration and whose execution leads to c.

Learn the language Exec of all executions, under the assumption that it is
regular.

Membership queries: easy, simulate σ and check it leads to c.

. . . but equivalence queries still hopeless.

235

Learning for (lossy) channel systems

First attempt: Learn the language of reachable configurations, under the
assumption that it is regular.

Does not work: answering a membership query is equivalent to solving the
reachability problem, and answering equivalence queries is equivalent to the
problem we wish to solve!

Second attempt:

Define an execution as a pair (σ, c) where c is a configuration and σ is a
witness, i.e., a sequence of transitions that can be executed from some initial
configuration and whose execution leads to c.

Learn the language Exec of all executions, under the assumption that it is
regular.

Membership queries: easy, simulate σ and check it leads to c.

. . . but equivalence queries still hopeless.

236

Learning for (lossy) channel systems

First attempt: Learn the language of reachable configurations, under the
assumption that it is regular.

Does not work: answering a membership query is equivalent to solving the
reachability problem, and answering equivalence queries is equivalent to the
problem we wish to solve!

Second attempt:

Define an execution as a pair (σ, c) where c is a configuration and σ is a
witness, i.e., a sequence of transitions that can be executed from some initial
configuration and whose execution leads to c.

Learn the language Exec of all executions, under the assumption that it is
regular.

Membership queries: easy, simulate σ and check it leads to c.

. . . but equivalence queries still hopeless.

237

Learning for (lossy) channel systems

First attempt: Learn the language of reachable configurations, under the
assumption that it is regular.

Does not work: answering a membership query is equivalent to solving the
reachability problem, and answering equivalence queries is equivalent to the
problem we wish to solve!

Second attempt:

Define an execution as a pair (σ, c) where c is a configuration and σ is a
witness, i.e., a sequence of transitions that can be executed from some initial
configuration and whose execution leads to c.

Learn the language Exec of all executions, under the assumption that it is
regular.

Membership queries: easy, simulate σ and check it leads to c.

. . . but equivalence queries still hopeless.

238

Learning for (lossy) channel systems

First attempt: Learn the language of reachable configurations, under the
assumption that it is regular.

Does not work: answering a membership query is equivalent to solving the
reachability problem, and answering equivalence queries is equivalent to the
problem we wish to solve!

Second attempt:

Define an execution as a pair (σ, c) where c is a configuration and σ is a
witness, i.e., a sequence of transitions that can be executed from some initial
configuration and whose execution leads to c.

Learn the language Exec of all executions, under the assumption that it is
regular.

Membership queries: easy, simulate σ and check it leads to c.

. . . but equivalence queries still hopeless.

239

Learning for (lossy) channel systems

First attempt: Learn the language of reachable configurations, under the
assumption that it is regular.

Does not work: answering a membership query is equivalent to solving the
reachability problem, and answering equivalence queries is equivalent to the
problem we wish to solve!

Second attempt:

Define an execution as a pair (σ, c) where c is a configuration and σ is a
witness, i.e., a sequence of transitions that can be executed from some initial
configuration and whose execution leads to c.

Learn the language Exec of all executions, under the assumption that it is
regular.

Membership queries: easy, simulate σ and check it leads to c.

. . . but equivalence queries still hopeless.

240

Third attempt

Define a marked transition sequence (MTS) as a pair(σ, c), where σ is a
sequence of transition names and c is a configuration.
Notice that executions are MTS.

Don’t learn Exec, just decide whether Exec ∩ D = ∅ for a given regular set D of
dangerous MTSs.

Adapt Angluin’s algorithm to learn either

(DE) a dangerous execution, or

(SS) a safe superset of Exec, i.e., one containing no dangerous executions.

Membership queries: as in the previous attempt, but if a dangerous execution is
found, the Learner has learned DE, and the algorithm stops.

Replace equivalence queries by containment queries.

241

Third attempt

Define a marked transition sequence (MTS) as a pair(σ, c), where σ is a
sequence of transition names and c is a configuration.
Notice that executions are MTS.

