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Which is the main stream of a stream system?



Robert E. Horton (1945)

Which is the main stream of a stream system?

Three step procedure.

First step: attach to each stream segment an order.

Unbranched fingertip tributaries are always designated as of
order 1, tributaries or streams of the 2d order receive branches or
tributaries of the 1st order, but these only; a 3d order stream must
receive one or more tributaries of the 2d order but may also receive
1st order tributaries. A 4th order stream receives branches of the
3d and usually also of lower orders, and so on.
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Arthur N.Strahler (1952)

The smallest, or ”finger-tip”,

channels constitute the first-

order segments. [. . . ].

A second-order segment is

formed by the junction of any

two first-order streams; a third-

order segment is formed by the

joining of any two second order

streams, etc.

Streams of lower order joining

a higher order stream do not

change the order of the higher

stream
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Arthur N.Strahler (1952)

Second step:
Remove all segments
of lower order joining a
higher order stream.
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Arthur N.Strahler (1952)

Second step:
Remove all segments
of lower order joining a
higher order stream.



Robert E. Horton (1945)

Third step:

(1) Starting below the junction, ex-
tend the parent stream upstream
from the bifurcation in the same
direction. The stream joining the
parent stream at the greatest an-
gle is of the lower order [. . . ]

(2) If both streams are at about the
same angle to the parent stream
at the junction, the shorter is usu-
ally taken as of the lower order.
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Strahler number of a tree

Definition: The Strahler number of a
tree t , denoted by S(t), is inductively
defined as follows.
• If t has no subtrees (i.e., t has only

one node), then S(t) = 0.
• If t has subtrees t1, . . . , tn, then let

k = max{S(t1), . . . ,S(tn)}.
If exactly one subtree of t has
Strahler number k , then S(t) = k ;
otherwise, S(t) = k +1.



Strahler number of a tree
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A characterization

Fact: The Strahler number of a tree is the height of the largest minor of t
that is a perfect binary tree.

Consequence: The height of a tree and the logarithm of its size are both
upper bounds of its Strahler number.
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A characterization

Perfect binary tree for
the Elbe river
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Arithmetic circuits

×

+

x ×

y z

w

R1 ← x

R2 ← y

R3 ← z

R4 ← w

R2 ← R2 × R3

R1 ← R1 + R2

R4 ← R1 × R4

R1 ← y

R2 ← z

R2 ← R1 × R2

R2 ← x

R1 ← R1 + R2

R2 ← w

R1 ← R1 × R2



Arithmetic circuits



Arithmetic circuits

Fact: The minimal number of registers needed to evaluate an arithmetic
expression is equal to the Strahler number of its syntax tree.
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Arithmetic circuits

Fact: The minimal number of registers needed to evaluate an arithmetic
expression is equal to the Strahler number of its syntax tree plus 1.

Evaluation strategy: higher-number-first.

To evaluate e1 op e2:

evaluate the subexpression of higher Strahler number, say e1,

storing the result in a register, say R1;

reuse all other registers to evaluate e2,

storing the result in one of them, say R2;

store the result of R1 op R2 in R1.



Arithmetic circuits

Which is the distribution of Strahler numbers in the binary trees with n
leaves?

Consider binary trees with n internal nodes, chosen unformly at random.
Let Sn be the random variable assigning to a tree its Strahler number.

Fact: Sn ≤ blog2(n +1)c (Strahler number ≤ height)

Theorem [Flajolet et al.’77, Kemp ’79, Meir et al. ’80]:

E[Sn] = log4 n + O(1) and Var [Sn] ∈ O(1)

Theorem [Devroye, Kruszewski, ’95]: Pr [Sn − log4 n ≥ x] ≤
c
4x .



A second characterization: Tree traversal

Fact [Flajolet, Raoult, Vuillemin ’79]: The Strahler number of a binary tree
is the minimal stack size needed to traverse it.

