
Black Ninjas in the Dark:
Formal Analysis of Population Protocols

Javier Esparza
Joint work with Michael Blondin, Pierre Ganty, Stefan Jaax, Antonín
Kučera, Jérôme Leroux, Rupak Majumdar, Philipp J. Meyer, and Chana
Weil-Kennedy

Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?

Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?

Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?

Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet
at a Zen garden in the
dark

• They must decide by
majority to attack or not
(no attack if tie)

• How can they conduct
the vote?

Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .

attack
active

don’t attack
active

attack
passive

don’t attack
passive

• Initially: all ninjas active, estimation = own vote.

Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .

attack
active

don’t attack
active

attack
passive

don’t attack
passive

• Initially: all ninjas active, estimation = own vote.

Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .

attack
active

don’t attack
active

attack
passive

don’t attack
passive

• Initially: all ninjas active, estimation = own vote.

Deaf Black Ninjas in the Dark

• Ninjas wander randomly, interacting when they
bump into each other.

• Ninjas store their current estimation of the final
outcome: attack or don’t attack.

• Additionally, they are active or passive .

attack
active

don’t attack
active

attack
passive

don’t attack
passive

• Initially: all ninjas active, estimation = own vote.

Deaf Black Ninjas in the Dark

Goal of voting protocol:

• eventually all ninjas reach the same
estimation, and

• this estimation corresponds to the majority.

Graphically:

• Initially more red ninjas =⇒
eventually all ninjas red.

• Initially more blue ninjas or tie =⇒
eventually all ninjas blue.

Deaf Black Ninjas in the Dark

Goal of voting protocol:

• eventually all ninjas reach the same
estimation, and

• this estimation corresponds to the majority.

Graphically:

• Initially more red ninjas =⇒
eventually all ninjas red.

• Initially more blue ninjas or tie =⇒
eventually all ninjas blue.

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Majority protocol: Are there more red ninjas than blue ninjas?

• Active ninjas of opposite
colors become passive
and blue

• Active ninjas convert
passive ninjas to their
color

Go!

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example1.html

Sad story …

Sensei II

Majority protocol: Why?

• The first rule has no priority over the other
two.

Majority protocol: Why?

• The first rule has no priority over the other
two.

Majority protocol: Why?

• The first rule has no priority over the other
two.

Majority protocol: Why?

• The first rule has no priority over the other
two.

Majority protocol: Why?

• The first rule has no priority over the other
two.

Majority protocol: Why?

• The first rule has no priority over the other
two.

Majority protocol: Why?

• The first rule has no priority over the other
two.

Majority protocol: Why?

• The first rule has no priority over the other
two.

NO CONSENSUS!

Sensei II’s protocol: Are theremore redninjas thanblueninjas?

Interaction rules:

Passive blue ninjas convert
passive red ninjas to their
color

Sensei II

Sensei II’s protocol: Are theremore redninjas thanblueninjas?

Interaction rules:

Passive blue ninjas convert
passive red ninjas to their
color

Sensei II

Sensei II’s protocol: Are theremore redninjas thanblueninjas?

Interaction rules:

Passive blue ninjas convert
passive red ninjas to their
color

Sensei II

Sensei II’s protocol: Are theremore redninjas thanblueninjas?

Interaction rules:

Passive blue ninjas convert
passive red ninjas to their
color

Sensei II

Sensei II’s protocol: Are theremore redninjas thanblueninjas?

Interaction rules:

Passive blue ninjas convert
passive red ninjas to their
color

Sensei II Go!

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example2.html

Sensei II’s protocol: Are theremore redninjas thanblueninjas?

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

103

105

107

Initial number of red ninjas

Ex
pe
ct
ed

nu
m
be
ro
fs
te
ps Sensei I

Sensei II

Expected number of steps to stable consensus
for a population of 15 ninjas.

Very sad story …

Sensei III

Sensei III’s protocol

= Attack majority = Don’t attack majority = Tie

Interaction rules: Go!

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

Sensei III’s protocol

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

103

105

107

Initial number of red ninjas

Ex
pe
ct
ed

nu
m
be
ro
fs
te
ps Sensei I

Sensei II
Sensei III

Expected number of steps to stable consensus
for a population of 15 ninjas.

Sensei III’s questions

Formalization questions:

• What is a protocol ?
• When is a protocol ``correct''?
• When is a protocol ``efficient''?

Sensei III’s questions

Verification questions:

• How do I check that my protocol is
correct ?

• How do I check that my protocol is
efficient ?

Sensei III’s questions

Expressivity questions:
• Are there protocols for other
problems?

• How large is the smallest protocol
for a problem?

• And the smallest efficient protocol?

Population protocols Angluin, Aspnes et al. PODC’04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile
sensors

people in social networks

“soups” of molecules
(Chemical Reaction Networks)

…and ninjas!

Population protocols Angluin, Aspnes et al. PODC’04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile
sensors

people in social networks

“soups” of molecules
(Chemical Reaction Networks)

…and ninjas!

