Model Checking Infinite State Spaces

Javier Esparza

Laboratory for Foundations of Computer Science School of Informatics
University of Edinburgh

Model Checking

An approach to the verification problem which formalises

```
        system satisfies property
                            as
Kripke structure is model of temporal formula
```

Other possibilities are
characteristic temporal formula implies temporal formula
Kripke structure is simulated by most general Kripke structure

Nothing in the essence of the approach requires the Kripke structure to be finite

Actually, Kripke structures for real systems are very often infinite

The finiteness constraint is due to our current technology, not to the approach itself

Sources of infinity

Data manipulation: unbounded counters, integer variables, lists

Control structures: procedures , process creation ...

Asynchronous communication: unbounded FIFO queues

Parameters: number of processes, of principals, of input gates, delays, ...

Real-time: discrete or dense domains

A bit of history

- Late 80s, early 90s: First theoretical papers

Decidability/Undecidability results for Place/Transition Petri nets
Efficient model-checking algorithms for context-free processes
Region construction for timed automata

- 90s: Research program

1. Decidability analysis
2. Design of algorithms or semi-algorithms
3. Design of implementations
4. Tools
5. Applications

- Late 90s, 00s: General techniques emerge

Automata-theoretic approach to model-checking
Symbolic reachability
Accelerations

Programme

The automata-theoretic approach

Symbolic search: forward and backward

Case study: broadcast protocols

Accelerations

Case study: pushdown systems

Widenings

The automata-theoretic approach

| Safety property ϕ | \Longrightarrow Automaton $\mathcal{A}_{\neg \phi}$ | $\Longrightarrow \mathcal{L}(\neg \phi)$ |
| :--- | :--- | :--- | :--- |
| Liveness property ϕ | \Longrightarrow Büchi automaton $\mathcal{B}_{\neg \phi}$ | $\Longrightarrow \mathcal{L}_{\omega}(\neg \phi)$ |
| System S | \Longrightarrow Kripke structure \mathcal{K}_{S} | $\Longrightarrow \mathcal{L}(S), \mathcal{L}_{\omega}(S)$ |

Safety: $\quad S=\phi \quad$ iff $\quad \mathcal{L}\left(\mathcal{K}_{S} \times \mathcal{A}_{\neg \phi}\right)=\emptyset$
Liveness: $\quad S=\phi \quad$ iff $\quad \mathcal{L}_{\omega}\left(\mathcal{K}_{S} \times \mathcal{B}_{\neg \phi}\right)=\emptyset$

Closure under product with automata: for every S and \mathcal{A} there is a system $S \otimes \mathcal{A}$ such that $\mathcal{L}(S \otimes \mathcal{A})=\mathcal{L}\left(\mathcal{K}_{S} \times \mathcal{A}\right)$

Closure under product with Büchi automata:
for every S and \mathcal{B} there is a system $S \otimes \mathcal{B}$ such that $\mathcal{L}_{\omega}(S \otimes \mathcal{B})=\mathcal{L}_{\omega}\left(\mathcal{K}_{S} \times \mathcal{B}\right)$

For system classes closed under product, model checking reducible to

- Reachability

Given: system S, sets I and F of initial and final configurations of \mathcal{K}
To decide: if F can be reached from I,
i.e., if there exist $i \in I$ and $f \in F$ such that $i \rightarrow^{*} f$

- Repeated reachability

Given: System S, sets I and F of initial and final configurations of S
To decide: if F can be repeatedly reached from I,
i.e. if there exist $i \in I$ and $f_{1}, f_{2}, \ldots \in F$ such that $i \rightarrow^{*} f_{1} \rightarrow^{*} f_{2} \cdots$
I and F are usually infinite

Symbolic search

A general framework for the reachability problem

Let C denote a (possibly infinite) set of configurations

Forward search
$\operatorname{post}(C)=$ immediate successors of C
Initialize $C:=1$
Iterate $C:=C \cup \operatorname{post}(C)$ until
$C \cap F \neq \emptyset$; return "reachable", or
a fixpoint is reached; return "non-reachable"

Backward search
$\operatorname{pre}(C)=$ immediate predecessors of C
Initialize $C:=F$
Iterate $C:=C \cup \operatorname{pre}(C)$ until
$C \cap I \neq \emptyset$; return "reachable", or
a fixpoint is reached; return "non-reachable"

Problem: when are the procedures effective?

Backward search effective if ...

1. each $C \in \mathcal{C}$ has a symbolic finite representation
2. $F \in \mathcal{C}$
3. if $C \in \mathcal{C}$, then $C \cup \operatorname{pre}(C) \in \mathcal{C}$ (and effectively computable)
4. emptyness of $C \cap I$ is decidable
5. $C_{1}=C_{2}$ is decidable (to check if fixpoint has been reached)
6. any chain $C_{1} \subseteq C_{2} \subseteq C_{3} \ldots$ reaches a fixpoint after finitely many steps
(1) - (5) guarantee partial correctness, (6) guarantees termination

For forward search replace $\operatorname{pre}(C)$ by post (C) and exchange I and F
Shape of I determined by system, shape of F by specification

Parametrized protocols

Defined for n processes.

