Computation of Certificate Chains with Alternating Pushdown Systems

Javier Esparza

Institute for Formal Methods in Computer Science
University of Stuttgart
Joint work with Stefan Schwoon and Dejvuth Suwimonteerabuth
A bit of history

1997: Bouajjani, E., Maler study the reachability problem of pushdown systems (PDS), and alternating pushdown systems (APDS).

- Very simple polynomial algorithm for PDS.
 Efficiency improved by E., Hansel, Rossmanith, Schwoon in 2000.
- Straightforward extension leads to exponential algorithm for APDS.

1999: Ellison et al. introduce SPKI/SDSI, an authorization framework.

- Security policy given by a set of certificates or certs $P \rightarrow G$: Principal P delegates his/her rights to a group of principals G.
- Proof of authorization by means of a cert chain from authoriser to authorized principal.

2002: Jha and Reps model SPKI/SDSI as PDSs.

- Computation of cert chains reduced to the reachability problem.
Threshold certs

The SPKI/SDSI standard allows for threshold certs $P \rightarrow (G_1, \ldots, G_n, k)$:

Principal P delegates his/her rights to all principals that belong to at least k of the groups G_1, \ldots, G_n.

Jha and Reps remark that SPKI/SDSI with threshold certs can be naturally modelled by APDS.

This paper: (1) Improves the efficiency of the exponential algorithm for APDS.

(2) Gives an efficient polynomial algorithm for APDSs modelling SPKI/SDSI with threshold certs.

The talk concentrates on (2): Background on (A)PDS and SPKI/SDS, result, experiments.
Pushdown systems

A pushdown system (PDS) is a triple \((P, \Gamma, \Delta)\), where

- \(P\) is a finite set of control locations
- \(\Gamma\) is a finite stack alphabet
- \(\Delta \subseteq (P \times \Gamma) \times (P \times \Gamma^*)\) is a finite set of rules

A configuration is a pair \(\langle p, \nu \rangle\), where \(p \in P\), \(\nu \in \Gamma^*\)

If \(\langle p, \gamma \rangle \rightarrow \langle p', \nu \rangle \in \Delta\) then \(\langle p, \gamma w \rangle \rightarrow \langle p', \nu w \rangle\) for every \(w \in \Gamma^*\)

Normalization: \(|\nu| \leq 2\)

For \(c, c'\) configurations: \(c'\) is reachable from \(c\) if \(c \rightarrow c_1 \rightarrow \cdots \rightarrow c_n \rightarrow c'\)
Alternating pushdown systems

An alternating pushdown system (APDS) is a triple \((P, \Gamma, \Delta)\), where

- \(P\) is a finite set of control locations
- \(\Gamma\) is a finite stack alphabet
- \(\Delta \subseteq \mathcal{P}(P \times \Gamma) \times (P \times \Gamma^*)\) is a finite set of rules

A configuration is a pair \(\langle p, v \rangle\), where \(p \in P\), \(v \in \Gamma^*\)

If \(\langle p, \gamma \rangle \leftarrow \{\langle p_1, v_1 \rangle, \ldots, \langle p_n, v_n \rangle\} \in \Delta\) then \(\langle p, \gamma w \rangle \rightarrow \{\langle p_1, v_1 w \rangle, \ldots, \langle p_n, v_n w \rangle\}\) for every \(w \in \Gamma^*\)

\(\{c_1, \ldots, c_k\} \rightarrow C\) if \(c_1 \rightarrow C_1, \ldots, c_k \rightarrow C_k\) and \(C = C_1 \cup \ldots \cup C_k\)

Normalization: \(|v_i| \leq 2\) and \(n \leq 2\)

For \(C, C'\) sets of confs: \(C'\) is reachable from \(C\) if \(C \rightarrow C_1 \rightarrow \ldots \rightarrow C_n \rightarrow C'\)
BEM’s reachability algorithm for PDSs

Key problem: given a set of configurations C, compute the set of its predecessors/successors

Symbolic representation: use finite automata to represent regular sets of configurations

Polynomial saturation algorithms working on the symbolic representation

$$P = \{p_0, p_1\}, \Gamma = \{X, Y\}, \Delta = \{p_0X \leftarrow p_0, p_1Y \leftarrow p_0, p_1 Y \leftarrow p_1 YX\}$$

$$\langle p_0, XY^*X \rangle \cup \langle p_1, Y \rangle \quad \text{pre}^*(\langle p_0, XY^*X \rangle \cup \langle p_1, Y \rangle)$$
Extension to APDS

Symbolic representation using alternating finite automata

- Transitions of the form $q \xrightarrow{a} Q$
- w accepted if $\{q_0\} \xrightarrow{w} Q$ for some $Q \subseteq F$

Exponential saturation algorithms working on the symbolic representation

Observe:

- a finite automaton with n states and m alphabet letters can have at most $n \cdot m \cdot n = n^2 \cdot m$ transitions.
- an alternating automaton can have $n \cdot 2^n \cdot m$ transitions.

