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Fixed-point equations

We study systems of equations of the form

X1 = f1(X1, . . . ,Xn)

X2 = f2(X1, . . . ,Xn)

· · ·
Xn = fn(X1, . . . ,Xn)

where the fi ’s are “polynomial expressions”.



Shortest paths

Lengths di of shortest paths from vertex 0 to vertex i in graph G = (V ,E)

are the largest solution of

di = min
(i,j)∈E

(di , dj + wji)

where wij is the distance from i to j .



Context-free languages

Context-free grammar

X → ZX | Z
Y → aYa | ZX

Z → b | aYa

Languages generated from
X ,Y ,Z are the least solution of

LX = (LZ · LX) ∪ LZ

LY = ({a} · LY · {a}) ∪ (LZ · LX)

LZ = {b} ∪ ({a} · LY · {a})



Probability of program termination
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The probability that Xi terminates is the least solution of

X1 = 0.7 · X1 · X2 +0.3

X2 = 0.6 · X2 · X3 +0.2 · X2 · X1 +0.2

X3 = 0.2 · X1 · X3 +0.8



Algorithms

Many specific algorithms for different cases:

Shortest paths: Dijkstra, Bellman-Ford, Floyd-warshall.

Right-linear grammars: Gauss elimination.

Probability of termination: Newton’s method.

What do these problems have in common?



Underlying structure: ω-continuous semirings

Semiring (C,+,×,0,1):

(C,+,0) is a commutative monoid × distributes over +

(C,×,1) is a monoid 0× a = a× 0 = 0

ω-continuity:

the relation a v b ⇔ ∃c : a + c = b is a partial order

v-chains have limits

Theorem [Knaster-tarski]: A system of fixed-point equations over an
ω-continuous semiring has a unique least solution (and an unique largest
solution) w.r.t. v.

In the rest of the talk: semiring ≡ ω-continuous semiring.



Research program

Develop and implement generic solution or approximation methods valid
for all semirings, or at least for large classes.

• Theoretical motivation: Exchange of algorithms and proof techniques
between numerical mathematics, algebraic computation and language
theory.

• Applications that require to solve the same system over many different
semirings:

• Authorization systems

• Recommendation systems

• Provenance computations in databases



A system for academic recommendations

Participants: researchers, universities, departments, conferences, papers

Relations: researcher-of, professor-at, student-of, author-of, . . .

• Notation: p.r

• Meaning: group of participants that are in relation r with p.

Particpants express group membership by adding rules or certificates to
the system

Giessen.professor→ Holzer

Giessen.researcher→ Giessen.professor

Giessen.researcher→ Giessen.researcher.Phd-student

Holzer.Phd-student→ Jakobi



A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher→ Giessen.researcher.Phd-student

→ Giessen.professor.Phd-student

→ Holzer.Phd-student

→ Jakobi
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A system for academic recommendations

Group membership qualified by weights

CIAA.author
11/2400
−−−−−−−−→ Holzer

CIAA.author
1/2400
−−−−−−−→ Jakobi

Holzer.co-author
15/175
−−−−−−−→ Jakobi

Jakobi.co-author
15/16
−−−−−−→ Holzer

Recursive group definitions with damping weights.

Holzer.community 1−−−→ Holzer.co-author

Holzer.community 0.5−−−−→ Holzer.community.co-author
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A system for academic recommendations

Recommendations expressed and qualified in the same way

Holzer 10−−−−→ Jakobi

Holzer 8−−−→ Holzer.co-author

Holzer 6−−−→ CIAA.author

Quantitative prefix-rewriting derivations

Holzer 10−−−−→ Jakobi

Holzer 8−−−→ Holzer.co-author
15/175
−−−−−−−→ Jakobi

Holzer 6−−−→ CIAA-author
1/2400
−−−−−−−→ Jakobi

Questions: Weight of a recommendation path?

Aggregate weight of different paths?



A system for academic reputation

‘Agnostic” solution: introduce two operations ⊗ and ⊕

Holzer 10−−−−→ Jakobi

Holzer 8−−−→ Holzer.co-author
15/175
−−−−−−−→ Jakobi

Holzer
10⊕ (0.8⊗ 1/2400)
−−−−−−−−−−−−−−−→ Jakobi

We only require: the operations must satisfy the semiring axioms.



Semantics

A set of rules and recommendations is equivalent to a weighted pushdown
system.

Participants ≈ Control states

Relations ≈ Stack alphabet

Weighted rules and recommendations ≈Weighted transition rules

Problem: the weighted transition system associated to the automaton can
be infinite.



An example

Alice.frs 0.7−−−−→ Bob Alice.frs 0.3−−−−→ Alice.frs.frs Alice 1−−−→ Alice.frs

Bob.frs 0.9−−−−→ Charlie Bob.frs 0.1−−−−→ Bob.frs.frs Bob 1−−−→ Bob.frs

Charlie.frs 0.5−−−−→ Alice Charlie.frs 0.5−−−−→ Charlie.frs.frs Charlie 1−−−→ Charlie.frs

A

B

A

B

A.f

B.f B.f.f

A.f.f

C C C.f C.f.f

A.f.f.f

B.f.f.f

C.f.f.f

...

...

...

Alice’s trust in Bob: total weight of the paths leading from A to B.



Equations

Define [pXq] as the total weight of all paths from the set pX to q.