Follow a lower-number-first search strategy.
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Strahler numbers and derivation trees

Definition [Ginsburg, Spanier ’66]: The index of a derivation

S ⇒ α1 ⇒ α2 ⇒ · · · ⇒ αk ⇒ w

of a given CFG is the maximal number of variables occurring in any of
α1, . . . , αk

Example: X → aXX | b

X ⇒ aXX ⇒ aXaXX ⇒ abaXX ⇒ ababX ⇒ ababb Index 3

X ⇒ aXX ⇒ abX ⇒ abaXX ⇒ ababX ⇒ ababb Index 2

Fact: A derivation tree of a CFG in Chomsky normal form has index k iff its
Strahler number is (k − 1).



Strahler numbers and derivation trees

From [Chytil and Monien, STACS ’90]:

A caterpillar is an ordered tree in which
all vertices of outdegree greater than
one occur on a single path from the root
to a leaf.
A 1-caterpillar is simply a caterpillar
and for k > 1 a k-caterpillar is a tree
obtained from a caterpillar by replac-
ing each hair by a tree which is at most
(k − 1)-caterpillar.



Strahler numbers and derivation trees

Theorem [Chytil and Monien, STACS ’90]: Let G be a CFG, and let Lk(G)

denote the words of L(G) of index k . There is a nondeterministic Turing
machine (pushdown automaton) with language L(G) that recognizes
Lk(G) in O(k log |G|) space.

Proof idea: Let a1 . . . an be an input string.
At each moment the stack contains a sequence of triples of the form
(A, i, j), where A non-terminal and 1 ≤ i ≤ j ≤ n.

(A, i, j) models the guess A⇒∗ ai . . . aj .

Guess rule A→ BC, guess index i ≤ k < j , guess which of B and C
generates tree of smaller Strahler number, say C, and replace (A, i, j) by
(C, k +1, j)(B, i, j) (smaller-number-strategy).



Strahler numbers and derivation trees

Theorem: Emptiness of Lk(G) can be checked in nondeterministic
O(k log |G|) space.

Proof idea: Similar. At each moment stack contains a sequence of at most
k variables.

Compare: emptiness of L(G) is P-complete.



Strahler numbers and resolution proofs

Problem: estimate the complexity of resolution refutations

Space complexity: maximal number of “active clauses” during resolution.

The space complexity of a tree-like refutation is equal to its Strahler
number.

Rich theory developed by several authors (recent survey by O. Kullmann)



Strahler numbers and Newton’s method

We study systems of equations of the form

X1 = f1(X1, . . . ,Xn)

X2 = f2(X1, . . . ,Xn)

· · ·
Xn = fn(X1, . . . ,Xn)

where the fi ’s are polynomial expressions over ω-continuous semirings.



ω-continuous semirings

Semiring (C,+,×,0,1):

(C,+,0) is a commutative monoid × distributes over +

(C,×,1) is a monoid 0× a = a× 0 = 0

ω-continuity:

the relation a v b ⇔ ∃c : a + c = b is a partial order

v-chains have limits

Examples: nonnegative integers and reals plus∞, min-plus (tropical),
languages, complete lattices, multisets, Viterbi . . .

In the rest of the tutorial: semiring ≡ ω-continuous semiring.



Context-free languages

Context-free grammar

X → ZX | Z
Y → aYa | ZX

Z → b | aYa

Languages generated from
X ,Y ,Z are the least solution of

LX = (LZ · LX) ∪ LZ

LY = (a · LY · a) ∪ (LZ · LX)

LZ = b ∪ (a · LY · a)



Shortest paths

Lengths di of shortest paths from vertex 0 to vertex i in graph G = (V ,E)

are the largest solution of

di = min
(i,j)∈E

(di , dj + wji)

where wij is the distance from i to j .

Largest solution coincides with smallest solution over the tropical semiring.



Nuclear chain reaction

235U ball of radius D, spontaneous fission.
Probability of a chain reaction is (1− p0),
where pα for 0 ≤ α ≤ D is least solution of

pα = kα +

∫ D

0
Rα,β f(pβ) dβ

for constants kα,Rα,β and polynomial f(x).

Discretizing the interval [0,D] we get

pi = ki +
n∑

j=1

ri,j f(pj)

for constants ki , ri,j .



A generic solution method: Kleene iteration

Theorem [Kleene ’38, Tarsky ’55, Kuich ’97]: A system f of fixed-point
equations over a semiring has a least solution µf w.r.t. the natural order
v.

