Solving fixed-point equations over semirings

Javier Esparza

Technische Universität München

Joint work with

Michael Luttenberger and Maximilian Schlund

We study systems of equations of the form

$$X_1 = f_1(X_1, \dots, X_n)$$

$$X_2 = f_2(X_1, \dots, X_n)$$

$$\dots$$

$$X_n = f_n(X_1, \dots, X_n)$$

where the f_i 's are "polynomial expressions".

Shortest paths

Lengths d_i of shortest paths from vertex 0 to vertex *i* in graph G = (V, E) are the largest solution of

$$d_i = \min_{(i,j)\in E} (d_i, d_j + w_{ji})$$

where w_{ij} is the distance from *i* to *j*.

Context-free grammar

 $egin{array}{cccc} X &
ightarrow & ZX \mid Z \ Y &
ightarrow & aYa \mid ZX \ Z &
ightarrow & b \mid aYa \end{array}$

Languages generated from X, Y, Z are the least solution of

 $L_X = (L_Z \cdot L_X) \cup L_Z$ $L_Y = (\{a\} \cdot L_Y \cdot \{a\}) \cup (L_Z \cdot L_X)$ $L_Z = \{b\} \cup (\{a\} \cdot L_Y \cdot \{a\})$

Probability of program termination

The probability that X_i terminates is the least solution of

$$X_1 = 0.7 \cdot X_1 \cdot X_2 + 0.3$$

$$X_2 = 0.6 \cdot X_2 \cdot X_3 + 0.2 \cdot X_2 \cdot X_1 + 0.2$$

$$X_3 = 0.2 \cdot X_1 \cdot X_3 + 0.8$$

Many specific algorithms for different cases:

Shortest paths: Dijkstra, Bellman-Ford, Floyd-warshall.

Right-linear grammars: Gauss elimination.

Probability of termination: Newton's method.

What do these problems have in common?

Semiring $(C, +, \times, 0, 1)$:

(C, +, 0) is a commutative monoid \times di $(C, \times, 1)$ is a monoid $0 \times$

× distributes over +

 $0 \times a = a \times 0 = 0$

ω -continuity:

the relation $a \sqsubseteq b \Leftrightarrow \exists c : a + c = b$ is a partial order

 \Box -chains have limits

Theorem [Knaster-tarski]: A system of fixed-point equations over an ω -continuous semiring has a unique least solution (and an unique largest solution) w.r.t. \Box .

In the rest of the talk: semiring $\equiv \omega$ -continuous semiring.

Develop and implement generic solution or approximation methods valid for all semirings, or at least for large classes.

- Theoretical motivation: Exchange of algorithms and proof techniques between numerical mathematics, algebraic computation and language theory.
- Applications that require to solve the same system over many different semirings:
 - Authorization systems
 - Recommendation systems
 - Provenance computations in databases

Participants: researchers, universities, departments, conferences, papers

Relations: researcher-of, professor-at, student-of, author-of, ...

- Notation: p.r
- Meaning: group of participants that are in relation *r* with *p*.

Particpants express group membership by adding rules or certificates to the system

 $Giessen.professor \rightarrow Holzer$

 $Giessen.researcher \rightarrow Giessen.professor$

 $Giessen.researcher \rightarrow Giessen.researcher.Phd-student$

 $\textbf{Holzer.Phd-student} \rightarrow \textbf{Jakobi}$

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher

To find out that Jakbi is a researcher at Giessen:

 $Giessen.researcher \rightarrow Giessen.researcher.Phd-student$

To find out that Jakbi is a researcher at Giessen:

 $\label{eq:Giessen.researcher.Phd-student} Giessen.researcher.Phd-student \\ \rightarrow Giessen.professor.Phd-student$

To find out that Jakbi is a researcher at Giessen:

 $Giessen.researcher \rightarrow Giessen.researcher.Phd-student$

- \rightarrow Giessen.professor.Phd-student
- $\rightarrow \text{Holzer.Phd-student}$