Don’t learn Exec, just decide whether Exec ∩ D = ∅ for a given regular set D of
dangerous MTSs.

Adapt Angluin’s algorithm to learn either

(DE) a dangerous execution, or

(SS) a safe superset of Exec, i.e., one containing no dangerous executions.

Membership queries: as in the previous attempt, but if a dangerous execution is
found, the Learner has learned DE, and the algorithm stops.

Replace equivalence queries by containment queries.

242

Third attempt

Define a marked transition sequence (MTS) as a pair(σ, c), where σ is a
sequence of transition names and c is a configuration.
Notice that executions are MTS.

Don’t learn Exec, just decide whether Exec ∩ D = ∅ for a given regular set D of
dangerous MTSs.

Adapt Angluin’s algorithm to learn either

(DE) a dangerous execution, or

(SS) a safe superset of Exec, i.e., one containing no dangerous executions.

Membership queries: as in the previous attempt, but if a dangerous execution is
found, the Learner has learned DE, and the algorithm stops.

Replace equivalence queries by containment queries.

243

Third attempt

Define a marked transition sequence (MTS) as a pair(σ, c), where σ is a
sequence of transition names and c is a configuration.
Notice that executions are MTS.

Don’t learn Exec, just decide whether Exec ∩ D = ∅ for a given regular set D of
dangerous MTSs.

Adapt Angluin’s algorithm to learn either

(DE) a dangerous execution, or

(SS) a safe superset of Exec, i.e., one containing no dangerous executions.

Membership queries: as in the previous attempt, but if a dangerous execution is
found, the Learner has learned DE, and the algorithm stops.

Replace equivalence queries by containment queries.

244

Third attempt

Define a marked transition sequence (MTS) as a pair(σ, c), where σ is a
sequence of transition names and c is a configuration.
Notice that executions are MTS.

Don’t learn Exec, just decide whether Exec ∩ D = ∅ for a given regular set D of
dangerous MTSs.

Adapt Angluin’s algorithm to learn either

(DE) a dangerous execution, or

(SS) a safe superset of Exec, i.e., one containing no dangerous executions.

Membership queries: as in the previous attempt, but if a dangerous execution is
found, the Learner has learned DE, and the algorithm stops.

Replace equivalence queries by containment queries.

245

Containment queries

Containment queries: the Learner produces a regular hypothesis H, and asks
the Teacher whether H ⊇ Exec and, if so, whether H ∩ D = ∅.
If the Teacher answers

1. H ⊇ Exec and H ∩ D = ∅, the Learner has learned a SS, stop.

2. H ⊇ Exec and H ∩ D 6= ∅, then the Teacher returns (σ, c) ∈ H ∩ D.
The Learner checks whether (σ, c) ∈ Exec:

2.1. if (σ, c) ∈ Exec, then the Learner has learned a DE, stop;

2.2. if (σ, c) /∈ Exec, then (σ, c) ∈ H ⊕ Exec, and so the Learner has got a
counterexample.

3. H 6⊇ Exec, then the Teacher returns some element in H ⊕ Exec as
counterexample.

. . . but checking H ⊆ Exec is also hopeless!

246

Containment queries

Containment queries: the Learner produces a regular hypothesis H, and asks
the Teacher whether H ⊇ Exec and, if so, whether H ∩ D = ∅.
If the Teacher answers

1. H ⊇ Exec and H ∩ D = ∅, the Learner has learned a SS, stop.

2. H ⊇ Exec and H ∩ D 6= ∅, then the Teacher returns (σ, c) ∈ H ∩ D.
The Learner checks whether (σ, c) ∈ Exec:

2.1. if (σ, c) ∈ Exec, then the Learner has learned a DE, stop;

2.2. if (σ, c) /∈ Exec, then (σ, c) ∈ H ⊕ Exec, and so the Learner has got a
counterexample.