Correctness: the desired properties hold for every n

Processes modelled as communicating finite automata

For each value of n the system has a finite state space (only one source of infinity)

Turing powerful, and so further restrictions sensible:

Broadcast Protocols

Broadcast protocols

Introduced by Emerson and Namjoshi in LICS '98

All processes execute the same algorithm, i.e., all finite automata are identical

Processes are undistinguishable (no IDs)

Communication mechanisms:

Rendezvous: two processes exchange a message and move to new states

Broadcasts: a process sends a message to all others all processes move to new states

Syntax

a!! : broadcast a message along (channel) a a?? receive a broadcasted message along a $b!$: send a message to one process along b b ? : receive a message from one process along b
c : change state without communicating with anybody

Semantics

The global state of a broadcast protocol is completely determined by the number of processes in each state.

Configuration: mapping $c: Q \rightarrow \mathbb{N}$ represented by the vector $\left(c\left(q_{1}\right), \ldots, c\left(q_{n}\right)\right)$

Semantics for an initial configuration: finite transition system with configurations as nodes

$$
\begin{aligned}
(3,1,2) & \longrightarrow(4,0,2) & & \begin{array}{l}
\text { (silent move } c) \\
(3,1,2)
\end{array} \\
(3,1,2) & \longrightarrow(3,2,1) & & \text { (rendezvous b) } \\
(185,3425,17) & \longrightarrow(17,1,3609) & & \text { (broadcast a) }
\end{aligned}
$$

Parametrized configuration: partial mapping $p: Q \rightarrow \mathbb{N}$

- Intuition: "configuration with holes"
- Formally: set of configurations (total mappings matching p)

Infinite transition system (Kripke structure) of the broadcast protocol:

- Fix an initial parametrized configuration p_{0}.
- Take the union of all finite transition systems \mathcal{K}_{c} for each configuration $c \in p_{0}$.

A MESI-protocol

Reachability in broadcast protocols

Typical I: parametric configuration
Typical F: upward-closed sets
U is an upward-closed set of configurations if

$$
c \in U \text { and } c^{\prime} \geq c \text { implies } c^{\prime} \in U
$$

where \geq is the pointwise order on \mathbb{N}^{n}.
Sets D of "dangerous" configurations are typically upward-closed
Example: states M and S of MESI protocol should be mutually exclusive

$$
D=\{(m, e, s, i) \mid m \geq 1 \wedge s \geq 1\}
$$

Is reachability decidable if I is a parametric configuration and F is an upward-closed set?

First try: Forward search

Since $I \in \mathcal{C}$ required by (2), the family \mathcal{C} must contain all parametrized configurations.

Satisfies (1) - (5) but not (6). Termination fails in very simple cases.

$$
(\sqcup, 0) \xrightarrow{a}(\sqcup, 1) \xrightarrow{a}(\sqcup, 2) \xrightarrow{a} \ldots
$$

Second try: Backward search

Since $F \in \mathcal{C}$ required by (2), the family \mathcal{C} must contain all upward-closed sets.
[Abdulla et al I\&C 160, 2000], [E. et al, LICS'99] :

Backward search satisfies (1) - (6)

1. An upward-closed set can be finitely represented by its set of minimal elements w.r.t. the pointwise order \leq
2. An upward-closed set can be finitely represented by its set of minimal elements w.r.t. the pointwise order \leq

- An upward-closed set is determined by its minimal elements
- Any subset of N^{k} has finitely many minimal elements

1. An upward-closed set can be finitely represented by its set of minimal elements w.r.t. the pointwise order \leq

- An upward-closed set is determined by its minimal elements
- Any subset of N^{k} has finitely many minimal elements Every infinite sequence $c_{1}, c_{2}, c_{3}, \ldots$ of vectors of \mathbf{N}^{k} contains a non-decreasing infinite subsequence $c_{i_{1}} \leq c_{i_{2}} \leq c_{i_{3}} \ldots$ (Dickson's lemma)

1. An upward-closed set can be finitely represented by its set of minimal elements w.r.t. the pointwise order \leq

- An upward-closed set is determined by its minimal elements
- Any subset of \mathbf{N}^{k} has finitely many minimal elements

Every infinite sequence $c_{1}, c_{2}, c_{3}, \ldots$ of vectors of \mathbf{N}^{k} contains a non-decreasing infinite subsequence $c_{i_{1}} \leq c_{i_{2}} \leq c_{i_{3}} \ldots$ (Dickson's lemma) Assume some $X \subseteq \mathbf{N}^{k}$ has infinitely many minimal elements Enumerate them in a sequence $m_{1}, m_{2} \ldots$