To find out that Jakbi is a researcher at Giessen:

 $Giessen.researcher \rightarrow Giessen.researcher.Phd-student$

- \rightarrow Giessen.professor.Phd-student
- $\rightarrow \textbf{Holzer.Phd-student}$
- \rightarrow Jakobi

Group membership qualified by weights

CIAA.author	$\xrightarrow{11/2400}$	Holzer
CIAA.author	<u> 1/2400</u> →	Jakobi

Group membership qualified by weights

CIAA.author	<u>11/2400</u>	Holzer
CIAA.author	<u> </u>	Jakobi
Holzer.co-author	<u>15/175</u>	Jakobi
Jakobi.co-author	$\xrightarrow{15/16}$	Holzer

Group membership qualified by weights

CIAA.author	<u>11/2400</u> →	Holzer
CIAA.author	<u> 1/2400</u> →	Jakobi
Holzer.co-author	$\xrightarrow{15/175}$	Jakobi
Jakobi.co-author	$\xrightarrow{15/16}$	Holzer

Recursive group definitions with damping weights.

Holzer.community $\xrightarrow{1}$ Holzer.co-author Holzer.community $\xrightarrow{0.5}$ Holzer.community.co-author

A system for academic recommendations

Recommendations expressed and qualified in the same way

Holzer
$$\xrightarrow{10}$$
 Jakobi
Holzer $\xrightarrow{8}$ Holzer.co-author
Holzer $\xrightarrow{6}$ CIAA.author

Quantitative prefix-rewriting derivations

Holzer
$$\stackrel{10}{\longrightarrow}$$
JakobiHolzer $\stackrel{8}{\longrightarrow}$ Holzer.co-author $\stackrel{15/175}{\longrightarrow}$ JakobiHolzer $\stackrel{6}{\longrightarrow}$ CIAA-author $\stackrel{1/2400}{\longrightarrow}$ Jakobi

Questions:Weight of a recommendation path?Aggregate weight of different paths?

'Agnostic" solution: introduce two operations \otimes and \oplus

We only require: the operations must satisfy the semiring axioms.

A set of rules and recommendations is equivalent to a weighted pushdown system.

Participants \approx Control states

Relations \approx Stack alphabet

Weighted rules and recommendations \approx Weighted transition rules

Problem: the weighted transition system associated to the automaton can be infinite.

An example

Alice's trust in Bob: total weight of the paths leading from A to B.

Define [pXq] as the total weight of all paths from the set pX to q.

Theorem: The [pXq]'s are the least solution of the following system of equations:

$$\langle pXq \rangle = \bigoplus_{pX \xrightarrow{W} q} w \oplus \bigoplus_{pX \xrightarrow{W} rYZ} w \odot \bigoplus_{s \in P} \langle rYs \rangle \odot \langle sZq \rangle$$

where *P* is the set of participants.

The total weight of the paths from p to q is then given by $\bigoplus_{X} [pXq]$.

FPsolve: a generic solver

Theorem [Klee 38, Tars 55, Kui 97]: The least solution of a system f of fixed-point equations is the supremum of the Kleene approximants, denoted by $\{k_i\}_{i>0}$, and given by

 $k_0 = f(0)$ $k_{i+1} = f(k_i)$.

Basic algorithm for calculation of μf : compute k_0, k_1, k_2, \ldots until either $k_i = k_{i+1}$ or the approximation is considered adequate.

Abstract base class Semiring

```
ViterbiSemiring operator *= (const ViterbiSemiring& elem) {
  // multiplication: times
  value_ *= elem.value_;
  return *this;
}
```

```
ViterbiSemiring operator += (const ViterbiSemiring& elem){
  // addition: max
  if (elem.value_ > value_)
  value_ = elem.value_;
  return *this;
}
```

Set interpretations: Kleene iteration never terminates if μf is an infinite set.