This least solution is the supremum of the Kleene approximants, denoted
by {ki}i≥0 , and given by

k0 = f(0)

ki+1 = f(ki) .

Basic algorithm for calculation of µf : compute k0, k1, k2, . . . until either
ki = ki+1 or the approximation is considered adequate.



Kleene iteration may be slow

Set interpretations: Kleene iteration never terminates if µf is an infinite set.

• X = {a} · X ∪ {b} µf = a∗b

Kleene approximants are finite sets: ki = (ε+ a + . . .+ ai)b

Real semiring: convergence can be very slow.

• X = 0.5 X2 +0.5 µf = 1 = 0.99999 . . .

“Logarithmic convergence”: k iterations give O(log k) correct digits.

kn ≤ 1−
1

n +1
k2000 = 0.9990



Language-theoretic characterization of µf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V.

Example: X = 0.25X2 +0.25X +0.5

Grammar: X → a X X | b X | c

Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) :=
∑
t∈T

V(t)



Language-theoretic characterization of µf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V.

Example: X = 0.25X2 +0.25X +0.5

Grammar: X → a X X | b X | c

Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) :=
∑
t∈T

V(t)



Language-theoretic characterization of µf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V.

Example: X = 0.25X2 +0.25X +0.5

Grammar: X → a X X | b X | c

Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) :=
∑
t∈T

V(t)



X → a X X | b X | c V(a) = V(b) = 0.25,V(c) = 0.5

X

Xa

c

X

c

t2:X

c

t1: t3: X

X Xa

c

V(t3) = 0.015625V(t2) = 0.25 · 0.5 · 0.5 = 0.0625V(t1) = 0.5

b X

c

V({t1, t2, t3}) = 0.5+ 0.0625+ 0.015625 = 0.578125



Language-theoretic characterization of µf

Fundamental Theorem [Bozaalidis ’99, ..., E. Kiefer, Luttenberger’10]:
Let G be the grammar for X = f(X), and let T(G) be the set of derivation
trees of G . Then µf = V(T(G))

X = f(X)

µf

=

V(T(G)) T(G)

G

V

From now on: V(T(G))
def
= V(G)



Approximating grammars

Let G be the grammar for X = f(X).

An unfolding of G is a sequence U1,U2,U3, . . . of grammars such that

• T(U i) ∩ T(U j) = ∅ for every i 6= j , and

• there is a bijection between
⋃∞

i=1 T(U i) and T(G) that preserves the
yield.

From U1,U2,U3, . . . we get another sequence G1,G2,G3, . . . such that
T(Gi) = T(U1) ∪ T(U2) ∪ · · · ∪ T(U i)



Approximating grammars

Define the operator Op as follows:

• V(G1) = Op(0) and

• V(Gi+1) = Op(V(Gi)) for every i ≥ 1

By the fundamental theorem we get µf = sup∞i=1Op i(0)

Op yields a procedure to approximate µf .



Approximating grammars by height

Goal: Yield-preserving bijection between T(U i) (T(Gi)) and the
derivation trees of G of height i (at most i).

(Height of a derivation tree measured after removing terminals)

G : X → a X X | b X | c

X〈0〉 → c

X[0] → X〈0〉

X〈k〉 → aX〈k−1〉X〈k−1〉 | aX[k−2]X〈k−1〉 | aX〈k−1〉X[k−2]| bX〈k−1〉

X[k] → X〈k〉 | X[k−1]

Uk (Gk ) is the grammar with X〈k〉 (X[k]) as axiom.
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Computing approximants

X〈k〉 → aX〈k−1〉X〈k−1〉 | aX[k−2]X〈k−1〉 | aX〈k−1〉X[k−2]| bX〈k−1〉

X[k] → X〈k〉 | X[k−1]

Theorem: V(G0) = f(0)

V(Gk+1) = f(V(Gk)) for every k ≥ 1

Example: G : X → a X X | b X | c f(X) = a X X + b X + c



Kleene iteration corresponds to evaluating
the derivation trees of G by increasing height.



Approximating grammars by Strahler number

Recall the approximation by height

X〈k〉 → aX〈k−1〉X〈k−1〉 | aX[k−2]X〈k−1〉 | aX〈k−1〉X[k−2]| bX〈k〉
X[k] → X〈k〉 | X[k−1]

To capture more trees we now approximate by Strahler number.

