
A False History of True Concurrency

— from Petri to tools

Javier Esparza

Technische Universität München

1

2008

2

1962

3

Abstract Models of Computation in the early 60s

Lambda calculus (Church 35)

Turing machines (Turing 36)

Finite automata (Kleene 56, Moore 56, Mealy 56, Scott and Rabin 59)

Pushdown automata (Oettinger 61, Chomsky 62)

4

Semantics: executions

Configurations: set of informations completely describing the state of the
machine at a certain moment in time

Transitions: moves between configurations

Lambda calculus (λx .xx)(λy .y) −−→ (λy .y)(λz.z)

Turing machine 0010q1011 −−→ 001q201011

Finite automaton q1

a
−−−→ q2

Pushdown automaton (q1, XYYZ)
a

−−−→ (q2, XYXYYZ)

Executions: alternating sequences of configurations and transitions

5

Physics and Computation

Abstract machines
are implemented as

physical machines

6

Physics and Computation

Abstract machines
are implemented as

can simulate
physical machines

SIMULA project (Nygaard and Dahl), started in 1962

6

Physics and Computation

Abstract machines
are implemented as

can simulate
physical machines

SIMULA project (Nygaard and Dahl), started in 1962

A plane (physical machine)

6

Physics and Computation

Abstract machines
are implemented as

can simulate
physical machines

SIMULA project (Nygaard and Dahl), started in 1962

A plane (physical machine)

can be simulated by a flight simulator (abstract machine)

6

Physics and Computation

Abstract machines
are implemented as

can simulate
physical machines

SIMULA project (Nygaard and Dahl), started in 1962

A plane (physical machine)

can be simulated by a flight simulator (abstract machine)

which can be implemented in a video console (physical machine)

6

Physics and Computation

Abstract machines
are implemented as

can simulate
physical machines

SIMULA project (Nygaard and Dahl), started in 1962

A plane (physical machine)

can be simulated by a flight simulator (abstract machine)

which can be implemented in a video console (physical machine)

which can be simulated by a hardware simulator (abstract machine)

6

Physics and Computation

Abstract machines
are implemented as

can simulate
physical machines

SIMULA project (Nygaard and Dahl), started in 1962

A plane (physical machine)

can be simulated by a flight simulator (abstract machine)

which can be implemented in a video console (physical machine)

which can be simulated by a hardware simulator (abstract machine)

which is implemented in a PC (physical machine) . . .

6

Petri’s question

In 1962, C.A. Petri (1926–2010) points out a discrepancy between how

Theoretical Physics and Theoretical Computer Science

describe systems (at that time):

Theoretical Physics describes systems as a collection of interacting particles
(subsystems), without a notion of global clock or simultaneity

Theoretical Computer Science describes systems as sequential virtual
machines going through a temporally ordered sequence of global states

Petri’s question:

Which kind of abstract machine should be used to describe
the physical implementation of a Turing machine?

7

Petri Nets

A graphical representation of interacting finite automata:

s0 r0 q0

s1 r1 q1

a b b c d d e

8

Petri Nets

A graphical representation of interacting finite automata:

s0 r0 q0

s1 r1 q1

a b b c d d eb b

8

Petri Nets

A graphical representation of interacting finite automata:

s0 r0 q0

s1 r1 q1

a b b c d d eb bb bb

8

Petri Nets

A graphical representation of interacting finite automata:

s0 r0 q0

s1 r1 q1

a b b c d d eb bb bb d d

8

Petri Nets

A graphical representation of interacting finite automata:

s0 r0 q0

s1 r1 q1

a b b c d d eb bb bb d dd dd

8

Petri Nets

A graphical representation of interacting finite automata:

s0 r0 q0

s1 r1 q1

a b b c d d eb bb bb d dd dda c e

8

Petri Nets

A graphical representation of interacting finite automata:

s0 r0 q0

s1 r1 q1

a b b c d d eb bb bb d dd dda c eaa cc e e

8

Petri Nets

A graphical representation of interacting finite automata:

s0 r0 q0

s1 r1 q1

a b b c d d eb bb bb d dd dda c eaa cc e e

s0 r0 q0

s1 r1 q1

s0 r0 q0

s1 r1 q1

8

Execution semantics

An execution semantics

State: marking (distribution of tokens)

Transitions: M a
−−−→M ′

Executions: M0

a0−−−−→M1

a1−−−−→M2 . . .