• $X = \{a\} \cdot X \cup \{b\}$ $\mu f = a^*b$

Kleene approximants are finite sets: $k_i = (\epsilon + a + ... + a^i)b$

Real semiring: convergence can be very slow.

• $X = 0.5 X^2 + 0.5$ $\mu f = 1 = 0.99999...$

"Logarithmic convergence": k iterations give $O(\log k)$ correct digits.

$$k_n \le 1 - \frac{1}{n+1}$$
 $k_{2000} = 0.9990$

An equation X = f(X) over a semiring induces a context-free grammar Gand a valuation V An equation X = f(X) over a semiring induces a context-free grammar Gand a valuation V

Example: $X = 0.25X^2 + 0.25X + 0.5$

Grammar: $X \rightarrow aXX \mid bX \mid c$

Valuation: V(a) = 0.25, V(b) = 0.25, V(c) = 0.5

An equation X = f(X) over a semiring induces a context-free grammar Gand a valuation V

Example: $X = 0.25X^2 + 0.25X + 0.5$

Grammar: $X \rightarrow aXX \mid bX \mid c$ Valuation: V(a) = 0.25, V(b) = 0.25, V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t V(T) := $\sum_{t \in T} V(t)$

$X \rightarrow aXX \mid bX \mid c$ V(a) = V(b) = 0.25, V(c) = 0.5

 $V({t_1, t_2, t_3}) = 0.5 + 0.0625 + 0.015625 = 0.578125$

Fundamental Theorem [Boz99,EKL10]: Let *G* be the grammar for X = f(X), and let T(G) be the set of derivation trees of *G*. Then $\mu f = V(T(G)) \stackrel{def}{=} V(G)$

Let G be the grammar for X = f(X).

An unfolding of G is a sequence $U^1, U^2, U^3, ...$ of grammars such that, $T(U^1), T(U^2), T(U^3)$ is a partition of T(G).

Formally: the $T(U^i)$ are pairwise disjoint, and there is a yield-preserving bijection between $\bigcup_{i=1}^{\infty} T(U^i)$ and T(G).

From
$$U^1, U^2, U^3, ...$$
 we get $G^1, G^2, G^3, ...$ such that $T(G^j) = \bigcup_{i=1}^j T(U^i).$

 μf is then the supremum of the sequence $V(G^1), V(G^2), V(G^3) \dots$

.

 $G: X \rightarrow aXX \mid bX \mid c$

.

.

 $G: X \to aXX \mid bX \mid c$ $X^{\langle 1 \rangle} \to c$ $X^{[1]} \to X^{\langle 1 \rangle}$ $X^{\langle k \rangle} \to aX^{\langle k-1 \rangle} X^{\langle k-1 \rangle} \mid aX^{[k-2]} X^{\langle k-1 \rangle} \mid aX^{\langle k-1 \rangle} X^{[k-2]} \mid bX^{\langle k-1 \rangle}$ $X^{[k]} \to X^{\langle k \rangle} \mid X^{[k-1]}$

.

(

Goal: U^i (G^i) contain the derivation trees of G of height *i* (at most *i*).

$$\begin{array}{l} G: X \to aXX \mid bX \mid c \\ X^{\langle 1 \rangle} \to c \\ X^{[1]} \to X^{\langle 1 \rangle} \\ X^{\langle k \rangle} \to aX^{\langle k-1 \rangle} X^{\langle k-1 \rangle} \mid aX^{[k-2]} X^{\langle k-1 \rangle} \mid aX^{\langle k-1 \rangle} X^{[k-2]} \mid bX^{\langle k-1 \rangle} \\ X^{[k]} \to X^{\langle k \rangle} \mid X^{[k-1]} \end{array}$$

 U^{i} (G^{i}) is the grammar with $X^{\langle i \rangle}$ ($X^{[i]}$) as axiom.