Population protocols Angluin, Aspnes et al. PODC’04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile
sensors

people in social networks

“soups” of molecules
(Chemical Reaction Networks)

…and ninjas!

Population protocols Angluin, Aspnes et al. PODC’04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile
sensors

people in social networks

“soups” of molecules
(Chemical Reaction Networks)

…and ninjas!

Population protocols Angluin, Aspnes et al. PODC’04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile
sensors

people in social networks

“soups” of molecules
(Chemical Reaction Networks)

…and ninjas!

Population protocols: formal model Angluin, Aspnes et al. PODC’04

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N

Population protocols: formal model Angluin, Aspnes et al. PODC’04

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N

Population protocols: formal model Angluin, Aspnes et al. PODC’04

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N

Population protocols: formal model Angluin, Aspnes et al. PODC’04

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N

Population protocols: formal model Angluin, Aspnes et al. PODC’04

(2 5 1 3)

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N

Population protocols: formal model Angluin, Aspnes et al. PODC’04

(2 5 0 0)

• States: finite set Q
• Opinions: O : Q→ {0, 1}
• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N

Population protocols: runs

Reachability graph for (3, 2,0,0):

Population protocols: runs

Underlying Markov chain:
(pairs of agents are picked uniformly at random)

2
10

2
10

6
10

1
10

4
10

4
10

4
10

6
10

4
10

4
10

6
10

10
10

6
10

2
10

4
10

3
10

2
10

Population protocols: runs

Run : infinite path from initial configuration

2
10

2
10

6
10

1
10

4
10

4
10

4
10

6
10

4
10

4
10

6
10

10
10

6
10

2
10

4
10

3
10

2
10

Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1 1

C2

1

. . .

Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1 1

C2

1

. . .

Protocol computes φ(C0) = 0, φ(C1) = 1, φ(C2) = 1, . . .

Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1 0

C2

1

. . .

Protocol ill defined for C1

Population protocols: computing predicates

Protocol computes φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C
reach stable consensus φ(C) with probability 1.

C0

0 0

C1

1

C2

1

. . .

Protocol ill defined for C1 (Sensei I’s problem)

Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate φ is correct if
it computes φ (in particular, correct
protocols are well specified)

Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate φ is correct if
it computes φ (in particular, correct
protocols are well specified)

Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates
Since Presburger arithmetic has quantifier elimination,
it suffices to:

• Exhibit PPs for threshold and modulo predicates

a1x1 + · · ·+ ancn ≤ b a1x1 + · · ·+ ancn ≡ b (mod c)

• Prove that computable predicates are closed under
negation and conjunction

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates
Since Presburger arithmetic has quantifier elimination,
it suffices to:

• Exhibit PPs for threshold and modulo predicates

a1x1 + · · ·+ ancn ≤ b a1x1 + · · ·+ ancn ≡ b (mod c)

• Prove that computable predicates are closed under
negation and conjunction

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates
Since Presburger arithmetic has quantifier elimination,
it suffices to:

• Exhibit PPs for threshold and modulo predicates

a1x1 + · · ·+ ancn ≤ b a1x1 + · · ·+ ancn ≡ b (mod c)

• Prove that computable predicates are closed under
negation and conjunction

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates

• Much harder!

• Dist. Comp.’07 proof is “non-constructive”
• “Constructive” proof by E., Ganty, Leroux, Majumdar
Acta Inf.’17

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates

• Much harder!
• Dist. Comp.’07 proof is “non-constructive”

• “Constructive” proof by E., Ganty, Leroux, Majumdar
Acta Inf.’17

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates

• Much harder!
• Dist. Comp.’07 proof is “non-constructive”
• “Constructive” proof by E., Ganty, Leroux, Majumdar
Acta Inf.’17

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Other variants considered:

• Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC’07

• Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput.’08

• Protocols with failures Delporte-Gallet et al. DCOSS’06

• Trustful protocols Bournez, Lefevre, Rabie DISC’13

• Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS’11

Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …

Efficiency

Efficiency measured by the expected number
of interactions until stable consensus: Inter(n)

Depends on the population size n

In a natural model: expected (parallel) time to
consensus satisfies

Time(n) = Inter(n)/n

Efficiency

Efficiency measured by the expected number
of interactions until stable consensus: Inter(n)

Depends on the population size n

In a natural model: expected (parallel) time to
consensus satisfies

Time(n) = Inter(n)/n

Efficiency

Efficiency measured by the expected number
of interactions until stable consensus: Inter(n)

Depends on the population size n

In a natural model: expected (parallel) time to
consensus satisfies

Time(n) = Inter(n)/n

Efficiency

Angluin, Aspnes et al. , PODC’04
Every Presburger predicate is computable by a protocol
with Inter(n) ∈ O(n2 log n)

Angluin, Aspnes, Eisenstat Dist.Comp.’08
Every Presburger predicate is computable by a protocol
with a leader and Inter(n) ∈ O(n logO(1)(n))

Open whether O(n logO(1)(n)) achievable
without leaders.