9

s0 r0 q0

s1 r1 q1

a b c d e

10

s0 r0 q0

s1 r1 q1

a b c d e

s
r
q

0

0

0

10

s0 r0 q0

s1 r1 q1

a b c d ec

s
r
q

0

0

0

10

s0 r0 q0

s1 r1 q1

a b c d ecc

s
r
q

0

0

0

c
−→

0

1

0

10

s0 r0 q0

s1 r1 q1

a b c d eccb

s
r
q

0

0

0

c
−→

0

1

0

10

s0 r0 q0

s1 r1 q1

a b c d eccbb

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

10

s0 r0 q0

s1 r1 q1

a b c d eccbb e

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

10

s0 r0 q0

s1 r1 q1

a b c d eccbb ee

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

10

s0 r0 q0

s1 r1 q1

a b c d eccbb eed

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

10

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

d
−→

1

1

0

10

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd e

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

d
−→

1

1

0

10

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd ee

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

d
−→

1

1

0

e
−→

1

1

1

10

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd eea

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

d
−→

1

1

0

e
−→

1

1

1

10

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd eeaa

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

d
−→

1

1

0

e
−→

1

1

1

a
−→

0

1

1

10

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd eeaa b

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

d
−→

1

1

0

e
−→

1

1

1

a
−→

0

1

1

10

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd eeaa bb

s
r
q

0

0

0

c
−→

0

1

0

b
−→

1

0

0

e
−→

1

0

1

d
−→

1

1

0

e
−→

1

1

1

a
−→

0

1

1

b
−→

1

0

1

10

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d e

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d e

s0

r0

q0

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d ec

s0

r0

q0

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d ecc

s0

r0

q0

c
r1

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccb

s0

r0

q0

c
r1

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb

s0

r0

q0

c
r1 b

s1

r0

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb e

s0

r0

q0

c
r1 b

s1

r0

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb ee

s0

r0

q0

c
r1 b

s1

r0

e

q1

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb eed

s0

r0

q0

c
r1 b

s1

r0

e

q1

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd

s0

r0

q0

c
r1 b

s1

r0

e

q1
d

r1

q0

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd e

s0

r0

q0

c
r1 b

s1

r0

e

q1
d

r1

q0

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd ee

s0

r0

q0

c
r1 b

s1

r0

e

q1
d

r1

q0

e

q1

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd eea

s0

r0

q0

c
r1 b

s1

r0

e

q1
d

r1

q0

e

q1

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd eeaa

s0

r0

q0

c
r1 b

s1

r0

e

q1
d

r1

q0

e

q1

a
s0

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd eeaa b

s0

r0

q0

c
r1 b

s1

r0

e

q1
d

r1

q0

e

q1

a
s0

11

True-concurrency semantics: concurrent executions

s0 r0 q0

s1 r1 q1

a b c d eccbb eedd eeaa bb

s0

r0

q0

c
r1 b

s1

r0

e

q1
d

r1

q0

e

q1

a
s0

b

s1

r0

11

Executions vs. concurrent executions

The argument for executions:

The global clock assumption is adequate for practical purposes, and
leads to nice mathematics

The argument against executions:

The global clock assumption does not correspond to physical reality,
and leads to awkward representations of simple phenomena

12

The standard example

A system composed of n independent components

a1

• • •

an

has n! different executions, and 2 global states.

The system has only one concurrent execution of size O(n).

13

1981

14

Execution trees

s3

t3 t4

t2t1

s4

t5 s2

s1

s2

t1 t2

s3

t3

s4s4

t4

s1

t1

s2 s3

s1

t5 t5

t2 t1 t2

s1

s2s3

Nielsen, Plotkin, Winskel ’81:
What could be a “concurrent execution tree” ?