3. H 6⊇ Exec, then the Teacher returns some element in H ⊕ Exec as
counterexample.

. . . but checking H ⊆ Exec is also hopeless!

247

Containment queries

Containment queries: the Learner produces a regular hypothesis H, and asks
the Teacher whether H ⊇ Exec and, if so, whether H ∩ D = ∅.
If the Teacher answers

1. H ⊇ Exec and H ∩ D = ∅, the Learner has learned a SS, stop.

2. H ⊇ Exec and H ∩ D 6= ∅, then the Teacher returns (σ, c) ∈ H ∩ D.
The Learner checks whether (σ, c) ∈ Exec:

2.1. if (σ, c) ∈ Exec, then the Learner has learned a DE, stop;

2.2. if (σ, c) /∈ Exec, then (σ, c) ∈ H ⊕ Exec, and so the Learner has got a
counterexample.

3. H 6⊇ Exec, then the Teacher returns some element in H ⊕ Exec as
counterexample.

. . . but checking H ⊆ Exec is also hopeless!

248

Containment queries

Containment queries: the Learner produces a regular hypothesis H, and asks
the Teacher whether H ⊇ Exec and, if so, whether H ∩ D = ∅.
If the Teacher answers

1. H ⊇ Exec and H ∩ D = ∅, the Learner has learned a SS, stop.

2. H ⊇ Exec and H ∩ D 6= ∅, then the Teacher returns (σ, c) ∈ H ∩ D.
The Learner checks whether (σ, c) ∈ Exec:

2.1. if (σ, c) ∈ Exec, then the Learner has learned a DE, stop;

2.2. if (σ, c) /∈ Exec, then (σ, c) ∈ H ⊕ Exec, and so the Learner has got a
counterexample.

3. H 6⊇ Exec, then the Teacher returns some element in H ⊕ Exec as
counterexample.

. . . but checking H ⊆ Exec is also hopeless!

249

Containment queries

Containment queries: the Learner produces a regular hypothesis H, and asks
the Teacher whether H ⊇ Exec and, if so, whether H ∩ D = ∅.
If the Teacher answers

1. H ⊇ Exec and H ∩ D = ∅, the Learner has learned a SS, stop.

2. H ⊇ Exec and H ∩ D 6= ∅, then the Teacher returns (σ, c) ∈ H ∩ D.
The Learner checks whether (σ, c) ∈ Exec:

2.1. if (σ, c) ∈ Exec, then the Learner has learned a DE, stop;

2.2. if (σ, c) /∈ Exec, then (σ, c) ∈ H ⊕ Exec, and so the Learner has got a
counterexample.

3. H 6⊇ Exec, then the Teacher returns some element in H ⊕ Exec as
counterexample.

. . . but checking H ⊆ Exec is also hopeless!

250

Pre-fixpoint queries (1/3)

We only check a sufficient condition for H ⊇ Exec.

The clever idea:

If c t−→ c′, then say (σ, c) −→ (σt , c′). Given a set M of MTSs, let

post(M) = {m | ∃m′ ∈ M ∧ m′ −→m}

Exec is the least fixed point of the equation X = F(X) where

F(X) =def {(ε, c) | c ∈ I} ∪ post(X)

By standard fixed point theory: if F(H) ⊆ H, then H ⊇ Exec.

We replace the query H ⊇ Exec by the query F(H) ⊆ H.

251

Pre-fixpoint queries (1/3)

We only check a sufficient condition for H ⊇ Exec.

The clever idea:

If c t−→ c′, then say (σ, c) −→ (σt , c′). Given a set M of MTSs, let

post(M) = {m | ∃m′ ∈ M ∧ m′ −→m}

Exec is the least fixed point of the equation X = F(X) where

F(X) =def {(ε, c) | c ∈ I} ∪ post(X)

By standard fixed point theory: if F(H) ⊆ H, then H ⊇ Exec.

We replace the query H ⊇ Exec by the query F(H) ⊆ H.

252

Pre-fixpoint queries (1/3)

We only check a sufficient condition for H ⊇ Exec.

