Solving fixed-point equations over semirings

Javier Esparza

Technische Universität München

Joint work with
Michael Luttenberger and Maximilian Schlund

Fixed-point equations

We study systems of equations of the form

$$
\begin{aligned}
x_{1} & =f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
x_{2} & =f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
& \ldots \\
x_{n} & =f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

where the f_{i} 's are "polynomial expressions".

Shortest paths

Lengths d_{i} of shortest paths from vertex 0 to vertex i in graph $G=(V, E)$ are the largest solution of

$$
d_{i}=\min _{(i, j) \in E}\left(d_{i}, d_{j}+w_{j i}\right)
$$

where $w_{i j}$ is the distance from i to j.

Context-free languages

Context-free grammar

$$
\begin{aligned}
& X \rightarrow Z X \mid Z \\
& Y \rightarrow a Y a \mid Z X \\
& Z \rightarrow b \mid a Y a
\end{aligned}
$$

Languages generated from X, Y, Z are the least solution of

$$
\begin{aligned}
& L_{X}=\left(L_{Z} \cdot L_{X}\right) \cup L_{Z} \\
& L_{Y}=\left(\{a\} \cdot L_{Y} \cdot\{a\}\right) \cup\left(L_{Z} \cdot L_{X}\right) \\
& L_{Z}=\{b\} \cup\left(\{a\} \cdot L_{Y} \cdot\{a\}\right)
\end{aligned}
$$

Probability of program termination

The probability that X_{i} terminates is the least solution of

$$
\begin{aligned}
& x_{1}=0.7 \cdot x_{1} \cdot x_{2}+0.3 \\
& x_{2}=0.6 \cdot x_{2} \cdot x_{3}+0.2 \cdot x_{2} \cdot x_{1}+0.2 \\
& x_{3}=0.2 \cdot x_{1} \cdot x_{3}+0.8
\end{aligned}
$$

Algorithms

Many specific algorithms for different cases:

Shortest paths: Dijkstra, Bellman-Ford, Floyd-warshall.

Right-linear grammars: Gauss elimination.

Probability of termination: Newton's method.

What do these problems have in common?

Underlying structure: ω-continuous semirings

Semiring ($C,+, \times, 0,1$):
$(C,+, 0)$ is a commutative monoid \times distributes over +
$(C, \times, 1)$ is a monoid
$0 \times a=a \times 0=0$
ω-continuity:
the relation $a \sqsubseteq b \Leftrightarrow \exists c: a+c=b$ is a partial order
\sqsubseteq-chains have limits

Theorem [Knaster-tarski]: A system of fixed-point equations over an ω-continuous semiring has a unique least solution (and an unique largest solution) w.r.t. \sqsubseteq.

In the rest of the talk: semiring $\equiv \omega$-continuous semiring.

Research program

Develop and implement generic solution or approximation methods valid for all semirings, or at least for large classes.

- Theoretical motivation: Exchange of algorithms and proof techniques between numerical mathematics, algebraic computation and language theory.
- Applications that require to solve the same system over many different semirings:
- Authorization systems
- Recommendation systems
- Provenance computations in databases

A system for academic recommendations

Participants: researchers, universities, departments, conferences, papers
Relations: researcher-of, professor-at, student-of, author-of, ...

- Notation: p.r
- Meaning: group of participants that are in relation r with p.

Particpants express group membership by adding rules or certificates to the system

Giessen.professor \rightarrow Holzer
Giessen.researcher \rightarrow Giessen.professor
Giessen.researcher \rightarrow Giessen.researcher.Phd-student
Holzer.Phd-student \rightarrow Jakobi

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher \rightarrow Giessen.researcher.Phd-student

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher \rightarrow Giessen.researcher.Phd-student
\rightarrow Giessen.professor.Phd-student

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher \rightarrow Giessen.researcher.Phd-student
\rightarrow Giessen.professor.Phd-student
\rightarrow Holzer.Phd-student

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher \rightarrow Giessen.researcher.Phd-student
\rightarrow Giessen.professor.Phd-student
\rightarrow Holzer.Phd-student
\rightarrow Jakobi

A system for academic recommendations

Group membership qualified by weights

CIAA.author		
CIAA.author	$\xrightarrow{11 / 2400}$	Holzer
Jakobi		

A system for academic recommendations

Group membership qualified by weights

CIAA.author	$\xrightarrow{11 / 2400}$	Holzer
CIAA.author	$\xrightarrow{1 / 2400}$	Jakobi
Holzer.co-author	$\xrightarrow{15 / 175}$	Jakobi
Jakobi.co-author	$\xrightarrow{15 / 16}$	Holzer