15

Unfolding a Petri net

s1

a

s2

d

s4 r3

s3f g

b c

r2

e

r1

s1 r1

〈t1, ǫ〉 〈ǫ, u1〉

s2 s3

〈t2, ǫ〉

r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4

16

Unfolding a Petri net

s1

a

s2

d

s4 r3

s3f g

b c

r2

e

r1

s1 r1

〈ǫ, u1〉

s2 s3

〈t2, ǫ〉

r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4

a

17

Unfolding a Petri net

s1

a

s2

d

s4 r3

s3f g

b c

r2

e

r1

s1 r1

s2 s3 r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4

a c

18

Unfolding a Petri net

s1

a

s2

d

s4 r3

s3f g

b c

r2

e

r1

s1 r1

s2 s3 r2

s4 s4 r3r3

〈t4, u2〉

a

d

c

19

Unfolding a Petri net

s1

a

s2

d

s4 r3

s3f g

b c

r2

e

r1

s1 r1

s2 s3 r2

s4 s4 r3r3

〈t4, u2〉

a b c

d

20

Unfolding a Petri net

s1

a

s2

d

s4 r3

s3f g

b c

r2

e

r1

s1 r1

s2 s3 r2

s4 s4 r3r3

a b c

d e

21

The unfolding

s1

a

s2

d

s4 r3

s3f g

b c

r2

e

r1

s1

s2 s3 r2

r1

s3 r2

r1

r3r3 s4

s4

s2 s3

r3 s4s4

r3r3 s4

r1

r2 s2

s1 s1

r3 s4

dd e e d e

b cacba

f g f g

ed

a b c

22

Motivation of Nielsen, Plotkin and Winskel purely semantic

Denotational semantics of the concurrent behaviour of a Petri net

Definition of a domain analogous to Scott’s domain for computable functions

Extension of Scott’s thesis ‘he computable functions are the continuous
functions” to concurrency.

23

1992

24

The state-explosion problem

A system composed of n independent components

a1

• • •

an

has 2n reachable states.

Its unfolding is the system itself, and has size O(n)

McMillan: can the unfolding help palliate the state-explosion problem?

25

The executability problem

Executability: does some execution of the net contain a given action ?

Fact: model-checking safety properties → executability problem.

Goal: design search algorithms that instead of exploring the execution tree

explore the unfolding.

Hope: the algorithms need to explore a small prefix of the unfolding,

instead of a large prefix of the execution tree.

26

Search algorithm

A search algorithm is determined by:

• A search strategy.
Fixes which event to add next.
In this talk we assume deterministic strategies.

• A termination condition.
Fixes which leaves of the current prefix are terminals, i.e., nodes whose
successors need not be explored.

27

Searching the execution tree

Search algorithm for executability of an action g

Search strategy: any.

Termination condition: An event is a terminal if

• it is labeled by g or,
• it leads to the same state as another already explored event.

28

Example

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

29

Example

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

30

Example

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

31

Example

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

32

Example

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

33

Example

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

34

Example

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

35

Searching the unfolding

We want something like this:

Termination condition: An event is a terminal if

• it is labeled by g or,

• “it leads to the same global state as another already executed event.”

36

But an event of an unfolding does not usually lead to a unique global state

s1 r1

s2 s3 r2

s4 s4 r3r3

a b c

d e

Solution (McMillan ’92): attach to an event the global state reached by
“executing its past”.

Call it the McMillan state

37

But an event of an unfolding does not necessarily lead to one global state

s1 r1

s2 s3 r2

s4 s4 r3r3

a b c

d e

Solution (McMillan ’92): attach to an event the global state reached by
“executing its past”.

Call it the McMillan state

38

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

〈s3, r1〉

s1

39

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

〈s3, r1〉

s1

40

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

〈s3, r1〉

s1

41

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

〈s3, r1〉

s1

42

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

s1

43

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

s1

44

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

s1

45

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

s1

46

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

s1

47

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

〈s1, r3〉

s1

s1

48

Example

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r3〉

〈s1, r3〉

s1

s1

49

First attempt at a search algorithm

Search procedure to decide executability of g

Search strategy: any.

Termination condition: An event is a terminal if

• it is labeled by g or,

• its McMillan state is the same as the McMillan state of another already
explored event.

50

s1

r2

r1

s4 r3r3 s4

r1s1

f g

ed

c

s2 s3

a b

s2 s3

a b1 2

4 7

5 9

8 6

3

51

Is the search algorithm correct ?