The clever idea:

If c t−→ c′, then say (σ, c) −→ (σt , c′). Given a set M of MTSs, let

post(M) = {m | ∃m′ ∈ M ∧ m′ −→m}

Exec is the least fixed point of the equation X = F(X) where

F(X) =def {(ε, c) | c ∈ I} ∪ post(X)

By standard fixed point theory: if F(H) ⊆ H, then H ⊇ Exec.

We replace the query H ⊇ Exec by the query F(H) ⊆ H.

253

Pre-fixpoint queries (2/3)

Pre-fixpoint queries: the Learner produces a regular hypothesis H, asks the
Teacher whether F(H) ⊆ H and, if so, whether H ∩ D = ∅. If the Teacher
answers

1. F(H) ⊆ H, then H ⊇ Exec, and we can proceed as before.

2. F(H) \ H 6= ∅, then the Teacher chooses m ∈ F(H) \ H.
So we have m ∈ {(ε, c) | c ∈ I} ∪ post(H) and m /∈ H.

2.1 If m ∈ {(ε, c) | c ∈ I}, then m ∈ Exec \ H.
The Teacher returns m as counterexample.

2.2 If m ∈ post(H), the Teacher computes m′ ∈ H with m′ −→m.

2.2.1 If m′ /∈ Exec, then m′ ∈ H \ Exec.
The Teacher returns m′ as counterexample.

2.2.2 If m′ ∈ Exec, then m ∈ Exec (m′ → m holds) and so m ∈ Exec \ H.
The Teacher returns m as counterexample.

254

Pre-fixpoint queries (2/3)

Pre-fixpoint queries: the Learner produces a regular hypothesis H, asks the
Teacher whether F(H) ⊆ H and, if so, whether H ∩ D = ∅. If the Teacher
answers

1. F(H) ⊆ H, then H ⊇ Exec, and we can proceed as before.

2. F(H) \ H 6= ∅, then the Teacher chooses m ∈ F(H) \ H.
So we have m ∈ {(ε, c) | c ∈ I} ∪ post(H) and m /∈ H.

2.1 If m ∈ {(ε, c) | c ∈ I}, then m ∈ Exec \ H.
The Teacher returns m as counterexample.

2.2 If m ∈ post(H), the Teacher computes m′ ∈ H with m′ −→m.

2.2.1 If m′ /∈ Exec, then m′ ∈ H \ Exec.
The Teacher returns m′ as counterexample.

2.2.2 If m′ ∈ Exec, then m ∈ Exec (m′ → m holds) and so m ∈ Exec \ H.
The Teacher returns m as counterexample.

255

Pre-fixpoint queries (2/3)

Pre-fixpoint queries: the Learner produces a regular hypothesis H, asks the
Teacher whether F(H) ⊆ H and, if so, whether H ∩ D = ∅. If the Teacher
answers

1. F(H) ⊆ H, then H ⊇ Exec, and we can proceed as before.

2. F(H) \ H 6= ∅, then the Teacher chooses m ∈ F(H) \ H.
So we have m ∈ {(ε, c) | c ∈ I} ∪ post(H) and m /∈ H.

2.1 If m ∈ {(ε, c) | c ∈ I}, then m ∈ Exec \ H.
The Teacher returns m as counterexample.

2.2 If m ∈ post(H), the Teacher computes m′ ∈ H with m′ −→m.

2.2.1 If m′ /∈ Exec, then m′ ∈ H \ Exec.
The Teacher returns m′ as counterexample.

2.2.2 If m′ ∈ Exec, then m ∈ Exec (m′ → m holds) and so m ∈ Exec \ H.
The Teacher returns m as counterexample.

256

Pre-fixpoint queries (2/3)

Pre-fixpoint queries: the Learner produces a regular hypothesis H, asks the
Teacher whether F(H) ⊆ H and, if so, whether H ∩ D = ∅. If the Teacher
answers

