
Solving fixed-point equations
over semirings

Javier Esparza

Technische Universität München

Joint work with
Michael Luttenberger and Maximilian Schlund

Fixed-point equations

We study systems of equations of the form

X1 = f1(X1, . . . ,Xn)

X2 = f2(X1, . . . ,Xn)

· · ·
Xn = fn(X1, . . . ,Xn)

where the fi ’s are “polynomial expressions”.

Shortest paths

Lengths di of shortest paths from vertex 0 to vertex i in graph G = (V ,E)

are the largest solution of

di = min
(i,j)∈E

(di , dj + wji)

where wij is the distance from i to j .

Context-free languages

Context-free grammar

X → ZX | Z
Y → aYa | ZX

Z → b | aYa

Languages generated from
X ,Y ,Z are the least solution of

LX = (LZ · LX) ∪ LZ

LY = ({a} · LY · {a}) ∪ (LZ · LX)

LZ = {b} ∪ ({a} · LY · {a})

Probability of program termination

proc X2

X2

X3

0.20.6

X2

X1

0.2

proc X3

X1

X3

0.2

0.8

proc X1

X1

X2

0.7

0.3

The probability that Xi terminates is the least solution of

X1 = 0.7 · X1 · X2 +0.3

X2 = 0.6 · X2 · X3 +0.2 · X2 · X1 +0.2

X3 = 0.2 · X1 · X3 +0.8

Algorithms

Many specific algorithms for different cases:

Shortest paths: Dijkstra, Bellman-Ford, Floyd-warshall.

Right-linear grammars: Gauss elimination.

Probability of termination: Newton’s method.

What do these problems have in common?

Underlying structure: ω-continuous semirings

Semiring (C,+,×,0,1):

(C,+,0) is a commutative monoid × distributes over +

(C,×,1) is a monoid 0× a = a× 0 = 0

ω-continuity:

the relation a v b ⇔ ∃c : a + c = b is a partial order

v-chains have limits

Theorem [Knaster-tarski]: A system of fixed-point equations over an
ω-continuous semiring has a unique least solution (and an unique largest
solution) w.r.t. v.

In the rest of the talk: semiring ≡ ω-continuous semiring.

Research program

Develop and implement generic solution or approximation methods valid
for all semirings, or at least for large classes.

• Theoretical motivation: Exchange of algorithms and proof techniques
between numerical mathematics, algebraic computation and language
theory.

• Applications that require to solve the same system over many different
semirings:

• Authorization systems

• Recommendation systems

• Provenance computations in databases

A system for academic recommendations

Participants: researchers, universities, departments, conferences, papers

Relations: researcher-of, professor-at, student-of, author-of, . . .

• Notation: p.r

• Meaning: group of participants that are in relation r with p.

Particpants express group membership by adding rules or certificates to
the system

Giessen.professor→ Holzer

Giessen.researcher→ Giessen.professor

Giessen.researcher→ Giessen.researcher.Phd-student

Holzer.Phd-student→ Jakobi

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher→ Giessen.researcher.Phd-student

→ Giessen.professor.Phd-student

→ Holzer.Phd-student

→ Jakobi

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher→ Giessen.researcher.Phd-student

→ Giessen.professor.Phd-student

→ Holzer.Phd-student

→ Jakobi

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher→ Giessen.researcher.Phd-student

→ Giessen.professor.Phd-student

→ Holzer.Phd-student

→ Jakobi

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher→ Giessen.researcher.Phd-student

→ Giessen.professor.Phd-student

→ Holzer.Phd-student

→ Jakobi

A system for academic recommendations

Membership explicitely determined by prefix-rewriting derivations

To find out that Jakbi is a researcher at Giessen:

Giessen.researcher→ Giessen.researcher.Phd-student

→ Giessen.professor.Phd-student

→ Holzer.Phd-student

→ Jakobi

A system for academic recommendations

Group membership qualified by weights

CIAA.author
11/2400
−−−−−−−−→ Holzer

CIAA.author
1/2400
−−−−−−−→ Jakobi

Holzer.co-author
15/175
−−−−−−−→ Jakobi

Jakobi.co-author
15/16
−−−−−−→ Holzer

Recursive group definitions with damping weights.

Holzer.community 1−−−→ Holzer.co-author

Holzer.community 0.5−−−−→ Holzer.community.co-author

A system for academic recommendations

Group membership qualified by weights

CIAA.author
11/2400
−−−−−−−−→ Holzer

CIAA.author
1/2400
−−−−−−−→ Jakobi

Holzer.co-author
15/175
−−−−−−−→ Jakobi

Jakobi.co-author
15/16
−−−−−−→ Holzer

Recursive group definitions with damping weights.

Holzer.community 1−−−→ Holzer.co-author

Holzer.community 0.5−−−−→ Holzer.community.co-author

A system for academic recommendations

Group membership qualified by weights

CIAA.author
11/2400
−−−−−−−−→ Holzer

CIAA.author
1/2400
−−−−−−−→ Jakobi

Holzer.co-author
15/175
−−−−−−−→ Jakobi

Jakobi.co-author
15/16
−−−−−−→ Holzer

Recursive group definitions with damping weights.