No !!

52

Is the search algorithm correct ?

No !!

53

i

h

i

g

i

h

i

g

a b

c e c

a b

e

a

d

ab

df

b

f

54

a b

c d e f

g h

i

s1 t1 u1 v1

s2 t2 u2 v2 s2 t2 u2 v2

s1 t1 u1 v1 s1 t1 u1 v1

s2 t2 v2u2

1

3 4 5 6

2

8 97

i

h

i

hg g10

c d e f

a b

55

McMillan’s solution

Stronger termination condition: An event e is a terminal if

• it is labeled by g or,

• its McMillan state is the same as the McMillan state of another,

already executed, event e′

56

McMillan’s solution

Stronger termination condition: An event e is a terminal if

• it is labeled by g or,

• its McMillan state is the same as the McMillan state of another,

already executed, event e′

and the past of e′ contains strictly fewer events than the past of e.

56

McMillan’s solution

Stronger termination condition: An event e is a terminal if

• it is labeled by g or,

• its McMillan state is the same as the McMillan state of another,

already executed, event e′

and the past of e′ contains strictly fewer events than the past of e.

Downside: stronger condition → fewer terminals → larger prefix

Worst case: prefix exponentially larger than number of reachable global states.

56

s1

s4

s3s2

s10

s9s8

s7

s6s5

b

c d

a

e f

g h

i j

k l

s1

s10 s10 s10 s10 s10 s10 s10 s10

s8 s9 s8 s9 s8 s9 s8 s9

k

i

l

j

k

i

l

j

k

i

l

j

k

i

l

j

s7 s7 s7

g h g h

s5 s6 s5 s6

e f e f

s7

s4 s4

c d

s2 s3

a b

57

1996

58

Adequate strategies

A better solution by E., Römer, and Vogler.

General idea: Keep the termination condition, restrict the strategies.

The past of an event can be seen as a Mazurkiewicz trace: the set of all possible
ways of executing the past.

s1 r1

s2 s3 r2

s4 s4 r3r3

a b c

d e

59

Adequate strategies

Selecting the next event amounts to selecting its Mazurkiewicz trace.

60

Adequate strategies

Selecting the next event amounts to selecting its Mazurkiewicz trace.

Strategy → total order ≺ on Mazurkiewicz traces.

60

Adequate strategies

Selecting the next event amounts to selecting its Mazurkiewicz trace.

Strategy → total order ≺ on Mazurkiewicz traces.

A strategy ≺ on Mazurkiewicz traces is adequate if

t ≺ t ′ implies t t ′′ ≺ t ′ t ′′ for all t ′′.

60

Are there adequate strategies?

Fact 1: every adequate strategy on executions can be “lifted” to an adequate
strategy on Mazurkiewicz traces.

Fact 2: the following strategy on executions is adequate: w1 ≺ w2 iff

• |w1| < |w2|, or;

• |w1| = |w2| and w1 is lexicographically smaller than w2.

Many adequate strategies have been found: E., Römer, Vogler ’96, E., Römer
’99, Niebert, Qu ’06.

61

Complete prefixes

Prefixes of the unfolding containing all reachable states.

s1 r1

r2s2

r3s3

c e

b d f

a

s2

βs1 r1

s1 r1

r2 r3

s3s1 r2

r2s2

1

3 2 4

65

8 9 7

s3

s2

62

Complete prefixes

Prefixes of the unfolding containing all reachable states.

s1 r1

r2s2

r3s3

c e

b d f

a

s2

βs1 r1

s1 r1

r2 r3

s3s1 r2

r2s2

1

3 2 4

65

8 9 7

s3

s2

Compact representations of the state space.

62

Complete prefixes

System Structured Petri net Prefix BDD size

(scale) Places Trans. States Places Trans. (Petrify)

Cycl(12) 95 71 74264 232 104

PhilD(7) 63 63 109965 86310 4314

SlRing(10) 100 100 8.1 × 1012 119450 86180

Elevator(4) 736 1939 43440 32354 16935

ProdCell 231 202 > 3.1 × 106 2164 1035 40188

ConcPush 150 140 2.8 × 107 1671 780 210249

DMut(64) 257 256 1.8 × 1062 385 256 45460

RW(10) 86 66 1.6 × 106 29132 15974 7576

63

100 random tables with right-handed, left-handed, and ambidextrous
philosophers

BDD for the set of reachable states (Petrify)

Nr. of BDD size

phil. Average Min. Max. St.Dev. Aver./St.Dev.