X〈k〉 → aX〈k−1〉X〈k−1〉 | aX[k−1]X〈k〉 | aX〈k〉X[k−1]| bX〈k−1〉
X[k] → X〈k〉 | X[k−1]

Uk (Gk ) defined as before.



Approximating grammars by Strahler number

Lemma: The derivation trees of Uk are the derivation trees of G of
Strahler number k .

Lemma: The derivation trees of Gk are the derivation trees of G of
Strahler number at most k .



Computing approximants

X〈k〉 → aX〈k−1〉X〈k−1〉 | aX[k−1]X〈k〉 | aX〈k〉X[k−1]| bX〈k−1〉

V(Uk) is the least solution of the linear equation

X = aV · V(Uk−1)2 + aV · V(Gk−1) · X + aV · X · V(Gk−1) + bV · X

and we get V(G0) = f(0)

V(Gk) = V(Gk−1) + V(Uk) for every k ≥ 1



Interpreting the new approximation

Recall that in our example f(X) = aX2 + bX + c

Over the real semiring the equation

X = aV · V(Uk−1)2 + aV · V(Gk−1) · X + aV · X · V(Gk−1) + bV · X

can be rewritten as

X = aV · V(Uk−1)2 + f ′(V(Gk−1)) · X

and therefore

V(Uk) =
aV · V(Uk−1)2

1− f ′(V(Gk−1)
V(Gk) = V(Gk−1)−

aV · V(Uk−1)2

f ′(V(Gk−1)− 1



Newton’s method for X = f(X) (univariate case)
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Mathematical formulation of Newton’s Method

Let ν be some approximation of µf . (We start with ν = f(0).)

• Compute the linear function Tν(X) for the tangent to f(X) at ν

• Solve X = Tν(X) (instead of X = f(X)), and take the solution as the
new approximation

Elementary analysis: Tν(X) = f ′(ν) · (X − ν) + f(ν)

Solving X = Tν(X) yields

X =
f(ν)− f ′(ν) · ν

1− f ′(ν)
ν′ = ν −

f(ν)− ν
f ′(ν)− 1



Compare:

V(Gk) = V(Gk−1) −
aV · V(Uk−1)2

f ′(V(Gk−1)− 1

ν(k) = ν(k−1) −
f(ν(k−1))− ν(k−1)

f ′(ν(k−1))− 1



Newton approximation corresponds to evaluating
the derivation trees of G by increasing Strahler number.



Convergence speed of Newton’s method

For every semiring value v :

• let amb(i, v) be the number of trees of Gi with value v , if the number is
finite, and amb(i, v) =∞ otherwise.

• let amb(v) be the number of trees of G with value v , if the number is
finite, and amb(v) =∞ otherwise.

V(Gi) =
∑
v∈C

amb(i, v) · v V(G) =
∑
v∈C

amb(v) · v

Intuitively: amb(i, v) · v is the ”contribution” of v to V(Gi).

amb(v) · v is the ”contribution” of v to V(G).

We analyze how fast amb(i, v) converges to amb(v).



Convergence speed for commutative and

idempotent semirings

In idempotent semirings v + v = v holds, and so we only care whether
ambi(v) = 0 or ambi(v) > 0

Theorem [E., Kiefer, Luttenberger ’10]: Let X = f(X) be a system with n
equations over an idempotent and commutative semiring. Then for every
value v ∈ C we have amb(v) > 0 iff ambn(v) > 0.

Corollary: µf = V(Gn).

Stronger version of a theorem by Hopkins and Kozen in LICS’99.



Proof sketch

Show: For every value v ∈ C, if V(t) = v for some tree of G, then
V(u) = v for some tree u of Gn.

Equivalently: For every derivation tree, some derivation tree of Strahler
number at most n has the same value.

More generally: Let t be a derivation tree, and let k be the number of
variables occurring in t . There is a tree u of Strahler number k such that
V(t) = V(u).

Proof by induction on the number of nodes of t



Solving the linear equations

Recall: V(U i) is the least solution of

X = V(a) · V(U i−1)2 + V(a) · V(Gi−1) · X
+ V(a) · X · V(Gi−1) + V(b) · X

Neither left- nor right linear!