Holzer.community 1−−−→ Holzer.co-author

Holzer.community 0.5−−−−→ Holzer.community.co-author

A system for academic recommendations

Recommendations expressed and qualified in the same way

Holzer 10−−−−→ Jakobi

Holzer 8−−−→ Holzer.co-author

Holzer 6−−−→ CIAA.author

Quantitative prefix-rewriting derivations

Holzer 10−−−−→ Jakobi

Holzer 8−−−→ Holzer.co-author
15/175
−−−−−−−→ Jakobi

Holzer 6−−−→ CIAA-author
1/2400
−−−−−−−→ Jakobi

Questions: Weight of a recommendation path?

Aggregate weight of different paths?

A system for academic reputation

‘Agnostic” solution: introduce two operations ⊗ and ⊕

Holzer 10−−−−→ Jakobi

Holzer 8−−−→ Holzer.co-author
15/175
−−−−−−−→ Jakobi

Holzer
10⊕ (0.8⊗ 1/2400)
−−−−−−−−−−−−−−−→ Jakobi

We only require: the operations must satisfy the semiring axioms.

Semantics

A set of rules and recommendations is equivalent to a weighted pushdown
system.

Participants ≈ Control states

Relations ≈ Stack alphabet

Weighted rules and recommendations ≈Weighted transition rules

Problem: the weighted transition system associated to the automaton can
be infinite.

An example

Alice.frs 0.7−−−−→ Bob Alice.frs 0.3−−−−→ Alice.frs.frs Alice 1−−−→ Alice.frs

Bob.frs 0.9−−−−→ Charlie Bob.frs 0.1−−−−→ Bob.frs.frs Bob 1−−−→ Bob.frs

Charlie.frs 0.5−−−−→ Alice Charlie.frs 0.5−−−−→ Charlie.frs.frs Charlie 1−−−→ Charlie.frs

A

B

A

B

A.f

B.f B.f.f

A.f.f

C C C.f C.f.f

A.f.f.f

B.f.f.f

C.f.f.f

...

...

...

Alice’s trust in Bob: total weight of the paths leading from A to B.

Equations

Define [pXq] as the total weight of all paths from the set pX to q.

Theorem: The [pXq]’s are the least solution of the following system of
equations:

〈pXq〉 =
⊕

pX
w−−→ q

w ⊕
⊕

pX
w−−→ rYZ

w �
⊕
s∈P

〈rYs〉 � 〈sZq〉

where P is the set of participants.

The total weight of the paths from p to q is then given by
⊕

X [pXq].

FPsolve: a generic solver

THE generic solution method: Kleene iteration

Theorem [Klee 38, Tars 55, Kui 97]: The least solution of a system f of
fixed-point equations is the supremum of the Kleene approximants,
denoted by {ki}i≥0 , and given by

k0 = f(0)

ki+1 = f(ki) .

Basic algorithm for calculation of µf : compute k0, k1, k2, . . . until either
ki = ki+1 or the approximation is considered adequate.

Implementation in FPsolve

Abstract base class Semiring

ViterbiSemiring operator *= (const ViterbiSemiring& elem){
// multiplication: times
value_ *= elem.value_;
return *this;
}

ViterbiSemiring operator += (const ViterbiSemiring& elem){
// addition: max
if (elem.value_ > value_)
value_ = elem.value_;
return *this;
}

Kleene iteration may be slow

Set interpretations: Kleene iteration never terminates if µf is an infinite set.

• X = {a} · X ∪ {b} µf = a∗b

Kleene approximants are finite sets: ki = (ε+ a + . . .+ ai)b

Real semiring: convergence can be very slow.

• X = 0.5 X2 +0.5 µf = 1 = 0.99999 . . .

“Logarithmic convergence”: k iterations give O(log k) correct digits.

kn ≤ 1−
1

n +1
k2000 = 0.9990

Language-theoretic characterization of µf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V

Example: X = 0.25X2 +0.25X +0.5

Grammar: X → a X X | b X | c

Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) :=
∑
t∈T

V(t)

Language-theoretic characterization of µf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V

Example: X = 0.25X2 +0.25X +0.5

Grammar: X → a X X | b X | c

Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) :=
∑
t∈T

V(t)

Language-theoretic characterization of µf

An equation X = f(X) over a semiring induces a context-free grammar G
and a valuation V

Example: X = 0.25X2 +0.25X +0.5

Grammar: X → a X X | b X | c

Valuation: V(a) = 0.25,V(b) = 0.25,V(c) = 0.5

V extends to derivation trees and sets of derivation trees:

V(t) := ordered product of the leaves of t

V(T) :=
∑
t∈T

V(t)

X → a X X | b X | c V(a) = V(b) = 0.25,V(c) = 0.5

X

Xa

c

X

c

t2:X

c

t1: t3: X

X Xa

c

V(t3) = 0.015625V(t2) = 0.25 · 0.5 · 0.5 = 0.0625V(t1) = 0.5

b X

c

V({t1, t2, t3}) = 0.5+ 0.0625+ 0.015625 = 0.578125

Language-theoretic characterization of µf

Fundamental Theorem [Boz99,EKL10]: Let G be the grammar for
X = f(X), and let T(G) be the set of derivation trees of G . Then

µf = V(T(G))
def
= V(G)

X = f(X)

µf

=

V(T(G)) T(G)

G

V

Approximating grammars

Let G be the grammar for X = f(X).

