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From programs to flowgraphs
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From flowgraphs to equations

Again a syntactic transformation.

X1 = a · X1 · X2 + b

X2 = c · X2 · X3 + d · X2 · X1 + e

X3 = f · X1 · X3 + g

But how should the equations be interpreted mathematically?

• What kind of objects are a, . . . , g ?

• What kind of operations are sum and product ?

It depends. Different interpretations lead to different semantics
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Input/output relational semantics

Interpret a, . . . , g as assignments or guards over a set of program
variables V with set of valuations Val .

R(Xi) = (v , v ′) ∈ Val × Val such that Xi started at v , may terminate at v ′.
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Interpret a, . . . , g as assignments or guards over a set of program
variables V with set of valuations Val .

R(Xi) = (v , v ′) ∈ Val × Val such that Xi started at v , may terminate at v ′.

( R(X1),R(X2),R(X3) ) is the least solution of the equations under the
following interpretation:

• Universe: 2V×V (input/output relations)

• a, . . . , g are relations for assignment/guards

• sum is union of relations, product is join of relations:

R1 · R2 = {(a, b) | ∃c (a, c) ∈ R1 ∧ (c, b) ∈ R2}



Language semantics

Interpret the atomic actions as letters of an alphabet A.

L(Xi) = words w ∈ A∗ such that Xi can execute w and terminate.
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L(Xi) = words w ∈ A∗ such that Xi can execute w and terminate.

( L(X1), L(X2), L(X3) ) is the least solution of the equations under the
following interpretation:

• Universe: 2A∗ (languages over A).

• a, . . . , g are the singleton languages {a}, . . . , {g}.

• sum is union of languages, product is concatenation:

L1 · L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ l2}

.



Counting semantics

Given a word w , denote by #(w) the vector saying how many times each
of a, . . . , g occurs in w .

Define Co(Xi) = {#(w) | w ∈ L(Xi)}.



Counting semantics

Given a word w , denote by #(w) the vector saying how many times each
of a, . . . , g occurs in w .

Define Co(Xi) = {#(w) | w ∈ L(Xi)}.

( Co(X1),Co(X2),Co(X3)) is the least solution of the equations under
the following interpretation:

• Universe: sets of vectors of naturals

• a, . . . , g are the singleton sets {(1,0, . . . ,0)}, . . . , {(0,0, . . . ,1)}

• sum is union of sets, product is given by

S1 · S2 = {v1 +R v2 | v1 ∈ S1, v2 ∈ S2}
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Interpret a, . . . , g as probabilities.

T (Xi) = probability that Xi terminates.



Probabilistic termination semantics

Interpret a, . . . , g as probabilities.

T (Xi) = probability that Xi terminates.

( T (X1),T (X2),T (X3) ) is the least solution of the equations under the
following interpretation:

• Universe: R+

• a, . . . , g are the probabilities of taking the transitions

• sum and product are addition and multiplication of reals



Abstract interpretation [Cousot, Cousot 77] determines an interpretation
given

• its universe, and

• its relation to a reference semantics (the concrete semantics).



ω-continuous semirings

Underlying mathematical structure: ω-continuous semirings

Algebra (C,+, ·,0,1)

– (C,+,0) is a commutative monoid – · distributes over +

– (C, ·,1) is a monoid – 0 · a = a · 0 = 0

– av a + b is a partial order – v-chains have limits

System of equations X = f(X) where

• X = (X1, . . . ,Xn) vector of variables,

• f(X) = (f1(X), . . . , fn(X)) vector of terms over C ∪ {X1, . . . ,Xn}.

Notice: the fi are polynomials!!



Static program analysis

Static program analysis = computing the least solution of a system of
polynomial equations over a suitable ω-continuous semiring

Program =⇒ system of equations

Analysis problem =⇒ concrete semiring

Algorithmic solution =⇒ equation solver

Theory of static analysis =⇒ generic solution techniques

In this talk: generic solution techniques and some consequences.



Kleenean program analysis

Theorem [Kleene]: The least solution µf is the supremum of {ki}i≥0 ,
where

k0 = f(0)

ki+1 = f(ki)

Basic algorithm: compute k0, k1, k2, . . . until either ki = ki+1 or the
approximation is considered adequate.

Current state-of-the-art:

• sufficient condition for termination: finite ascending chains

• if condition does not hold: widening and narrowing.



Kleenean program analysis is slow

Set interpretations: Kleene iteration never terminates if µf is an infinite set.

• X = a · X + b µf = a∗b

• Kleene approximants are finite sets: ki = (ε+ a + . . .+ ai)b

Probabilistic interpretation: convergence can be very slow [EY STACS05].

• X =
1

2
X2 +

1

2
µf = 1 = 0.99999 . . .