$$\begin{array}{lll} X^{\langle k \rangle} & \rightarrow & a X^{\langle k-1 \rangle} X^{\langle k-1 \rangle} \mid a X^{[k-2]} X^{\langle k-1 \rangle} \mid a X^{\langle k-1 \rangle} X^{[k-2]} \mid b X^{\langle k-1 \rangle} \\ \\ X^{[k]} & \rightarrow & X^{\langle k \rangle} \mid X^{[k-1]} \end{array}$$

"Taking values" we get:

$$V(U^{k}) = V(a) \cdot V(U^{k-1})^{2} + V(a) \cdot V(G^{k-2}) \cdot V(U^{k-1})$$

+ $V(a) \cdot V(U^{k-1}) \cdot V(G^{k-2}) + V(b) \cdot V(U^{k-1})$
 $V(G^{k}) = V(G^{k-1}) + V(U^{k})$

and since $f(X) = V(a) \cdot X^2 + V(b) \cdot X + V(c)$

$$V(G^{1}) = f(0)$$

$$V(G^{i+1}) = f(V(G^{i})) \text{ for every } i \ge 1$$

Kleene approximation corresponds to evaluating the derivation trees of *G* by increasing height.

$$G: X \rightarrow aXX \mid bX \mid c$$
 .

Recall the approximation by height

 $X^{\langle k \rangle} \rightarrow aX^{\langle k-1 \rangle} X^{\langle k-1 \rangle} | aX^{[k-2]} X^{\langle k-1 \rangle} | aX^{\langle k-1 \rangle} X^{[k-2]} | bX^{\langle k-1 \rangle}$

To capture more trees we allow linear recursion.

 $X^{\langle k \rangle} \rightarrow aX^{\langle k-1 \rangle} X^{\langle k-1 \rangle} \mid aX^{[k-1]} X^{\langle k \rangle} \mid aX^{\langle k \rangle} X^{[k-1]} \mid bX^{\langle k-1 \rangle}$

 U^i (G^i) defined as before.

$$X^{\langle k \rangle} \rightarrow aX^{\langle k-1 \rangle} X^{\langle k-1 \rangle} \mid aX^{[k-1]} X^{\langle k \rangle} \mid aX^{\langle k \rangle} X^{[k-1]} \mid bX^{\langle k-1 \rangle}$$

 $V(U^{i})$ is the least solution of the linear equation

$$X = V(a) \cdot V(U^{i-1})^2 + V(a) \cdot V(G^{i-1}) \cdot X$$

+ $V(a) \cdot X \cdot V(G^{i-1}) + V(b) \cdot X$

Iterative approximation of V(G):

- $V(G^1)$ = least solution of $X = V(b) \cdot X + V(c)$
- $V(G^{i+1}) = V(G^{i}) + V(U^{i+1})$ for every $i \ge 1$

Recipe to approximate μf by solving linear equations.

Consider equations X = f(X) on the real semiring

Let g(X) = f(X) - X. Then μf is a zero of g(X).

Simple arithmetic yields

$$V(G^{i+1}) = V(G^{i}) - \frac{g(V(G^{i}))}{g'(V(G^{i}))}$$

where g'(X) is the derivative of g.

This is Newton's method for approximating a zero of a differentiable function.

 $X^{\langle k \rangle} \rightarrow aX^{\langle k-1 \rangle} X^{\langle k-1 \rangle} \mid aX^{[k-1]} X^{\langle k \rangle} \mid aX^{\langle k \rangle} X^{[k-1]} \mid bX^{\langle k-1 \rangle}$

Say a tree of G has dimension k if it is derived from U^k

A derivation tree has dimension 0 if it has one node.

A derivation tree has dimension k > 0 if it consists of a spine with subtrees of dimension at most k - 1 (and at least one subtree of dimension k - 1).

The dimension of a derivation tree is the height of the largest full binary tree embeddable in it (ignoring terminals).

Newton approximation corresponds to evaluating the derivation trees of *G* by increasing dimension.