1. An upward-closed set can be finitely represented by its set of minimal elements w.r.t. the pointwise order \leq

- An upward-closed set is determined by its minimal elements
- Any subset of N^{k} has finitely many minimal elements

Every infinite sequence $c_{1}, c_{2}, c_{3}, \ldots$ of vectors of \mathbf{N}^{k} contains a non-decreasing infinite subsequence $c_{i_{1}} \leq c_{i_{2}} \leq c_{i_{3}} \ldots$ (Dickson's lemma) Assume some $X \subseteq \mathbf{N}^{k}$ has infinitely many minimal elements Enumerate them in a sequence $m_{1}, m_{2} \ldots$

By Dicksons lemma, $m_{i} \leq m_{j}$ for some $i<j$

1. An upward-closed set can be finitely represented by its set of minimal elements w.r.t. the pointwise order \leq

- An upward-closed set is determined by its minimal elements
- Any subset of N^{k} has finitely many minimal elements

Every infinite sequence $c_{1}, c_{2}, c_{3}, \ldots$ of vectors of \mathbf{N}^{k} contains a non-decreasing infinite subsequence $c_{i_{1}} \leq c_{i_{2}} \leq c_{i_{3}} \ldots$ (Dickson's lemma) Assume some $X \subseteq \mathbf{N}^{k}$ has infinitely many minimal elements Enumerate them in a sequence $m_{1}, m_{2} \ldots$

By Dicksons lemma, $m_{i} \leq m_{j}$ for some $i<j$
But then m_{j} is not minimal

1. An upward-closed set can be finitely represented by its set of minimal elements w.r.t. the pointwise order \leq

- An upward-closed set is determined by its minimal elements
- Any subset of N^{k} has finitely many minimal elements

Every infinite sequence $c_{1}, c_{2}, c_{3}, \ldots$ of vectors of \mathbf{N}^{k} contains a non-decreasing infinite subsequence $c_{i_{1}} \leq c_{i_{2}} \leq c_{i_{3}} \ldots$ (Dickson's lemma) Assume some $X \subseteq \mathbf{N}^{k}$ has infinitely many minimal elements Enumerate them in a sequence $m_{1}, m_{2} \ldots$

By Dicksons lemma, $m_{i} \leq m_{j}$ for some $i<j$
But then m_{j} is not minimal
Contradiction
2. F is upward-closed
2. F is upward-closed
3. If U is upward-closed then so is $U \cup \operatorname{pre}(\mathbf{U})$
2. F is upward-closed
3. If U is upward-closed then so is $U \cup \operatorname{pre}(\mathbf{U})$

Since union of upward-closed sets is upward-closed, it suffices to prove that $\operatorname{pre}(U)$ is upward-closed
2. F is upward-closed
3. If U is upward-closed then so is $U \cup \operatorname{pre}(\mathbf{U})$

Since union of upward-closed sets is upward-closed, it suffices to prove that $\operatorname{pre}(U)$ is upward-closed

Take $c \in \operatorname{pre}(U)$ and $c^{\prime} \geq c$. We show $c^{\prime} \in \operatorname{pre}(U)$
2. F is upward-closed
3. If U is upward-closed then so is $U \cup \operatorname{pre}(\mathbf{U})$

Since union of upward-closed sets is upward-closed, it suffices to prove that $\operatorname{pre}(U)$ is upward-closed

Take $c \in \operatorname{pre}(U)$ and $c^{\prime} \geq c$. We show $c^{\prime} \in \operatorname{pre}(U)$

$$
\begin{aligned}
& c \quad \xrightarrow{a} \quad u \in U \\
& \leq \\
& c^{\prime}
\end{aligned}
$$

2. F is upward-closed
3. If U is upward-closed then so is $U \cup \operatorname{pre}(\mathbf{U})$

Since union of upward-closed sets is upward-closed, it suffices to prove that $\operatorname{pre}(U)$ is upward-closed

Take $c \in \operatorname{pre}(U)$ and $c^{\prime} \geq c$. We show $c^{\prime} \in \operatorname{pre}(U)$

$$
\begin{aligned}
& c \quad l \\
& \leq \\
& \leq \\
& c^{\prime} \xrightarrow{a} \\
& u^{\prime}
\end{aligned}
$$

2. F is upward-closed
3. If U is upward-closed then so is $U \cup \operatorname{pre}(\mathbf{U})$

Since union of upward-closed sets is upward-closed, it suffices to prove that $\operatorname{pre}(U)$ is upward-closed

Take $c \in \operatorname{pre}(U)$ and $c^{\prime} \geq c$. We show $c^{\prime} \in \operatorname{pre}(U)$

$$
\begin{array}{lll}
c & \xrightarrow{a} & u \in U \\
\leq & & \leq \\
c^{\prime} & \xrightarrow{a} & u^{\prime}
\end{array}
$$