An unfolding of G is a sequence U1,U2,U3, . . . of grammars such that,
T(U1),T(U2),T(U3) is a partition of T(G).

Formally: the T(U i) are pairwise disjoint, and there is a yield-preserving bijection

between
⋃∞

i=1 T(U i) and T(G).

From U1,U2,U3, . . . we get G1,G2,G3, . . . such that
T(Gj) =

⋃j
i=1 T(U i).

µf is then the supremum of the sequence V(G1),V(G2),V(G3)

Approximating grammars by height

Goal: U i (Gi) contain the derivation trees of G of height i (at most i).

G : X → a X X | b X | c

X 〈1〉 → c

X [1] → X 〈1〉

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

U i (Gi) is the grammar with X 〈i〉 (X [i]) as axiom.

Approximating grammars by height

Goal: U i (Gi) contain the derivation trees of G of height i (at most i).

G : X → a X X | b X | c

X 〈1〉 → c

X [1] → X 〈1〉

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

U i (Gi) is the grammar with X 〈i〉 (X [i]) as axiom.

Approximating grammars by height

Goal: U i (Gi) contain the derivation trees of G of height i (at most i).

G : X → a X X | b X | c

X 〈1〉 → c

X [1] → X 〈1〉

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

U i (Gi) is the grammar with X 〈i〉 (X [i]) as axiom.

Approximating grammars by height

Goal: U i (Gi) contain the derivation trees of G of height i (at most i).

G : X → a X X | b X | c

X 〈1〉 → c

X [1] → X 〈1〉

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

U i (Gi) is the grammar with X 〈i〉 (X [i]) as axiom.

Approximating grammars by height

Goal: U i (Gi) contain the derivation trees of G of height i (at most i).

G : X → a X X | b X | c

X 〈1〉 → c

X [1] → X 〈1〉

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

U i (Gi) is the grammar with X 〈i〉 (X [i]) as axiom.

Approximating grammars by height

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

X [k] → X 〈k〉 | X [k−1]

”Taking values” we get:

V(Uk) = V(a) · V(Uk−1)2 + V(a) · V(Gk−2) · V(Uk−1)

+ V(a) · V(Uk−1) · V(Gk−2) + V(b) · V(Uk−1)

V(Gk) = V(Gk−1) + V(Uk)

and since f(X) = V(a) · X2 + V(b) · X + V(c)

V(G1) = f(0)

V(Gi+1) = f(V(Gi)) for every i ≥ 1

Kleene approximation corresponds to evaluating
the derivation trees of G by increasing height.

A ”faster” approximation

G : X → a X X | b X | c .

Recall the approximation by height

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−2]X 〈k−1〉 | aX 〈k−1〉X [k−2]| bX 〈k−1〉

To capture more trees we allow linear recursion.

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

U i (Gi) defined as before.

Taking values

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

V(U i) is the least solution of the linear equation

X = V(a) · V(U i−1)2 + V(a) · V(Gi−1) · X
+ V(a) · X · V(Gi−1) + V(b) · X

Iterative approximation of V(G):

• V(G1) = least solution of X = V(b) · X + V(c)

• V(Gi+1) = V(Gi) + V(U i+1) for every i ≥ 1

Recipe to approximate µf by solving linear equations.

Interpreting the new approximation

Consider equations X = f(X) on the real semiring

Let g(X) = f(X)− X . Then µf is a zero of g(X).

Simple arithmetic yields

V(Gi+1) = V(Gi)−
g(V(Gi))

g′(V(Gi))

where g′(X) is the derivative of g.

This is Newton’s method for approximating a zero of a differentiable
function.

Language theoretic view of Newton’s method

X 〈k〉 → aX 〈k−1〉X 〈k−1〉 | aX [k−1]X 〈k〉 | aX 〈k〉X [k−1]| bX 〈k−1〉

Say a tree of G has dimension k if it is derived from Uk

A derivation tree has dimension 0 if it has one node.

A derivation tree has dimension k > 0 if it consists of a spine with subtrees
of dimension at most k − 1 (and at least one subtree of dimension k − 1).

k−1

k−1

k−1

k−1

k−1

k−1

k−1k−1

Understanding dimension

The dimension of a derivation tree is the height of the largest full binary
tree embeddable in it (ignoring terminals).

X

X X

X

a

X

b b

b a

Newton approximation corresponds to evaluating
the derivation trees of G by increasing dimension.