In a commutative and idempotent semiring the equation is equivalent to

X = V(a) · V(U i−1)2 + (V(a) · V(Gi−1) + V(b)) · X

which gives

V(U i) = (V(a) · V(Gi−1) + V(b))∗ · V(a) · V(U i−1)2



Convergence speed for commutative semirings

Theorem [Luttenberger, Schlund ’13]: Let X = f(X) be a system with n
equations over a commutative semiring. Then for every value v ∈ C and
for every k ∈ IN we have amb(n + k , v) ≥ min{amb(v),22

k}.



Solving equations over 1-bounded semirings

A semiring (S,+, ·,0,1) is 1-bounded if it is idempotent and a v 1 for
every semiring element a.

(Note: commutativity not required)

Example: Viterbi’s semiring for computing maximal probabilities.

We use derivation tree analysis to show that for a system on n equations
(and so n variables)

µf = V(Gn) = f n(0)



Solving equations over 1-bounded semirings

Every tree t of height greater than n is pumpable: if t has yield w then
there is uvxyz = w and trees t i with yield uv ixy iz = w for every i ≥ 0.

V(t) + V(t0) = V(uvxyz) + V(uxz)

v V(u) · 1 · V(x) · 1 · V(z)

+ V(u) · V(x) · V(z) (1-boundedness)

= V(uxz) (idempotence)

= V(t0)

So t0 captures the total contribution of value v .

Use now that t0 has height at most n.



Solving equations over star-distributive semirings

A semiring is star-distributive if it is idempotent, commutative, and
(a + b)∗ = a∗+ b∗ for any semiring elements a, b.

Example: tropical semiring.

We use derivation tree analysis to show that for a system on n equations
µf can be computed by n Kleene steps followed by one Newton step.



Solving equations over star-distributive semirings

A derivation tree is a bamboo if it has a path, the stem, such that the
height of every subtree not containing a node of the stem is at most n.

k−1

k−1

k−1

k−1

k−1

k−1

k−1k−1

Proposition: For every tree t there is a bamboo t ′ such that V(t) = V(t ′).

Corollary: Bamboos already capture the contribution of all trees.

To compute: n Kleene steps for the trees of height at most n followed by
one Newton step for the bamboos.



Some applications



Parikh’s theorem

Theorem [Parikh ’66]: For every context-free language there is a regular
language with the same commutative image.

Problem: Given a CFG G, construct an automaton A such that L(G) and
L(A) have the same commutative image.

Solution: Use that L(G) and L(Gn) have the same commutative image.

Construct A whose runs “simulate” the derivations of Gn.



Parikh’s theorem

Example: A1 → A1A2 | a A2 → bA2aA2|cA1

A1 (0,1)

⇒ A1A2
ε−→ (1,1)

⇒ A1bA2aA2
ba−−→ (1,2)

⇒ A1bcA1aA2
c−→ (2,1)

⇒ abcA1aA2
a−→ (1,1)

⇒ abcaaA2
a−→ (0,1)

⇒ abcaacA1
c−→ (1,0)

⇒ abcaaca a−→ (0,0)

0,0 2,01,0 3,0

2,11,10,1

0,2 1,2

0,3

a

a a

a

a a

εc ba c

cc

ba

ba c

c ε ε



Lazy evaluation of And-Or trees

Nodes are only constructed and evaluated (to 0 or 1) if needed.
(e.g., if left subtree of And-node evaluates to 1, right subtree is not
constructed)

function And(node)
if node.leaf() then
return node.value()

else
v := Or(node.left)
if v = 0 then
return 0

else
return Or(node.right)

function Or(node)
if node.leaf() then
return node.value()

else
v := And(node.left)
if v = 1 then
return 1

else
return And(node.right)



Assume the probabilities that node.leaf() returns true and node.value()
returns 1 are both 1/2.

We perform an analysis to compute the probability that the evaluation
terminates with a given value, and the average runtime.

Semiring elements: pairs (p, t).