2. F is upward-closed
3. If U is upward-closed then so is $U \cup \operatorname{pre}(\mathbf{U})$

Since union of upward-closed sets is upward-closed, it suffices to prove that $\operatorname{pre}(U)$ is upward-closed

Take $c \in \operatorname{pre}(U)$ and $c^{\prime} \geq c$. We show $c^{\prime} \in \operatorname{pre}(U)$

$$
\begin{array}{lll}
c & \xrightarrow{a} & u \in U \\
\leq & & \leq \\
c^{\prime} & \xrightarrow{a} & u^{\prime} \in U
\end{array}
$$

4. $C \cap /$ is decidable
5. $C \cap /$ is decidable
6. $\quad C_{1}=C_{2}$ is decidable
7. $C \cap I$ is decidable
8. $\quad C_{1}=C_{2}$ is decidable
9. Any chain $U_{1} \subseteq U_{2} \subseteq U_{3} \ldots$ of upward-closed sets reaches a fixpoint after finitely many steps
10. $C \cap /$ is decidable
11. $\quad C_{1}=C_{2}$ is decidable
12. Any chain $U_{1} \subseteq U_{2} \subseteq U_{3} \ldots$ of upward-closed sets reaches a fixpoint after finitely many steps

Assume this is not the case: $U_{1} \subset U_{2} \subset U_{3} \ldots$
4. $C \cap I$ is decidable
5. $\quad C_{1}=C_{2}$ is decidable
6. Any chain $U_{1} \subseteq U_{2} \subseteq U_{3} \ldots$ of upward-closed sets reaches a fixpoint after finitely many steps

Assume this is not the case: $U_{1} \subset U_{2} \subset U_{3} \ldots$
Pick some minimal element $m_{1} \in U_{1}$
Pick for every $i>1$ some minimal element $m_{i} \notin U_{1} \cup \ldots \cup U_{i-1}$
Consider the sequence $m_{1}, m_{2}, m_{3}, \ldots$
4. $C \cap I$ is decidable
5. $\quad C_{1}=C_{2}$ is decidable
6. Any chain $U_{1} \subseteq U_{2} \subseteq U_{3} \ldots$ of upward-closed sets reaches a fixpoint after finitely many steps

Assume this is not the case: $U_{1} \subset U_{2} \subset U_{3} \ldots$
Pick some minimal element $m_{1} \in U_{1}$
Pick for every $i>1$ some minimal element $m_{i} \notin U_{1} \cup \ldots \cup U_{i-1}$
Consider the sequence $m_{1}, m_{2}, m_{3}, \ldots$
Let $i<j$; since $m_{j} \notin U_{i}$, we have $m_{i} \not \leq m_{j}$ (upward-closedness)
4. $C \cap I$ is decidable
5. $\quad C_{1}=C_{2}$ is decidable
6. Any chain $U_{1} \subseteq U_{2} \subseteq U_{3} \ldots$ of upward-closed sets reaches a fixpoint after finitely many steps

Assume this is not the case: $U_{1} \subset U_{2} \subset U_{3} \ldots$
Pick some minimal element $m_{1} \in U_{1}$
Pick for every $i>1$ some minimal element $m_{i} \notin U_{1} \cup \ldots \cup U_{i-1}$
Consider the sequence $m_{1}, m_{2}, m_{3}, \ldots$
Let $i<j$; since $m_{j} \notin U_{i}$, we have $m_{i} \not \leq m_{j}$ (upward-closedness)
So infinitely many elements of $m_{1}, m_{2}, m_{3} \ldots$ are incomparable
4. $C \cap I$ is decidable
5. $\quad C_{1}=C_{2}$ is decidable
6. Any chain $U_{1} \subseteq U_{2} \subseteq U_{3} \ldots$ of upward-closed sets reaches a fixpoint after finitely many steps

Assume this is not the case: $U_{1} \subset U_{2} \subset U_{3} \ldots$
Pick some minimal element $m_{1} \in U_{1}$
Pick for every $i>1$ some minimal element $m_{i} \notin U_{1} \cup \ldots \cup U_{i-1}$
Consider the sequence $m_{1}, m_{2}, m_{3}, \ldots$
Let $i<j$; since $u_{j} \notin U_{i}$, we have $m_{i} \notin m_{j}$ (upward-closedness)
So infinitely many elements of $m_{1}, m_{2}, m_{3} \ldots$ are incomparable
Contradiction to Dickson's Iemma

Repeated reachability in broadcast protocols

The following problem is undecidable:

Given: a broadcast protocol, an initial parametric configuration $p=(\sqcup, 0, \ldots, 0)$

To decide: is there an integer n such that the transition system
with $(n, 0, \ldots, 0)$ as initial configuration
has an infinite computation?