• “Logarithmic convergence”: k iterations to get log k bits of accuracy.

kn ≤ 1−
1

n + 1
k2000 = 0.9990



Kleene Iteration for X = f(X) (univariate case)
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Newton’s Method for X = f(X) (univariate case)
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Evaluation of Newton’s method

Newton’s Method is usually very efficient

• often exponential convergence

. . . but not robust:

• may not converge, or

• may converge only locally (in some neighborhood of the least
fixed-point), or

• may converge very slowly.



A puzzling mismatch

Program analysis:

• General domain: arbitrary ω-continuous semirings

• Kleene Iteration is robust and generally applicable

• . . . but converges slowly.

Numerical mathematics:

• Particular domain: the real field

• Newton’s Method converges fast

• . . . but is not robust



Two questions

• Can Newton’s Method be generalized to arbitrary

ω-continuous semirings?

• Is Newton’s method robust when restricted to the real

semiring?



Mathematical formulation of Newton’s Method

Let ν be some approximation of µf . (We start with ν = f(0).)

• Compute the function Tν(X) describing the tangent to f(X) at ν

• Solve X = Tν(X) (instead of X = f(X)), and take the solution as the
new approximation

Elementary analysis: Tν(X) = Df ν(X) + f(ν)− ν
where Df x0(X) is the differential of f at x0

So: ν0 = 0

νi+1 = νi + ∆i ∆i solution of X = Df νi(X) + f(νi)− νi



Generalizing Newton’s method

Key point: generalize X = Df ν(X) + f(ν)− ν

In an arbitrary ω-continuous semiring

• neither the differential Df ν(X), nor

• the difference f(ν)− ν

are defined.



Differentials in semirings

Standard solution: take the algebraic definition

Df(X) =



0 if f(X) = c

X if f(X) = X

Dg(X) + Dh(X) if f(X) = g(X) + h(X)

Dg(X) · h(X) + g(X) · Dh(X) if f(X) = g(X) · h(X)∑
i∈I

Df(X) if f(X) =
∑
i∈I

fi(X).



The difference f(νi)− νi

Solution: Replace f(νi)− νi by any δi such that f(νi) = νi + δi

νi+1 = νi + ∆i where ∆i solution of X = Df νi(X) + δi

But does δi always exist? Proposition: Yes

But νi+i depends on your choice of δi ! Theorem: No, it doesn’t

Can’t you give a closed form for νi+1 ? Proposition: Yes

The least solution of X = Df νi(X) + δi is Df ∗νi
(δi):=

∞∑
j=0

Df j
νi(δi)

and so: νi+1 = νi + Df ∗νi
(δi)
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Theorem [EKL DLT07]: Let X = f(X) be an equation over an arbitrary
ω-continuous semiring. The sequence

ν0 = f(0)

νi+1 = νi + Df ∗νi
(δi)

where δi satisfies f(νi) = νi + δi exists, is unique and satisfies

ki v νi v µf

for every i ≥ 0.



Extensions and simplifications

Systems of equations:

• νi , ∆i , δi become vectors (elements of Sn)

• The differential becomes a function Sn → Sn

Geometric intuition: Df νi(X1, . . . ,Xn) is the hyperplane tangent to f at
the (n-dimensional) point νi

Commutative semirings (and left-linear equations):

• One variable: Df ν(X) = f ′(ν) · X , and so νi+1 = νi + f ′∗(νi) · δi

• Many variables: Df ν(X) = J(ν) · X , where J(ν) is the Jacobi matrix
of partial derivatives evaluated at ν, and so νi+1 = νi + J∗(νi) · δi



Newton’s method for language equations

Language semiring: Universe is 2A∗, + is union, · is concatenation.

For left-linear systems of equations, Newton’s method terminates after 1
iteration:

X1 = a · X1 + b · X2

X2 = a · X1 + b · X2 + 1

ν0 =

(
0

1

)

ν1 =

(
0

1

)
+

(
a b

a b

)∗
·

(
0

1

)
=

(
(a + bb∗a)∗ (a + bba∗)∗b

(b + aa∗b)∗a (b + aa∗b)∗

)
·

(
0

1

)

=

(
(a∗+ bba∗)∗b

(b∗+ aa∗b)∗

)



A nonlinear equation

X = a · X · X + b

f(X) = a · X · X + b

Df ν(X) = a · ν · X + a · X · ν

ν0 = b ν0 + δ0 = f(ν0) =⇒ δ0 := abb

ν1 = ν0 + Df ∗b(δ0) = b + Df ∗b(abb)

= b + (X + abX + aXb + abaXb + . . .)(abb)

= b + abb + ababb + aabbb + abaabbb + . . .

ν2 = · · ·

The method does not terminate. Can we characterize the approximants?



Finite-index approximations

System X = f(X) induces context-free grammar G
def
= X → f(X).