Semiring operations: (p1, t1) ·e (p2, t2)
def
= (p1 · p2, t1 + t2)

(p1, t1) +e (p2, t2)
def
=
(

p1 + p2,
p1·t1+p2·t2

p1+p2

)



The equations

And 0 = (0.25,2) +e (0.5,1) ·e (Or 0 +e Or 1 ·e Or 0)

And 1 = (0.25,2) +e (0.5,1) ·e Or 1 ·e Or 1

Or 0 = (0.25,2) +e (0.5,1) ·e And 0 ·e And 0

Or 1 = (0.25,2) +e (0.5,1) ·e (And 1 +e And 0 ·e And 1)

And 0: probability of (termination and) evaluation to 0, and

average number of steps to termination



Kleene vs. Newton

Neither Kleene nor Newton terminate, but Newton converges faster:

i k(i) And 0 ν(i) And 0 k(i) And 1 ν(i) And 1

0 (0.250,2.000) (0.250,2.000) (0.250,2.000) (0.250,2.000)

1 (0.406,2.538) (0.495,3.588) (0.281,2.333) (0.342,3.383)

2 (0.448,2.913) (0.568,5.784) (0.333,3.012) (0.409,5.906)

3 (0.491,3.429) (0.581,6.975) (0.350,3.381) (0.419,7.194)

4 (0.511,3.793) (0.581,7.067) (0.370,3.904) (0.419,7.295)



Stochastic thread creation

Threads can spawn new threads with known probabilities.

Execution by one processor. We assume termination with probability 1.

Example (only one type of thread):

X 0.1−−−→ 〈X ,X ,X〉 X 0.2−−−→ 〈X ,X〉 X 0.1−−−→ X X 0.6−−−→ ε

Probability generating function

f(X) = 0.1X3 +0.2X2 +0.1X +0.6



Describing executions: family trees

0.6

0.6

0.10.6 0.6 0.6

0.20.2

0.1

Probability of a family tree: product of the probabilities of its nodes.

Execution order depends on a scheduler that chooses a thread from the
pool of inactive threads and executes it for one time unit.

Completion space Sσ for a scheduler σ: maximal size reached by the pool
during execution.



Completion space of the optimal scheduler

Lemma: The family trees with completion space Sop = k “are” the
derivation trees of Strahler number k .

Theorem [Bradzil et al. ’11]: The probability Pr[Sop ≤ k] of completing
execution within space at most k is equal to the k -th Newton approximant
of X = f(X).

In our example:
Pr[Sop = 1] = 2 = 3 = 4 = 5

0.667 0.237 0.081 0.014 0.001



Secondary structure of RNA

(image by Bassi, Costa, Michel; www.cgm.cnrs-gif.fr/michel/)



A stochastic context-free grammar
[Knudsen, Hein ’99]: Model the distribution of secondary structures as the
derivation trees of the following stochastic unambiguous context-free
grammar:

L 0.869−−−−−→ CL L 0.131−−−−−→ C

C 0.895−−−−−→ s C 0.105−−−−−→ pSp

S 0.788−−−−−→ pSp S 0.212−−−−−→ CL

Graphical interpretation:

ss s s s ss

p−p

s

s

s s

s

s

s

sss

s s s

ss

s
s

ss

p−pp−p

p−p

sssppsssspsssssspssppsssspssssspss



Visualizing the Strahler number of a word

Strahler number = maximal number of branching points from root to leaf



Visualizing the Strahler number of a word

Strahler number = maximal number of branching points from root to leaf



Visualizing the Strahler number of a word

Strahler number = maximal number of branching points from root to leaf



Grammar leads to two equation systems:

L = C · L + C

S = p · S · p + C · L
C = s + p · S · p

ν1(L) = der. of dim. ≤ 1

ν2(L) = der. of dim. ≤ 2

ν3(L) = der. of dim. ≤ 3

ν4(L) = der. of dim. ≤ 4

ν5(L) = der. of dim. ≤ 5

ν6(L) = der. of dim. ≤ 6

L̂ = 0.869 · Ĉ · L̂ +0.131 · Ĉ
Ŝ = 0.788 · Ŝ +0.212 · Ĉ · L̂
Ĉ = 0.895+ 0.105 · Ŝ

ν̂1(L) = 0.5585

ν̂2(L) = 0.8050

ν̂3(L) = 0.9250

ν̂4(L) = 0.9789

ν̂5(L) = 0.9972

ν̂6(L) = 0.9999