Can be reformulated as a repeated reachability problem where $I=(\sqcup, 0, \ldots, 0)$ and $F=$ set of all configurations

Application to the MESI-protocol

Are the states M and S mutually exclusive?
Check if the upward-closed set with minimal element

$$
m=1, e=0, s=1, i=0
$$

can be reached from the initial p -configuration

$$
m=0, e=0, s=0, i=\sqcup
$$

Application to the MESI-protocol

Are the states M and S mutually exclusive?
Check if the upward-closed set with minimal element

$$
m=1, e=0, s=1, i=0
$$

can be reached from the initial p -configuration

$$
m=0, e=0, s=0, i=\sqcup
$$

Proceed as follows:

$$
D: \quad m \geq 1 \wedge s \geq 1
$$

Application to the MESI-protocol

Are the states M and S mutually exclusive?
Check if the upward-closed set with minimal element

$$
m=1, e=0, s=1, i=0
$$

can be reached from the initial p -configuration

$$
m=0, e=0, s=0, i=\sqcup
$$

Proceed as follows:

$$
\begin{aligned}
D: & m \geq 1 \wedge s \geq 1 \\
D \cup \operatorname{pre}(D): & (m \geq 1 \wedge s \geq 1) \vee \\
& (m=0 \wedge e=1 \wedge s \geq 1)
\end{aligned}
$$

Application to the MESI-protocol

Are the states M and S mutually exclusive?
Check if the upward-closed set with minimal element

$$
m=1, e=0, s=1, i=0
$$

can be reached from the initial p -configuration

$$
m=0, e=0, s=0, i=\sqcup
$$

Proceed as follows:

$$
\begin{aligned}
D: & m \geq 1 \wedge s \geq 1 \\
D \cup \operatorname{pre}(D): & (m \geq 1 \wedge s \geq 1) \vee \\
& (m=0 \wedge e=1 \wedge s \geq 1) \\
D \cup \operatorname{pre}(D) \cup \operatorname{pre}^{2}(D): & D \cup \operatorname{pre}(D)
\end{aligned}
$$

Case studies (by Delzanno)

Broadcast protocols must be extended with more complicated guards.
Termination guarantee gets lost, but can be recovered
Upward-closed sets represented by linear constraints
Backward-search algorithm must be refined
Possibly more iterations, but each iteration has lower complexity
Berkeley RISC, Illinois, Xerox PARC Dragon, DEC Firefly
At most 7 iterations and below 100 seconds (SPARC5, Pentium 133)

Futurebus +
8 steps and 200 seconds (Pentium 133)

Symbolic search for other models

FIFO-automata with lossy channels
[Abdulla and Jonsson, I\&C 127, 1993], [Abdulla et al, CAV'98, LNCS 1427]
Configuration: pair (q, w), where q state and $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ vector of words representing the queue contents

Family \mathcal{C} : upward-closed sets with respect to the subsequence order
$a b b a \leq b b a a b a a a b b a b b$
Dickson's lemma \rightarrow Higman's lemma
Backward search satisfies (1) - (6)
Timed automata
[Alur and Dill, TCS 126, 1994]
Configuration: pair (q, x), where q state and x vector of real numbers
Family \mathcal{C} : regions or zones
Forward and backward search satisfy (1) - (6)

Pushdown systems

A pushdown system (PDS) is a triple (P, Γ, Δ), where

- P is a finite set of control locations
$-\Gamma$ is a finite stack alphabet
$-\Delta \subseteq(P \times \Gamma) \times\left(P \times \Gamma^{*}\right)$ is a finite set of rules.

A configuration is a pair $\langle p, v\rangle$, where $p \in P, v \in \Gamma^{*}$
If $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, v\right\rangle \in \Delta$ then $\langle p, \gamma w\rangle \longrightarrow\left\langle p^{\prime}, v w\right\rangle$ for every $w \in \Gamma^{*}$
Normalisation: $|v| \leq 2$

PDSs as models of sequential programs

Programs determined by
control flow of procedures

- assignments, conditionals, loops
- procedure calls with parameter passing / return values
local variables of each procedure
global variables
State space determined by
program pointer
values of global variables
values of local variables (of current procedure)
activation records (return addresses, copies of locals)

Interpretation of $\langle p, \gamma v\rangle$
p holds values of global variables
γ holds (program pointer, values of local variables)
v holds stack of (return address, saved locals)
Restriction: finite datatypes
Correspondence between statements and rules

$$
\begin{array}{ll}
\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma^{\prime}\right\rangle & \text { simple statement } \\
\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma^{\prime} \gamma^{\prime \prime}\right\rangle & \text { procedure call } \\
\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \epsilon\right\rangle & \text { return statement }
\end{array}
$$

Reachability in pushdown systems

A set of configurations C is regular if for every control point p, the set $\left\{w \in \Gamma^{*} \mid\langle p, w\rangle \in C\right\}$ is regular

Typically, I and F are regular sets of configurations (even very simple ones, like $\left\langle p, \Gamma^{*}\right\rangle$)

Family \mathcal{C} : regular sets

Backward search: Do conditions (2) - (6) hold ?