A system for academic recommendations

Group membership qualified by weights

CIAA.author	$\xrightarrow{11 / 2400}$	Holzer
CIAA.author	$\xrightarrow{1 / 2400}$	Jakobi
Holzer.co-author	$\xrightarrow{15 / 175}$	Jakobi
Jakobi.co-author	$\xrightarrow{15 / 16}$	Holzer

Recursive group definitions with damping weights.

$$
\begin{array}{lll}
\text { Holzer.community } & \xrightarrow{1} & \text { Holzer.co-author } \\
\text { Holzer.community } & \xrightarrow{0.5} & \text { Holzer.community.co-author }
\end{array}
$$

A system for academic recommendations

Recommendations expressed and qualified in the same way

\[

\]

Quantitative prefix-rewriting derivations

Holzer $\xrightarrow{10}$	Jakobi		
Holzer $\xrightarrow{8}$	Holzer.co-author	$\xrightarrow{15 / 175}$	Jakobi
Holzer $\xrightarrow{\text { 6 }}$ CIAA-author	$\xrightarrow{1 / 2400}$	Jakobi	

Questions: Weight of a recommendation path?
Aggregate weight of different paths?

A system for academic reputation

'Agnostic" solution: introduce two operations \otimes and \oplus

Holzer $\xrightarrow{10}$ Jakobi
Holzer $\xrightarrow{8}$ Holzer.co-author $\xrightarrow{15 / 175}$ Jakobi

$$
\text { Holzer } \xrightarrow{10 \oplus(0.8 \otimes 1 / 2400)} \text { Jakobi }
$$

We only require: the operations must satisfy the semiring axioms.

Semantics

A set of rules and recommendations is equivalent to a weighted pushdown system.

Participants \approx Control states

Relations \approx Stack alphabet

Weighted rules and recommendations \approx Weighted transition rules

Problem: the weighted transition system associated to the automaton can be infinite.

An example

Alice.frs $\xrightarrow{0.7}$ Bob Alice.frs $\xrightarrow{0.3}$ Alice.frs.frs Alice $\xrightarrow{1}$ Alice.frs Bob.frs $\xrightarrow{0.9}$ Charlie Bob.frs $\xrightarrow{0.1}$ Bob.frs.frs Bob $\xrightarrow{1}$ Bob.frs Charlie.frs $\xrightarrow{0.5}$ Alice Charlie.frs $\xrightarrow{0.5}$ Charlie.frs.frs Charlie $\xrightarrow{1}$ Charlie.frs

Alice's trust in Bob: total weight of the paths leading from A to B.

Equations

Define $[p X q]$ as the total weight of all paths from the set $p X$ to q.

Theorem: The $[p X q]$'s are the least solution of the following system of equations:

$$
\langle p X q\rangle=\bigoplus_{p X \xrightarrow{W} q} w \quad \oplus \quad \bigoplus_{p X \xrightarrow{W} r Y Z} w \odot \bigoplus_{s \in P}\langle r Y s\rangle \odot\langle s Z q\rangle
$$

where P is the set of participants.

The total weight of the paths from p to q is then given by $\bigoplus_{x}[p X q]$.

FPsolve: a generic solver

THE generic solution method: Kleene iteration

Theorem [Klee 38, Tars 55, Kui 97]: The least solution of a system f of fixed-point equations is the supremum of the Kleene approximants, denoted by $\left\{k_{i}\right\}_{i \geq 0}$, and given by

$$
\begin{aligned}
k_{0} & =f(0) \\
k_{i+1} & =f\left(k_{i}\right)
\end{aligned}
$$

Basic algorithm for calculation of μf : compute $k_{0}, k_{1}, k_{2}, \ldots$ until either $k_{i}=k_{i+1}$ or the approximation is considered adequate.

Implementation in FPsolve

Abstract base class Semiring

```
ViterbiSemiring operator *= (const ViterbiSemiring& elem){
// multiplication: times
value_ *= elem.value_;
return *this;
}
ViterbiSemiring operator += (const ViterbiSemiring& elem){
// addition: max
if (elem.value_ > value_)
value_ = elem.value_;
return *this;
}
```


Kleene iteration may be slow

Set interpretations: Kleene iteration never terminates if μf is an infinite set.

- $X=\{a\} \cdot X \cup\{b\} \quad \mu f=a^{*} b$

Kleene approximants are finite sets: $k_{i}=\left(\epsilon+a+\ldots+a^{i}\right) b$

Real semiring: convergence can be very slow.