1. F(H) ⊆ H, then H ⊇ Exec, and we can proceed as before.

2. F(H) \ H 6= ∅, then the Teacher chooses m ∈ F(H) \ H.
So we have m ∈ {(ε, c) | c ∈ I} ∪ post(H) and m /∈ H.

2.1 If m ∈ {(ε, c) | c ∈ I}, then m ∈ Exec \ H.
The Teacher returns m as counterexample.

2.2 If m ∈ post(H), the Teacher computes m′ ∈ H with m′ −→m.

2.2.1 If m′ /∈ Exec, then m′ ∈ H \ Exec.
The Teacher returns m′ as counterexample.

2.2.2 If m′ ∈ Exec, then m ∈ Exec (m′ → m holds) and so m ∈ Exec \ H.
The Teacher returns m as counterexample.

257

Pre-fixpoint queries (2/3)

Pre-fixpoint queries: the Learner produces a regular hypothesis H, asks the
Teacher whether F(H) ⊆ H and, if so, whether H ∩ D = ∅. If the Teacher
answers

1. F(H) ⊆ H, then H ⊇ Exec, and we can proceed as before.

2. F(H) \ H 6= ∅, then the Teacher chooses m ∈ F(H) \ H.
So we have m ∈ {(ε, c) | c ∈ I} ∪ post(H) and m /∈ H.

2.1 If m ∈ {(ε, c) | c ∈ I}, then m ∈ Exec \ H.
The Teacher returns m as counterexample.

2.2 If m ∈ post(H), the Teacher computes m′ ∈ H with m′ −→m.

2.2.1 If m′ /∈ Exec, then m′ ∈ H \ Exec.
The Teacher returns m′ as counterexample.

2.2.2 If m′ ∈ Exec, then m ∈ Exec (m′ → m holds) and so m ∈ Exec \ H.
The Teacher returns m as counterexample.

258

Pre-fixpoint queries (2/3)

Pre-fixpoint queries: the Learner produces a regular hypothesis H, asks the
Teacher whether F(H) ⊆ H and, if so, whether H ∩ D = ∅. If the Teacher
answers

1. F(H) ⊆ H, then H ⊇ Exec, and we can proceed as before.

2. F(H) \ H 6= ∅, then the Teacher chooses m ∈ F(H) \ H.
So we have m ∈ {(ε, c) | c ∈ I} ∪ post(H) and m /∈ H.

2.1 If m ∈ {(ε, c) | c ∈ I}, then m ∈ Exec \ H.
The Teacher returns m as counterexample.

2.2 If m ∈ post(H), the Teacher computes m′ ∈ H with m′ −→m.

2.2.1 If m′ /∈ Exec, then m′ ∈ H \ Exec.
The Teacher returns m′ as counterexample.

2.2.2 If m′ ∈ Exec, then m ∈ Exec (m′ → m holds) and so m ∈ Exec \ H.
The Teacher returns m as counterexample.

259

Pre-fixpoint queries (2/3)

Pre-fixpoint queries: the Learner produces a regular hypothesis H, asks the
Teacher whether F(H) ⊆ H and, if so, whether H ∩ D = ∅. If the Teacher
answers

1. F(H) ⊆ H, then H ⊇ Exec, and we can proceed as before.

2. F(H) \ H 6= ∅, then the Teacher chooses m ∈ F(H) \ H.
So we have m ∈ {(ε, c) | c ∈ I} ∪ post(H) and m /∈ H.

2.1 If m ∈ {(ε, c) | c ∈ I}, then m ∈ Exec \ H.
The Teacher returns m as counterexample.

2.2 If m ∈ post(H), the Teacher computes m′ ∈ H with m′ −→m.

2.2.1 If m′ /∈ Exec, then m′ ∈ H \ Exec.
The Teacher returns m′ as counterexample.

2.2.2 If m′ ∈ Exec, then m ∈ Exec (m′ → m holds) and so m ∈ Exec \ H.
The Teacher returns m as counterexample.

260

Fixed point queries (2/3)

Remaining problems:

• decide F(H) ⊆ H, and if not

• compute m ∈ F(H) \ H.