Theorem: The reachability problem for APDS is EXPTIME-complete
Simple SPKI/SDSI

A set of principals identified by their public keys: K_{Alice}, K_{CS}, K_{Uni}

A set of names to describe rôles: prof, student

A set of name certs to describe relations:

$K_{CS\ prof} \rightarrow K_{Alice}$ (Alice is CS prof)

$K_{Uni\ prof} \rightarrow K_{CS\ prof}$ (All CS profs are uni. profs)

A set of authorization certs to grant or delegate rights.

Read K_P ■ as set of rights that P owns

Read K_P □ as set of rights that P owns and can delegate

$K_{Money} \ □ \rightarrow K_{Uni\ prof}$ ■ (Delegation)

$K_{Money} \ □ \rightarrow K_{Uni\ prof}$ □ (“Recursive” delegation)

Normalization: at most 2 names in right-hand-side
Proof of authorization by cert chains:

\[K_{\text{Money}} \square \implies K_{\text{Uni prof}} \blacksquare \implies K_{\text{CS prof}} \blacksquare \implies K_{\text{Alice}} \blacksquare \]

Strong analogy between simple SPKI/SDSI systems and pushdown automata:

- principals’ keys \(\sim \) states
- names + \{\blacksquare, \square\} \(\sim \) stack symbols
- certs \(\sim \) rules
- certificate chains \(\sim \) computations

Principal \(K_P \) has access to resource \(K_R \) equivalent to:
\(K_P \blacksquare \) or \(K_P \square \) are reachable from \(K_R \square \)
SPKI/SDSI with threshold certificates

Threshold authorization certificates (part of the SPKI/SDSI standard):
Delegate rights to profs that belong to at least k faculties.

$$K_{Money} \square \rightarrow (K_{F_1} \text{ prof } \square, K_{F_2} \text{ prof } \blacksquare, \ldots, K_{F_n} \text{ profs } \square, k)$$

Threshold name certificates (not part of the standard):
Declare students that study at least k CS-subjects as CS-students:

$$K_{CS \text{ student}} \rightarrow (K_{sub_1} \text{ student}, \ldots, K_{sub_n} \text{ student}, k)$$

Certificates for $k = n$ correspond to alternating pushdown rules

$$K_{Money} \square \rightarrow \{ K_{F_1} \text{ prof } \square, K_{F_2} \text{ prof } \blacksquare, \ldots, K_{F_n} \text{ prof } \square \}$$

Normalization: $n = k = 2$ (possible blowup).
Complexity of the authorization problem I

Theorem:

Let n, c_0, c_1, c_2 as before.

Let c_{ta} be the number of threshold authorization certs

Let c_{tn} be the number of threshold name certs

The authorization problem for SPKI/SDSI with both threshold authorization and threshold name certs is EXPTIME-complete and can be solved in time

$$O(c_0 + c_{ta} + 2^n c_1 + 4^n (n c_2 + c_{tn}))$$

Ellison et al., 1999: “The reason that a threshold subject may not appear in a name cert is . . . which would almost surely be too convoluted to be usable in practice.”
Theorem: The authorization problem for SPKI/SDSI with only threshold authorization certs can be solved in time

\[O(c_0 + c_{ta} + n c_1 + n^2 c_2) \]

Idea of the proof: In this case the saturation algorithm cannot add any alternating rules to the initial alternating automaton.

Coincides with best known algorithm for simple SPKI/SDSI when \(c_{ta} = 0 \).
Implementation and experiments

Algorithm implemented on top of the NEXUS platform for context-aware systems

- NEXUS provides middleware to obtain context data (e.g. geographical neighbours) about mobile objects registered at the platform

Scenario: Trade fair

- Visitors move around the exhibition halls
- Mobile phones used to obtain visitors’ locations
- Company X launches a promotion: customers of X can freely download ringtones if they visit X’s stand, and can authorize another person of their choice.

For this, X’s manager only needs to add the certificate

\[
K_{ring} \square \rightarrow \{ Stand_X \ visitor \ \square , K_X \ customer \ \square \}
\]
Experiments:

- Some thousands of visitors and about 100 hierarchically organized stands
- Database queries and data transmission simulated by opening and closing files
- Between 25 and 500 milliseconds to grant/reject access for realistic values of the parameters.
Summary

Algorithm for reachability in APDS with detailed complexity analysis

Application to SPKI/SDSI’s threshold certs

Efficient polynomial algorithm for SPKI/SDSI’s standard

Theoretical support for design choice to leave threshold name certs out

Implementation on top of a platform for context-aware systems

Promising experimental results

Also in the paper: more efficient algorithm for computing attractors in PDS games (inspired by Cachat’s work).