- $X=0.5 X^{2}+0.5 \quad \mu f=1=0.99999 \ldots$
"Logarithmic convergence": k iterations give $O(\log k)$ correct digits.

$$
k_{n} \leq 1-\frac{1}{n+1} \quad k_{2000}=0.9990
$$

Language-theoretic characterization of μf

An equation $X=f(X)$ over a semiring induces a context-free grammar G and a valuation V

Language-theoretic characterization of μf

An equation $X=f(X)$ over a semiring induces a context-free grammar G and a valuation V

Example: $\quad X=0.25 X^{2}+0.25 X+0.5$
Grammar: $X \rightarrow a X X|b X| c$
Valuation: $\quad V(a)=0.25, V(b)=0.25, V(c)=0.5$

Language-theoretic characterization of μf

An equation $X=f(X)$ over a semiring induces a context-free grammar G and a valuation V

Example: $X=0.25 X^{2}+0.25 X+0.5$
Grammar: $X \rightarrow a X X|b X| c$
Valuation: $\quad V(a)=0.25, V(b)=0.25, V(c)=0.5$
V extends to derivation trees and sets of derivation trees:

$$
\begin{aligned}
V(t) & :=\text { ordered product of the leaves of } t \\
V(T) & :=\sum_{t \in T} V(t)
\end{aligned}
$$

$$
X \rightarrow a X X|b X| c \quad V(a)=V(b)=0.25, V(c)=0.5
$$

$t_{1}: \quad \mathrm{X}$

$$
V\left(t_{1}\right)=0.5 \quad V\left(t_{2}\right)=0.25 \cdot 0.5 \cdot 0.5=0.0625 \quad V\left(t_{3}\right)=0.015625 \quad c
$$

$$
V\left(\left\{t_{1}, t_{2}, t_{3}\right\}\right)=0.5+0.0625+0.015625=0.578125
$$

Language-theoretic characterization of μf

Fundamental Theorem [Boz99,EKL10]: Let G be the grammar for $X=f(X)$, and let $T(G)$ be the set of derivation trees of G. Then $\mu f=V(T(G)) \stackrel{\text { def }}{=} V(G)$

Approximating grammars

Let G be the grammar for $X=f(X)$.

An unfolding of G is a sequence $U^{1}, U^{2}, U^{3}, \ldots$ of grammars such that, $T\left(U^{1}\right), T\left(U^{2}\right), T\left(U^{3}\right)$ is a partition of $T(G)$.

Formally: the $T\left(U^{i}\right)$ are pairwise disjoint, and there is a yield-preserving bijection between $\bigcup_{i=1}^{\infty} T\left(U^{i}\right)$ and $T(G)$.

From $U^{1}, U^{2}, U^{3}, \ldots$ we get $G^{1}, G^{2}, G^{3}, \ldots$ such that $T\left(G^{j}\right)=\bigcup_{i=1}^{j} T\left(U^{i}\right)$.
μf is then the supremum of the sequence $V\left(G^{1}\right), V\left(G^{2}\right), V\left(G^{3}\right) \ldots$

Approximating grammars by height

Goal: $U^{i}\left(G^{i}\right)$ contain the derivation trees of G of height i (at most i).
$G: X \rightarrow a X X|b X| c$

Approximating grammars by height

Goal: $U^{i}\left(G^{i}\right)$ contain the derivation trees of G of height i (at most i).

$$
G: X \rightarrow a X X|b X| c
$$

$$
x^{\langle 1\rangle} \rightarrow c
$$

$$
X^{[1]} \rightarrow X^{\langle 1\rangle}
$$

Approximating grammars by height

Goal: $U^{i}\left(G^{i}\right)$ contain the derivation trees of G of height i (at most i).

$$
\begin{aligned}
G: X & \rightarrow a X X|b X| c \\
X^{\langle 1\rangle} & \rightarrow c \\
X^{[1]} & \rightarrow X^{\langle 1\rangle} \\
X^{\langle k\rangle} & \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle}
\end{aligned}
$$

Approximating grammars by height

Goal: $U^{i}\left(G^{i}\right)$ contain the derivation trees of G of height i (at most i).

$$
\begin{aligned}
G: X & \rightarrow a X X|b X| c \\
X^{\langle 1\rangle} & \rightarrow c \\
X^{[1]} & \rightarrow X^{\langle 1\rangle} \\
X^{\langle k\rangle} & \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle} \\
X^{[k]} & \rightarrow X^{\langle k\rangle} \mid X^{[k-1]}
\end{aligned}
$$

Approximating grammars by height

Goal: $U^{i}\left(G^{i}\right)$ contain the derivation trees of G of height i (at most i).

$$
\begin{aligned}
G: X & \rightarrow a X X|b X| c \\
X^{\langle 1\rangle} & \rightarrow c \\
X^{[1]} & \rightarrow X^{\langle 1\rangle} \\
X^{\langle k\rangle} & \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle} \\
X^{[k]} & \rightarrow X^{\langle k\rangle} \mid X^{[k-1]}
\end{aligned}
$$

$U^{i}\left(G^{i}\right)$ is the grammar with $X^{\langle i\rangle}\left(X^{[i]}\right)$ as axiom.