4 178 94 355 52 0.30

6 583 248 1716 305 0.52

8 1553 390 8678 1437 0.92

10 3140 510 27516 4637 1.48

12 4855 632 47039 8538 1.76

14 33742 797 429903 85798 2.54

64

100 random tables with right-handed, left-handed, and ambidextrous
philosophers

Nodes of the complete prefix (PEP)

Nr. of Prefix size

phil. Average Min. Max. St.Dev. Aver./St.Dev.

4 46 40 60 5.13 0.10

6 70 60 85 5.99 0.09

8 95 80 110 6.92 0.07

10 117 100 135 7.78 0.07

12 141 120 160 7.40 0.05

14 161 140 185 9.25 0.06

65

Complete prefixes

Prefixes of the unfolding containing all reachable states.

Compact representations of the state space.

But the net itself is already an (even more) compact representation!

Trade-off between compactness and query complexity.

Reachability of a global state:

Petri net Complete prefix Transition system

PSPACE-complete NP-complete Linear

66

Complete prefixes

Prefixes of the unfolding containing all reachable states.

Compact representations of the state space.

But the net itself is already an (even more) compact representation!

Trade-off between compactness and query complexity.

Reachability of a global state:

Petri net Complete prefix Transition system

PSPACE-complete NP-complete Linear

67

Complete prefixes

Prefixes of the unfolding containing all reachable states.

Compact representations of the state space.

But the net itself is already an (even more) compact representation!

Trade-off between compactness and query complexity.

Reachability of a global state:

Petri net Complete prefix Transition system

PSPACE-complete NP-complete Linear

68

1999

69

Querying a prefix with SAT

First studied by Keijo Heljanko in his thesis and several papers.

s2

s3

λ

δ

θ

ξνµ

βs1 r1

s1 r1

r2 ι κ r3

s3s1 r2

α

r2s2

ζ ǫ η

s2

γ

1

3 2 4

65

8 9 7

place clause

α α ↔ ¬1

β β ↔ ¬1

γ ((3 ∨ 4) → 1) ∧ ¬(3 ∧ 4)

∧(γ ↔ (1 ∧ ¬3 ∧ ¬4))

δ ((2 ∨ 6) → 1) ∧ ¬(2 ∧ 6)

∧(δ ↔ (1 ∧ ¬2 ∧ ¬6))

. . .

ξ ξ ↔ 9

70

Checking deadlock-freedom with BDDs

100 random tables with right-, left-handed, and ambidextrous philosophers

SMV on a SUN Ultra 60, 2 processors, 640 MB (old experiment)

Nr of Time in seconds

phil. Average Min. Max. St.Dev. Aver./St.Dev.

4 0.08 0.05 0.13 0.02 0.29

6 0.36 0.20 1.18 0.16 0.46

8 4.14 1.25 14.60 2.45 0.59

10 56.60 15.80 388.00 46.90 0.83

12 1595.00 228.00 10616.00 1615.00 1.01

71

Checking deadlock-freedom with unfoldings

100 random tables with right-, left-handed, and ambidextrous philosophers

PEP + stable models on a SUN Ultra 60, 2 processors, 640 MB (old experiment)

Nr. of Time in seconds

phil. Average Min Max St. Dev Aver./St. Dev

8 0.01 0.04 0.03 0.007 0.24

10 0.01 0.06 0.03 0.009 0.27

12 0.02 0.07 0.04 0.012 0.28

14 0.02 0.05 0.04 0.007 0.20

16 0.02 0.05 0.04 0.007 0.17

18 0.03 0.05 0.04 0.007 0.17

72

2000-2010

73

2000-2010

73

2000-2010

74

A quick summary

• Efficient construction of complete prefixes, adequate strategies.
Chatain, E., Khomenko, Koutny, Niebert, Schwoon, Vogler . . .