1. Each regular set can be finitely represented by a multi-automaton

Multi-automata for a pushdown system:
P as set of initial states and Γ as alphabet
$\langle p, v\rangle$ recognized if $p \xrightarrow{v} q$ for some final state q
Example: $P=\left\{p_{0}, p_{1}\right\}$ and $\Gamma=\left\{\gamma_{0}, \gamma_{1}\right\}$
Automaton coding the set $\left\langle p_{0}, \gamma_{0} \gamma_{1}^{*} \gamma_{0}\right\rangle \cup\left\langle p_{1}, \gamma_{1}\right\rangle$:

2. $F \in \mathcal{C} \quad \sqrt{ }$
2. $F \in \mathcal{C}$
3. If $\boldsymbol{C} \in \mathcal{C}$, then $\boldsymbol{C} \cup \operatorname{pre}(\boldsymbol{C}) \in \mathcal{C}$
2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$
$\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\mathcal{C} \cup \operatorname{pre}(C) \in \mathcal{C}$

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

2. $F \in \mathcal{C}$
3. If $C \in \mathcal{C}$, then $\boldsymbol{C} \cup \operatorname{pre}(C) \in \mathcal{C}$

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

4. Emptyness of $C \cap /$ is decidable
$\sqrt{ }$
4. Emptyness of $C \cap /$ is decidable
5. $C_{1}=C_{2}$ is decidable

6. Any chain $C_{1} \subseteq C_{2} \subseteq C_{3} \ldots$ eventually reaches a fixpoint

6. Any chain $C_{1} \subseteq C_{2} \subseteq C_{3} \ldots$ eventually reaches a fixpoint

$$
\begin{aligned}
P & =\left\{p_{0}, p_{1}\right\}, \Gamma=\left\{\gamma_{0}, \gamma_{1}\right\} \\
\Delta & =\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
\end{aligned}
$$

6. Any chain $C_{1} \subseteq C_{2} \subseteq C_{3} \ldots$ eventually reaches a fixpoint

$$
\begin{aligned}
& P=\left\{p_{0}, p_{1}\right\}, \Gamma=\left\{\gamma_{0}, \gamma_{1}\right\} \\
& \Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\} \\
& C_{0}=F=\left\langle p_{0}, \gamma_{0} \gamma_{1}^{*} \gamma_{0}\right\rangle \cup\left\langle p_{1}, \gamma_{1}\right\rangle
\end{aligned}
$$

6. Any chain $C_{1} \subseteq C_{2} \subseteq C_{3} \ldots$ eventually reaches a fixpoint

$$
\begin{aligned}
& P=\left\{p_{0}, p_{1}\right\}, \Gamma=\left\{\gamma_{0}, \gamma_{1}\right\} \\
& \Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\} \\
& C_{0}=F\left\langle p_{0}, \gamma_{0} \gamma_{1}^{*} \gamma_{0}\right\rangle \cup\left\langle p_{1}, \gamma_{1}\right\rangle \\
& C_{1}=C_{0} \cup \operatorname{pre}\left(C_{0}\right)=\left\langle p_{0},\left(\gamma_{0}+\gamma_{0}^{2}\right) \gamma_{1}^{*} \gamma_{0}\right\rangle \cup \\
&\left\langle p_{1}, \gamma_{1}\left(\epsilon+\gamma_{0}\right) \gamma_{1}^{*}\left(\epsilon+\gamma_{0}\right)\right\rangle
\end{aligned}
$$

6. Any chain $C_{1} \subseteq C_{2} \subseteq C_{3} \ldots$ eventually reaches a fixpoint

$$
P=\left\{p_{0}, p_{1}\right\}, \Gamma=\left\{\gamma_{0}, \gamma_{1}\right\}
$$

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

$$
c_{0}=F \quad=\left\langle p_{0}, \gamma_{0} \gamma_{1}^{*} \gamma_{0}\right\rangle \cup\left\langle p_{1}, \gamma_{1}\right\rangle
$$

$$
C_{1}=C_{0} \cup \operatorname{pre}\left(C_{0}\right) \quad=\left\langle p_{0},\left(\gamma_{0}+\gamma_{0}^{2}\right) \gamma_{1}^{*} \gamma_{0}\right\rangle \cup
$$

$$
\left\langle p_{1}, \gamma_{1}\left(\epsilon+\gamma_{0}\right) \gamma_{1}^{*}\left(\epsilon+\gamma_{0}\right)\right\rangle
$$

$$
\begin{aligned}
C_{i}=C_{i-1} \cup \operatorname{pre}\left(C_{i-1}\right)= & \left\langle p_{0},\left(\gamma_{0}+\ldots+\gamma_{0}^{i+1}\right) \gamma_{1}^{*} \gamma_{0}\right\rangle \cup \\
& \left\langle p_{1}, \gamma_{1}\left(\epsilon+\gamma_{0}+\ldots+\gamma_{0}^{i}\right) \gamma_{1}^{*}\left(\epsilon+\gamma_{0}\right)\right\rangle
\end{aligned}
$$