Theorem (exercise): If M is a regular set of MTSs of a (lossy) channel system,
then so is post(M). Moreover, post(M) can be effectively computed.

Corollary: If I is a regular set of configurations and H is a regular hypothesis of a
(lossy) channel system, then F(H) is also regular and can be effectively
computed.

Algorithms for the remaining problems follow easily from the Corollary.

261

Fixed point queries (2/3)

Remaining problems:

• decide F(H) ⊆ H, and if not

• compute m ∈ F(H) \ H.

Theorem (exercise): If M is a regular set of MTSs of a (lossy) channel system,
then so is post(M). Moreover, post(M) can be effectively computed.

Corollary: If I is a regular set of configurations and H is a regular hypothesis of a
(lossy) channel system, then F(H) is also regular and can be effectively
computed.

Algorithms for the remaining problems follow easily from the Corollary.

262

Fixed point queries (2/3)

Remaining problems:

• decide F(H) ⊆ H, and if not

• compute m ∈ F(H) \ H.

Theorem (exercise): If M is a regular set of MTSs of a (lossy) channel system,
then so is post(M). Moreover, post(M) can be effectively computed.

Corollary: If I is a regular set of configurations and H is a regular hypothesis of a
(lossy) channel system, then F(H) is also regular and can be effectively
computed.

Algorithms for the remaining problems follow easily from the Corollary.

263

Fixed point queries (2/3)

Remaining problems:

• decide F(H) ⊆ H, and if not

• compute m ∈ F(H) \ H.

Theorem (exercise): If M is a regular set of MTSs of a (lossy) channel system,
then so is post(M). Moreover, post(M) can be effectively computed.

Corollary: If I is a regular set of configurations and H is a regular hypothesis of a
(lossy) channel system, then F(H) is also regular and can be effectively
computed.

Algorithms for the remaining problems follow easily from the Corollary.

264

Some observations

The learning algorithm is complete in the following sense: if Exec is regular, then
the algorithm terminates.

We learn either a dangerous execution or an invariant proving that there are no
dangerous executions.

In practice, the assumption ‘Exec is regular’ is stronger than the assumption
‘post∗(I) is regular’. For instance, post∗(I) is always regular for a pushdown
system (assuming I regular), while Exec is context-free.

The assumption ‘Exec is regular’ may depend on the encoding use to represent
a pair (σ, c) as a word.

265

Some observations

The learning algorithm is complete in the following sense: if Exec is regular, then
the algorithm terminates.

We learn either a dangerous execution or an invariant proving that there are no
dangerous executions.

In practice, the assumption ‘Exec is regular’ is stronger than the assumption
‘post∗(I) is regular’. For instance, post∗(I) is always regular for a pushdown
system (assuming I regular), while Exec is context-free.

The assumption ‘Exec is regular’ may depend on the encoding use to represent
a pair (σ, c) as a word.

266

Some observations

The learning algorithm is complete in the following sense: if Exec is regular, then
the algorithm terminates.

We learn either a dangerous execution or an invariant proving that there are no
dangerous executions.

In practice, the assumption ‘Exec is regular’ is stronger than the assumption
‘post∗(I) is regular’. For instance, post∗(I) is always regular for a pushdown
system (assuming I regular), while Exec is context-free.

The assumption ‘Exec is regular’ may depend on the encoding use to represent
a pair (σ, c) as a word.

267

Some observations

The learning algorithm is complete in the following sense: if Exec is regular, then
the algorithm terminates.

We learn either a dangerous execution or an invariant proving that there are no
dangerous executions.

In practice, the assumption ‘Exec is regular’ is stronger than the assumption
‘post∗(I) is regular’. For instance, post∗(I) is always regular for a pushdown
system (assuming I regular), while Exec is context-free.

The assumption ‘Exec is regular’ may depend on the encoding use to represent
a pair (σ, c) as a word.

268