• Full LTL model-checking.
Couvreur, E., Heljanko, Grivet, Poitrenaud . . .

• Parallel and distributed generation of the unfolding.
Baldan, Haar, Heljanko, Khomenko, König, Koutny . . .

• Extensions to other concurrency models.
Baldan, Corradini, Haar, Khomenko, König, Langerak, Meyer, Schröter,
Schwoon . . .

• Extensions to timed models.
Bouyer, Cassez, Chatain, Haddad, Jard . . .

75

Applications I: Asynchronous circuits

Circuits specified as Signal Transition Graphs (interpreted Petri nets)

Transitions raise and lower boolean signals

Correctness: every global state completely determined by the values of the signals

Concurrent Asynchronous Systems Group, University of Newcastle: tool-chain for
verification and fault-fixing of STGs based on unfoldings.

Khomenko, Schäfer, Vogler, Yakovlev, Wollowski . . .

76

Applications II: Monitoring and diagnosis

Distributed systems with sensors attached to some nodes

Alarms reported to global supervisor, who performs diagnosis

Problem: find cause of the alarms → true-concurrency approach

IRISA group in Rennes, MEXICO project at ENS Cachan: diagnosis tools.

Benveniste, Chatain, Haar, Jard . . .

77

Applications III: Graph Grammars

Unfolding used to overapproximate the set of graphs generated by graph
transformation systems

“Folding the unfolding” yields an unbounded Petri net, with each marking
representing a graph.

Model-checking algorithms based on the overapproximation

AUGUR 1 and 2.

Baldan, Corradini, König, Kozioura . . .

78

Applications III: Graph Grammars

H F ′

H F ′

⇒

(Wait) W ′

F W ′

⇒

E1

(Hungry) FF ′

(Rep) E1 E ′
2

(Eat)

HE1 E ′
2

E1 E ′
2

E ′
2

⇒

⇒

2

2

2

1 2 3 1

2

3

1 2 3 1

1 3

1 2 3

1 2 3

3

1 3

79

Applications III: Graph Grammars

E1

W ′H

F ′

F

E ′
2

(Rep)

(Hungry)

(Eat)

(Wait)

80

Conclusions

From abstract connections between Physics and Computer Science to concrete
algorithms and applications.

Turning point: verification through explicit construction of semantic objects.

True-concurrency useful in two ways:

• Compact representation of state spaces.
• Information about causality (diagnosis) and independence
(probabilistic systems)

81

	2008
	1962
	
ormalsize Abstract Models of Computation in the early 60s
	Semantics: executions
	Physics and Computation
	Physics and Computation
	Physics and Computation
	Physics and Computation
	Physics and Computation
	Physics and Computation
	Physics and Computation

	Petri's question
	Petri Nets
	Petri Nets
	Petri Nets
	Petri Nets
	Petri Nets
	Petri Nets
	Petri Nets
	Petri Nets

	Execution semantics
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions
	
ormalsize True-concurrency semantics: concurrent executions

	Executions vs. concurrent executions
	The standard example
	1981
	Execution trees
	Unfolding a Petri net
	Unfolding a Petri net
	Unfolding a Petri net
	Unfolding a Petri net
	Unfolding a Petri net
	Unfolding a Petri net
	The unfolding
	1992
	The state-explosion problem
	The executability problem
	Search algorithm
	Searching the execution tree
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Searching the unfolding
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	First attempt at a search algorithm
	Is the search algorithm correct ?
	Is the search algorithm correct ?
	McMillan's solution
	McMillan's solution
	McMillan's solution

	1996
	Adequate strategies
	Adequate strategies
	Adequate strategies
	Adequate strategies

	Are there adequate strategies?
	Complete prefixes
	Complete prefixes

	Complete prefixes
	Complete prefixes
	Complete prefixes
	Complete prefixes
	1999
	Querying a prefix with SAT
	Checking deadlock-freedom with BDDs
	Checking deadlock-freedom with unfoldings
	2000-2010
	2000-2010

	2000-2010
	A quick summary
	Applications I: Asynchronous circuits
	Applications II: Monitoring and diagnosis
	Applications III: Graph Grammars
	Applications III: Graph Grammars
	Applications III: Graph Grammars
	Conclusions