6. Any chain $C_{1} \subseteq C_{2} \subseteq C_{3} \ldots$ eventually reaches a fixpoint

$$
P=\left\{p_{0}, p_{1}\right\}, \Gamma=\left\{\gamma_{0}, \gamma_{1}\right\}
$$

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

$$
C_{0}=F \quad=\left\langle p_{0}, \gamma_{0} \gamma_{1}^{*} \gamma_{0}\right\rangle \cup\left\langle p_{1}, \gamma_{1}\right\rangle
$$

$$
C_{1}=C_{0} \cup \operatorname{pre}\left(C_{0}\right) \quad=\left\langle p_{0},\left(\gamma_{0}+\gamma_{0}^{2}\right) \gamma_{1}^{*} \gamma_{0}\right\rangle \cup
$$

$$
\left\langle p_{1}, \gamma_{1}\left(\epsilon+\gamma_{0}\right) \gamma_{1}^{*}\left(\epsilon+\gamma_{0}\right)\right\rangle
$$

$$
\begin{aligned}
\boldsymbol{C}_{i}=C_{i-1} \cup \operatorname{pre}\left(C_{i-1}\right)= & \left\langle p_{0},\left(\gamma_{0}+\ldots+\gamma_{0}^{i+1}\right) \gamma_{1}^{*} \gamma_{0}\right\rangle \cup \\
& \left\langle p_{1}, \gamma_{1}\left(\epsilon+\gamma_{0}+\ldots+\gamma_{0}^{i}\right) \gamma_{1}^{*}\left(\epsilon+\gamma_{0}\right)\right\rangle
\end{aligned}
$$

However, the fixpoint

$$
\begin{aligned}
\operatorname{pre}^{*}(F)= & \left\langle p_{0}, \gamma_{0}^{+} \gamma_{1}^{*} \gamma_{0}\right\rangle \cup \\
& \left\langle p_{1}, \gamma_{1} \gamma_{0}^{*} \gamma_{1}^{*}\left(\epsilon+\gamma_{0}\right)\right\rangle
\end{aligned}
$$

is regular
How can we compute it?

Accelerations

By definition, pre $(F)=\cup_{i \geq 0} C_{i}$
where $C_{0}=F$ and $C_{i+1}=C_{i} \cup \operatorname{pre}\left(C_{i}\right)$ for every $i \geq 0$
If convergence fails, try to compute an acceleration :
a sequence $D_{0} \subseteq D_{1} \subseteq D_{2} \ldots$ such that
(a) $\forall i \geq 0: C_{i} \subseteq D_{i}$
(b) $\forall i \geq 0: D_{i} \subseteq \cup_{j \geq 0} C_{j}=\operatorname{pre}(F)$

Property (a) ensures capture of (at least) the whole set pre(F)
Property (b) ensures that only elements of $\operatorname{pre}(F)$ are captured
The acceleration guarantees termination if
(c) $\exists i \geq 0: D_{i+1}=D_{i}$

An acceleration for pushdown systems

Idea: reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

$\rightarrow p_{1}$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

An acceleration for pushdown systems

Idea: try to reuse the same states

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

But does it work . . . ?

All predecessors are computed, and termination guaranteed
But: we might be adding non-predecessors

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

But does it work . . . ?

All predecessors are computed, and termination guaranteed
But: we might be adding non-predecessors

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

But does it work . . . ?

All predecessors are computed, and termination guaranteed
But: we might be adding non-predecessors

$$
\Delta=\left\{\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle,\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle\right\}
$$

Fortunately: correct if initial states have no incoming arcs

Repeated reachability for pushdown systems

Let $I=\left\langle p_{0}, \gamma_{0}\right\rangle$ and $F=\left\langle p, \Gamma^{*}\right\rangle$
F can be repeatedly reached from / iff

$$
\begin{gathered}
\left\langle p_{0}, \gamma_{0}\right\rangle \longrightarrow^{*}\left\langle p^{\prime}, \gamma w\right\rangle \\
\text { and } \\
\left\langle p^{\prime}, \gamma\right\rangle \longrightarrow^{*}\langle p, v\rangle \longrightarrow^{*}\left\langle p^{\prime}, \gamma u\right\rangle
\end{gathered}
$$

for some $p^{\prime}, \gamma, w, v, u$

Repeated reachability can be reduced to computing several pre*

Applications

Algorithms for pre* and post* developed in [E. et al., CAV'00, CAV'01]
BDD technology to deal with variables
Implemented in the Moped model-checker
Used as replacement of Bebop in the SLAM project
Experimental results (by Schwoon) on