Theorem: The [pXq]’s are the least solution of the following system of
equations:

〈pXq〉 =
⊕

pX
w−−→ q

w ⊕
⊕

pX
w−−→ rYZ

w �
⊕
s∈P

〈rYs〉 � 〈sZq〉

where P is the set of participants.

The total weight of the paths from p to q is then given by
⊕

X [pXq].



FPsolve: a generic solver



THE generic solution method: Kleene iteration

Theorem [Klee 38, Tars 55, Kui 97]: The least solution of a system f of
fixed-point equations is the supremum of the Kleene approximants,
denoted by {ki}i≥0 , and given by

k0 = f(0)

ki+1 = f(ki) .

Basic algorithm for calculation of µf : compute k0, k1, k2, . . . until either
ki = ki+1 or the approximation is considered adequate.



Implementation in FPsolve

Abstract base class Semiring

ViterbiSemiring operator *= (const ViterbiSemiring& elem){
// multiplication: times
value_ *= elem.value_;
return *this;
}

ViterbiSemiring operator += (const ViterbiSemiring& elem){
// addition: max
if (elem.value_ > value_)
value_ = elem.value_;
return *this;
}



Kleene iteration may be slow

Set interpretations: Kleene iteration never terminates if µf is an infinite set.

• X = {a} · X ∪ {b} µf = a∗b

Kleene approximants are finite sets: ki = (ε+ a + . . .+ ai)b

Real semiring: convergence can be very slow.

• X = 0.5 X2 +0.5 µf = 1 = 0.99999 . . .

“Logarithmic convergence”: k iterations give O(log k) correct digits.

kn ≤ 1−
1

n +1
k2000 = 0.9990



Language-theoretic characterization of µf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V

Example: X = 0.25X2 +0.25X +0.5

Grammar: X → a X X | b X | c

Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) :=
∑
t∈T

V(t)
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X → a X X | b X | c V(a) = V(b) = 0.25,V(c) = 0.5

X

Xa

c

X

c

t2:X

c

t1: t3: X

X Xa

c

V(t3) = 0.015625V(t2) = 0.25 · 0.5 · 0.5 = 0.0625V(t1) = 0.5

b X

c

V({t1, t2, t3}) = 0.5+ 0.0625+ 0.015625 = 0.578125



Language-theoretic characterization of µf

Fundamental Theorem [Boz99,EKL10]: Let G be the grammar for
X = f(X), and let T(G) be the set of derivation trees of G . Then

µf = V(T(G))
def
= V(G)

X = f(X)

µf

=

V(T(G)) T(G)

G

V



Approximating grammars

Let G be the grammar for X = f(X).

An unfolding of G is a sequence U1,U2,U3, . . . of grammars such that,
T(U1),T(U2),T(U3) is a partition of T(G).

Formally: the T(U i) are pairwise disjoint, and there is a yield-preserving bijection

between
⋃∞

i=1 T(U i) and T(G).

From U1,U2,U3, . . . we get G1,G2,G3, . . . such that
T(Gj) =

⋃j
i=1 T(U i).

µf is then the supremum of the sequence V(G1),V(G2),V(G3) . . ..



Approximating grammars by height

Goal: U i (Gi) contain the derivation trees of G of height i (at most i).

G : X → a X X | b X | c

X 〈1〉 → c

X [1] → X 〈1〉

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

U i (Gi) is the grammar with X 〈i〉 (X [i]) as axiom.
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Approximating grammars by height

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

”Taking values” we get:

V(Uk) = V(a) · V(Uk−1)2 + V(a) · V(Gk−2) · V(Uk−1)

+ V(a) · V(Uk−1) · V(Gk−2) + V(b) · V(Uk−1)

V(Gk) = V(Gk−1) + V(Uk)

and since f(X) = V(a) · X2 + V(b) · X + V(c)

V(G1) = f(0)

V(Gi+1) = f(V(Gi)) for every i ≥ 1



Kleene approximation corresponds to evaluating
the derivation trees of G by increasing height.



A ”faster” approximation

G : X → a X X | b X | c .

Recall the approximation by height

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

To capture more trees we allow linear recursion.

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

U i (Gi) defined as before.



Taking values

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

V(U i) is the least solution of the linear equation

X = V(a) · V(U i−1)2 + V(a) · V(Gi−1) · X
+ V(a) · X · V(Gi−1) + V(b) · X

Iterative approximation of V(G):

• V(G1) = least solution of X = V(b) · X + V(c)

• V(Gi+1) = V(Gi) + V(U i+1) for every i ≥ 1

Recipe to approximate µf by solving linear equations.



Interpreting the new approximation

Consider equations X = f(X) on the real semiring

Let g(X) = f(X)− X . Then µf is a zero of g(X).

Simple arithmetic yields

V(Gi+1) = V(Gi)−
g(V(Gi))

g′(V(Gi))

where g′(X) is the derivative of g.

This is Newton’s method for approximating a zero of a differentiable
function.



Language theoretic view of Newton’s method

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

Say a tree of G has dimension k if it is derived from Uk

A derivation tree has dimension 0 if it has one node.

A derivation tree has dimension k > 0 if it consists of a spine with subtrees
of dimension at most k − 1 (and at least one subtree of dimension k − 1).

k−1

k−1

k−1

k−1

k−1

k−1

k−1k−1



Understanding dimension

The dimension of a derivation tree is the height of the largest full binary
tree embeddable in it (ignoring terminals).

X

X X

X

a

X

b b

b a



Newton approximation corresponds to evaluating
the derivation trees of G by increasing dimension.