Approximating grammars by height

$$
\begin{aligned}
& X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle} \\
& X^{[k]} \rightarrow X^{\langle k\rangle} \mid X^{[k-1]}
\end{aligned}
$$

"Taking values" we get:

$$
\begin{aligned}
V\left(U^{k}\right) & =V(a) \cdot V\left(U^{k-1}\right)^{2}+V(a) \cdot V\left(G^{k-2}\right) \cdot V\left(U^{k-1}\right) \\
& +V(a) \cdot V\left(U^{k-1}\right) \cdot V\left(G^{k-2}\right)+V(b) \cdot V\left(U^{k-1}\right) \\
V\left(G^{k}\right) & =V\left(G^{k-1}\right)+V\left(U^{k}\right)
\end{aligned}
$$

and since $f(X)=V(a) \cdot X^{2}+V(b) \cdot X+V(c)$

$$
\begin{aligned}
V\left(G^{1}\right) & =f(0) \\
V\left(G^{i+1}\right) & =f\left(V\left(G^{i}\right)\right) \text { for every } i \geq 1
\end{aligned}
$$

Kleene approximation corresponds to evaluating the derivation trees of G by increasing height.

A "faster" approximation

$G: X \rightarrow a X X|b X| c$.

Recall the approximation by height

$$
X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-2]} X^{\langle k-1\rangle}\right| a X^{\langle k-1\rangle} X^{[k-2]} \mid b X^{\langle k-1\rangle}
$$

To capture more trees we allow linear recursion.

$$
X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-1]} X^{\langle k\rangle}\right| a X^{\langle k\rangle} X^{[k-1]} \mid b X^{\langle k-1\rangle}
$$

$U^{i}\left(G^{i}\right)$ defined as before.

Taking values

$$
X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-1]} X^{\langle k\rangle}\right| a X^{\langle k\rangle} X^{[k-1]} \mid b X^{\langle k-1\rangle}
$$

$V\left(U^{i}\right)$ is the least solution of the linear equation

$$
\begin{aligned}
X= & V(a) \cdot V\left(U^{i-1}\right)^{2}+V(a) \cdot V\left(G^{i-1}\right) \cdot X \\
+ & V(a) \cdot X \cdot V\left(G^{i-1}\right)+V(b) \cdot X
\end{aligned}
$$

Iterative approximation of $V(G)$:

- $V\left(G^{1}\right)=$ least solution of $X=V(b) \cdot X+V(c)$
- $V\left(G^{i+1}\right)=V\left(G^{i}\right)+V\left(U^{i+1}\right)$ for every $i \geq 1$

Recipe to approximate μf by solving linear equations.

Interpreting the new approximation

Consider equations $X=f(X)$ on the real semiring

Let $g(X)=f(X)-X$. Then μf is a zero of $g(X)$.

Simple arithmetic yields

$$
V\left(G^{i+1}\right)=V\left(G^{i}\right)-\frac{g\left(V\left(G^{i}\right)\right)}{g^{\prime}\left(V\left(G^{i}\right)\right)}
$$

where $g^{\prime}(X)$ is the derivative of g.

This is Newton's method for approximating a zero of a differentiable function.

Language theoretic view of Newton's method

$$
X^{\langle k\rangle} \rightarrow a X^{\langle k-1\rangle} X^{\langle k-1\rangle}\left|a X^{[k-1]} X^{\langle k\rangle}\right| a X^{\langle k\rangle} X^{[k-1]} \mid b X^{\langle k-1\rangle}
$$

Say a tree of G has dimension k if it is derived from U^{k}
A derivation tree has dimension 0 if it has one node.
A derivation tree has dimension $k>0$ if it consists of a spine with subtrees of dimension at most $k-1$ (and at least one subtree of dimension $k-1$).

Understanding dimension

The dimension of a derivation tree is the height of the largest full binary tree embeddable in it (ignoring terminals).

Newton approximation corresponds to evaluating the derivation trees of G by increasing dimension.

