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Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?
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Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .
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• Initially: all ninjas active, estimation = own vote.
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Deaf Black Ninjas in the Dark

Goal of voting protocol:

• eventually all ninjas reach the same
estimation, and

• this estimation corresponds to the majority.

Graphically:

• Initially more red ninjas =⇒
eventually all ninjas red.

• Initially more blue ninjas or tie =⇒
eventually all ninjas blue.
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Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Go!
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Sad story …



Sensei II



Majority protocol: Why?

• The first rule has no priority over the other
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Majority protocol: Why?

• The first rule has no priority over the other
two.

NO CONSENSUS!
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Sensei II Go!
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Sensei II’s protocol: Are theremore redninjas thanblueninjas?
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Very sad story …



Sensei III



Sensei III’s protocol

= Attack majority = Don’t attack majority = Tie

Interaction rules: Go!

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html


Sensei III’s protocol
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Sensei III’s questions

Formalization questions:

• What is a protocol ?
• When is a protocol ``correct''?
• When is a protocol ``efficient''?



Sensei III’s questions

Verification questions:

• How do I check that my protocol is
correct ?

• How do I check that my protocol is
efficient ?



Sensei III’s questions

Expressivity questions:
• Are there protocols for other
problems?

• How large is the smallest protocol
for a problem?

• And the smallest efficient protocol?



Population protocols Angluin, Aspnes et al. PODC’04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile
sensors

people in social networks

“soups” of molecules
(Chemical Reaction Networks)

…and ninjas!
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• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N
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Population protocols: formal model Angluin, Aspnes et al. PODC’04

( 2 5 0 0 )

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N



Population protocols: runs

Reachability graph for (3, 2,0,0):



Population protocols: runs

Underlying Markov chain:
(pairs of agents are picked uniformly at random)
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Population protocols: runs

Run : infinite path from initial configuration
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Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1 1

C2

1

. . .
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C0

0 0

C1

1 1

C2

1

. . .

Protocol computes φ(C0) = 0, φ(C1) = 1, φ(C2) = 1, . . .
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Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1

C2

1

. . .

Protocol ill defined for C1 (Sensei I’s problem)



Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate φ is correct if
it computes φ (in particular, correct
protocols are well specified)
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A protocol is well specified if it
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A protocol for a predicate φ is correct if
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protocols are well specified)



Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)



Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates
Since Presburger arithmetic has quantifier elimination,
it suffices to:

• Exhibit PPs for threshold and modulo predicates

a1x1 + · · ·+ ancn ≤ b a1x1 + · · ·+ ancn ≡ b (mod c)

• Prove that computable predicates are closed under
negation and conjunction
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Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Other variants considered:

• Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC’07

• Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput.’08

• Protocols with failures Delporte-Gallet et al. DCOSS’06

• Trustful protocols Bournez, Lefevre, Rabie DISC’13

• Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS’11



Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …
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Depends on the population size n

In a natural model: expected (parallel) time to
consensus satisfies

Time(n) = Inter(n)/n
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To conclude …



Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?

• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4
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Sensei III’s questions: Succinctness–An Example

Protocol for: Are there at least 2ℓ sick ninjas?

• Each ninja is in a
state of
{0, 1, . . . , 2ℓ − 1, 2ℓ}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 2ℓ

• (m,n) 7→ (2ℓ, 2ℓ)
if m+ n ≥ 2ℓ

• Each ninja is in a
state of {0, 20, . . . , 2ℓ−1, 2ℓ}

• Initially, sick ninjas in
state 20, healthy ninjas
in state 0

• (2m, 2m) 7→ (2m+1,0)
if m+ 1 ≤ ℓ

• (2ℓ,n) 7→ (2ℓ, 2ℓ)

• Can be generalized to
non-powers of 2
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Is O(log log c) possible?
Not for every c …
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X ≥ c has at least (log c)1/4 states
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For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Proof:

• Mayr and Meyer ’82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word α leading from s to t (i.e., t = sα) has
length |α| ≥ 22n

• Construct a protocol that “simulates” derivations in the
semigroup
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Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Checking correctness

Protocols can become complex, even forB ≥ R:



Checking correctness

Protocols can become complex, even forB ≥ R:

How can we verify

correctness
automatically?