Test suite of 64 C-programs

Four drivers with between 2200 and 7600 lines of code

A serial driver with 27000 lines of code
For the drivers: locking-unlocking properties checked or bugs found in between 1 and 2 minutes

A general acceleration framework

Compute a symbolic reachability graph with elements of \mathcal{C} as nodes:

Add I as first node
For each node C and each transition t, add an edge $C \xrightarrow{t} \operatorname{post}[t](C)$

Replace $C \xrightarrow{\sigma} \operatorname{post}[\sigma](C)$ by $C \xrightarrow{\sigma} X$, where X satisfies
(1) $\operatorname{post}[\sigma](C) \subseteq X$, and
(2) X contains only reachable configurations

Acceleration through loops

A loop is a sequence $C \xrightarrow{\sigma} \operatorname{post}[\sigma](C)$ such that

$$
C \xrightarrow{\sigma} \operatorname{post}[\sigma](C) \xrightarrow{\sigma} \operatorname{post}\left[\sigma^{2}\right](C) \xrightarrow{\sigma} \operatorname{post}\left[\sigma^{3}\right](C) \ldots
$$

Examples: $c \xrightarrow{\sigma} c^{\prime} \geq c$ in broadcast protocols

$$
\langle p, \gamma\rangle \xrightarrow{\sigma}\langle p, \gamma v\rangle \text { in pushdown systems }
$$

Acceleration: given a loop $C \xrightarrow{\sigma} \operatorname{post}[\sigma](C)$, replace $\operatorname{post}[\sigma](C)$ by

$$
X=\operatorname{post}\left[\sigma^{*}\right](C)=C \cup \operatorname{post}[\sigma](C) \cup \operatorname{post}\left[\sigma^{2}\right](C) \cup \ldots
$$

Problem: find a suitable class of loops such that post $\left[\sigma^{*}\right](C)$ belongs to \mathcal{C}

Other models

Counter machines [Boigelot and Wolper, CAV'94, LNCS 818]
Configuration: pair (q, n_{1}, \ldots, n_{k}), where q state n_{1}, \ldots, n_{k} integers
Family \mathcal{C} : Presburger sets
Suitable loops: syntactically defined
FIFO-automata with lossy channels [Abdulla et al, CAV'98, LNCS 1427]
Configuration: pair (q, w), where s state and w vector of words representing the contents of the queues
Family \mathcal{C} : regular sets represented by simple regular expressions
Suitable loops: any

FIFO-automata with perfect channels [Boigelot and Godefroid, CAV'96, LNCS 1102], [Bouajjani and Habermehl, ICALP'97, LNCS 1256]

Arrays of parallel processes [Bouajjani et al, CAV'00, LNCS 1855]

Widenings

Accurate widenings
Replace $C \xrightarrow{\sigma} \operatorname{post}[a](C)$ by $C \xrightarrow{\sigma} X$, where X satisfies
(1) $\operatorname{post}[a](C) \subseteq X$, and
(2') X contains only reachable final configurations
Notice that X may contain unreachable non-final configurations!

Inaccurate widenings
Replace $C \xrightarrow{\sigma} \operatorname{post}[a](C)$ by $C \xrightarrow{\sigma} X$, where X satisfies
(1) $\operatorname{post}[a](C) \subseteq X$

If no configuration of the graph belongs to F, then no reachable configuration belongs to F

If some configuration of the graph belongs to F, no information is gained

Accurate widenings in broadcast protocols

Fact: $\operatorname{post}[\sigma](p)=T_{\sigma}(p)$ for a linear transformation $T_{\sigma}(p)=M_{\sigma} \cdot x+b_{\sigma}$

It follows: $\operatorname{post}\left[\sigma^{*}\right](p)=\cup_{n \geq 0} T_{\sigma}^{n}(p)$

However, post $\left[\sigma^{*}\right](p)$ may not be a parametric configuration

Accurate widening: widen $\operatorname{post}\left[\sigma^{*}\right](p)$ to $\operatorname{lub}\left\{T_{\sigma}^{n}(p) \mid n \geq 0\right\}$

Theorem: if the set F is upward-closed, this widening is accurate

Does widening lead to termination?

For arbitrary broadcast protocols: NO! [E. et al, LICS'99]
Example in which the acceleration doesn't have any effect:

For rendezvous communication only: YES [Karp and Miller '69], [German and Sistla, JACM 39(3), 1992]

Conclusions

Decidability analysis very advanced

Many algorithms useful in practice
Many prototype implementations, some tools

The ADVANCE project:
Advanced Verification Techniques for Telecommunication Protocols
Challenges:
systems with several sources of infinity (automata-theoretic techniques)
connection to program analysis