[Ginsburg, Spanier, Salomaa, Gruska, Yntema 67-71]:
A word w ∈ L(G) has index k if there is a derivation

S ⇒ w1 ⇒ w2 . . .⇒ wn ⇒ w

such that each of S,w1, . . . ,wn contains at most k occurrences of
non-terminals (and one of them contains k non-terminals).

Example: X = a · X · X + b

b has index 1 X ⇒ b

(ab)ib has index 2 X ⇒ aXX ⇒ abX ∗⇒ (ab)iX ⇒ (ab)ib

aabbabb has index 3 X ∗⇒ aaXXX ∗⇒ aabbabb



Theorem [EKL DLT’07]: Let X = f(X) be a system of language equations,
and let G be the derived context-free grammar. For every i ≥ 0:

νi = Li+1(G)

We can easily construct grammars Gi such that L(Gi+1) = νi

X = a · X · X + b G = {X → aXX | b}

G0 = {X0 → b}
G1 = G0 ∪ {X1 → aX1X0 | aX0X1 | aX0X0 + b}

Gi+1 = Gi ∪ {Xi+1 → aXi+1Xi | aXiXi+1 | aXiXi + b}

Newton’s method approximates a context-free grammar by context-free
grammars of finite index.



Visualizing finite index: Secondary structure of RNA

(image by Bassi, Costa, Michel; www.cgm.cnrs-gif.fr/michel/)



An stochastic context-free grammar

[ ]: Model the distribution of secondary structures as the derivation trees of
the following stochastic context-free grammar:

L 0.869−−−−−→ CL L 0.131−−−−−→ C

S 0.788−−−−−→ pSp S 0.212−−−−−→ CL

C 0.895−−−−−→ s C 0.105−−−−−→ pSp

Graphical interpretation:

ss s s s ss

p−p

s

s

s s

s

s

s

sss

s s s

ss

s
s

ss

p−pp−p

p−p

sssppsssspsssssspssppsssspssssspss



Visualizing the index of a derivation

Index = maximal number of branching points from root to leaf + 1
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Visualizing the index of a derivation

Index = maximal number of branching points from root to leaf + 1



Grammar leads to two equation systems:

L = C · L + C

S = p · S · p + C · L
C = s + p · S · p

ν0(L) = der. of index ≤ 1

ν1(L) = der. of index ≤ 2

ν2(L) = der. of index ≤ 3

ν3(L) = der. of index ≤ 4

ν4(L) = der. of index ≤ 5

ν5(L) = der. of index ≤ 6

L̂ = 0.869 · Ĉ · L̂ + 0.131 · Ĉ
Ŝ = 0.788 · Ŝ + 0.212 · Ĉ · L̂
Ĉ = 0.895 + 0.105 · Ŝ

ν̂0(L) = 0.5585

ν̂1(L) = 0.8050

ν̂2(L) = 0.9250

ν̂3(L) = 0.9789

ν̂4(L) = 0.9972

ν̂5(L) = 0.9999



Idempotent and commutative semirings

Theorem [Hopkins-Kozen LICS ’99]: The least fixed
point of a system X = f(X) of n equations over an
ω-continuous idempotent and commutative semiring
is reached by the sequence

ν0 = f(0)

νi+1 = J(νi)
∗ · f(νi)

after at most O(3n) iterations.

Theorem [EKL STACS’07]: This is exactly Newton’s sequence.

Moreover, the fixed point is reached after at most n iterations.
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An example

The Newton sequence terminates for all idempotent and commutative
analyses, the Kleene sequence does not.

X = a · X · X + b

f ′(X) = a · X + a · X = a · X

For one equation: µf = ν1 = f ′(ν0)∗ · ν0

We obtain: ν0 = b

ν1 = (ab)∗b



This result provides a computational version of Parikh’s theorem:
[Hopkins, Kozen LICS 99], [Aceto, Esik, Ingólfsdottir ITA 02]

The regular language

(a · b)∗ · b

has the same Parikh image (“counting semantics”) as the context-free
language generated by the grammar

X → aXX | b



Our two questions

Can Newton’s Method be generalized to arbitrary

ω-continuous semirings?

Is Newton’s method robust when restricted to the

real semiring?



Newton’s method on the real semiring

On the real field Newton’s method may not converge, or converge only
locally

On the real semiring these problems disappear [EKL TCS 08]:

• Newton’s method always converges [EY STACS 05]

• It always exhibits linear or exponential convergence [EKL STOC 07]

• For strongly connected systems there is a threshold k such that
after k iterations each subsequent iteration gains at least one bit of
accuracy [EKL STACS 08]

• For important classes the threshold is linear in the size of the system
[EKL STACS 08].



Conclusions

Newton did it all but never saw Iceland

. . . and I did!



Conclusions

Newton did it all but never saw Iceland

. . . and I did!



Conclusions

Newton did it all but never saw Iceland

. . . and I did!