Checking correctness—Early days

Model checkers:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes
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Checking correctness—Decidability Acta Inf.’17

E., Ganty, Leroux, Majumdar Acta Inf.’17
It is decidable if a population protocol is well specified
(i.e., if it computes some predicate).
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→ Presburger

Leroux ’11:
Effectively semilinear
→ effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
⇒ Reduction to the VAS reachability problem (VAS engineering)
⇒ Decidable (Mayr ’81, Kosaraju ‘83).
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Blondin, E., Jaax, Meyer , PODC’17

The class of strongly silent protocols is
complete, and its verification problem is in DP.

Mission accomplished?

Not yet. For some predicates no strongly silent
succinct protocols are known.



Checking correctness—Feasibility PODC’17

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol Predicate |Q| |T| Time[s]
Majority[1] x ≥ y 4 4 0.1
Approx. Majority[2] Not well-specified 3 4 0.1
Broadcast[3] x1 ∨ . . . ∨ xn 2 1 0.1
Threshold[4] Σiαixi < c 76 2148 2375.9
Remainder[5] Σiαixi mod 70 = 1 72 2555 3176.5
Sick ninjas[6] x ≥ 50 51 1275 181.6
Sick ninjas[7] x ≥ 325 326 649 3470.8
Poly-log sick ninjas x ≥ 8 · 104 66 244 12.79

[1] Draief et al., 2012 [2] Angluin et al., 2007 [3] Clément et al., 2011
[4][5] Angluin et al., 2006 [6] Chatzigiannakis et al., 2010 [7] Clément et al., 2011



Checking correctness—Feasibility PODC’17

Blondin, E., Jaax, Meyer , PODC’17

The class of strongly silent protocols is
complete, and its verification problem is in DP.

Mission accomplished?

Not yet. For some predicates no strongly silent
succinct protocols are known.



Checking correctness—Feasibility PODC’17

Blondin, E., Jaax, Meyer , PODC’17

The class of strongly silent protocols is
complete, and its verification problem is in DP.

Mission accomplished?

Not yet. For some predicates no strongly silent
succinct protocols are known.



Checking correctness—Feasibility PODC’17

A class P of protocols is complete and succinct
if for every Presburger predicate φ some
protocol in P with log(|φ|) states computes φ

A class P of protocols is complete and efficient
if for every Presburger predicate φ some
protocol in P computes φ in O(n2 log n) time.
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and efficient? Open
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…and for a complete and efficient
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How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …



Checking expected termination time Blondin, E., Kucera CONCUR’18

Our approach:

• Most protocols are naturally designed in stages

• Construct these stages automatically

• Derive upper bounds on Inter(n) from
stages structure
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B,R 7→ b,b

B, r 7→ B,b

R,b 7→ R, r

b, r 7→ b,b

(B ∨ R) ∧
∧

q ̸∈{B,R}

¬q

�

B ∧
∧
q ̸=B

¬q

 �

R ∧
∧
q ̸=R

¬q

 �(¬B ∨ ¬R) ∧ b ∧ ¬b!

�(¬B ∧ ¬R ∧ b ∧ ¬r) �(B ∧ ¬R ∧ b ∧ ¬r) �(¬B ∧ R ∧ ¬b ∧ r)

O(1)
O(1)

O(n2 log n)

O(n2 log n)

O(n2 log n)
O(exp(n))
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• Prototype implemented in +
Microsoft Z3

• Can report: O(1),O(n2),O(n2 log n),O(n3),O(poly(n))
or O(exp(n))

• Decidability of checking Inter(n) ≥ f(n) ?
Open
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Peregrine: a tool for population protocols Blondin, E., Jaax CAV’18

Peregrine: + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

• Design of protocols

• Manual and automatic simulation

• Statistics of properties such as termination time

• Automatic verification of correctness

• More to come!



Conclusion

Population protocols are a great model to
study fundamental questions of distributed
computation:

• Power of anonymous computation
• Network-independent algorithms
• Role of leaders
• Emergent behaviour and its limits



Conclusion

…and of formal verification:

• Verification of stochastic parameterized
systems (parameterization, liveness under
fairness)

• Automatic synthesis of parameterized
systems



Join the team!

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

• Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

• Start of the project: Sept. 1, 2018

• Start of employment: flexible, from Sept. 1, 2018
to about Sept. 1, 2019
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