Efficiency

Angluin, Aspnes et al. , PODC’04
Every Presburger predicate is computable by a protocol
with Inter(n) ∈ O(n2 log n)

Angluin, Aspnes, Eisenstat Dist.Comp.’08
Every Presburger predicate is computable by a protocol
with a leader and Inter(n) ∈ O(n logO(1)(n))

Open whether O(n logO(1)(n)) achievable
without leaders.

Efficiency

Angluin, Aspnes et al. , PODC’04
Every Presburger predicate is computable by a protocol
with Inter(n) ∈ O(n2 log n)

Angluin, Aspnes, Eisenstat Dist.Comp.’08
Every Presburger predicate is computable by a protocol
with a leader and Inter(n) ∈ O(n logO(1)(n))

Open whether O(n logO(1)(n)) achievable
without leaders.

Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?

• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

Succinctness–An Example

Protocol for: Are there at least 4 sick ninjas?
• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

Sensei III’s questions: Succinctness–An Example

Protocol for: Are there at least 2ℓ sick ninjas?

• Each ninja is in a
state of
{0, 1, . . . , 2ℓ − 1, 2ℓ}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 2ℓ

• (m,n) 7→ (2ℓ, 2ℓ)
if m+ n ≥ 2ℓ

• Each ninja is in a
state of {0, 20, . . . , 2ℓ−1, 2ℓ}

• Initially, sick ninjas in
state 20, healthy ninjas
in state 0

• (2m, 2m) 7→ (2m+1,0)
if m+ 1 ≤ ℓ

• (2ℓ,n) 7→ (2ℓ, 2ℓ)

• Can be generalized to
non-powers of 2

Sensei III’s questions: Succinctness–An Example

Protocol for: Are there at least 2ℓ sick ninjas?

• Each ninja is in a
state of
{0, 1, . . . , 2ℓ − 1, 2ℓ}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 2ℓ

• (m,n) 7→ (2ℓ, 2ℓ)
if m+ n ≥ 2ℓ

• Each ninja is in a
state of {0, 20, . . . , 2ℓ−1, 2ℓ}

• Initially, sick ninjas in
state 20, healthy ninjas
in state 0

• (2m, 2m) 7→ (2m+1,0)
if m+ 1 ≤ ℓ

• (2ℓ,n) 7→ (2ℓ, 2ℓ)

• Can be generalized to
non-powers of 2

Sensei III’s questions: Succinctness–An Example

Protocol for: Are there at least 2ℓ sick ninjas?

• Each ninja is in a
state of
{0, 1, . . . , 2ℓ − 1, 2ℓ}

• Initially, sick ninjas
in state 1, healthy
ninjas in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 2ℓ

• (m,n) 7→ (2ℓ, 2ℓ)
if m+ n ≥ 2ℓ

• Each ninja is in a
state of {0, 20, . . . , 2ℓ−1, 2ℓ}

• Initially, sick ninjas in
state 20, healthy ninjas
in state 0

• (2m, 2m) 7→ (2m+1,0)
if m+ 1 ≤ ℓ

• (2ℓ,n) 7→ (2ℓ, 2ℓ)
• Can be generalized to
non-powers of 2

Succinctness

Just gave a protocol for X ≥ c with O(log c) states.

Is O(log log c) possible?
Not for every c …

Blondin, E., Jaax STACS’18
There exist infinitely many c such that every protocol for
X ≥ c has at least (log c)1/4 states

…but for some c, if we allow leaders:

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Succinctness

Just gave a protocol for X ≥ c with O(log c) states.

Is O(log log c) possible?

Not for every c …

Blondin, E., Jaax STACS’18
There exist infinitely many c such that every protocol for
X ≥ c has at least (log c)1/4 states

…but for some c, if we allow leaders:

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Succinctness

Just gave a protocol for X ≥ c with O(log c) states.

Is O(log log c) possible?
Not for every c …

Blondin, E., Jaax STACS’18
There exist infinitely many c such that every protocol for
X ≥ c has at least (log c)1/4 states

…but for some c, if we allow leaders:

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Succinctness

Just gave a protocol for X ≥ c with O(log c) states.

Is O(log log c) possible?
Not for every c …

Blondin, E., Jaax STACS’18
There exist infinitely many c such that every protocol for
X ≥ c has at least (log c)1/4 states

…but for some c, if we allow leaders:

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Succinctness

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Proof:

• Mayr and Meyer ’82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word α leading from s to t (i.e., t = sα) has
length |α| ≥ 22n

• Construct a protocol that “simulates” derivations in the
semigroup

Succinctness

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Proof:

• Mayr and Meyer ’82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word α leading from s to t (i.e., t = sα) has
length |α| ≥ 22n

• Construct a protocol that “simulates” derivations in the
semigroup

Succinctness

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log c) states that computes X ≥ c

Proof:

• Mayr and Meyer ’82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word α leading from s to t (i.e., t = sα) has
length |α| ≥ 22n

• Construct a protocol that “simulates” derivations in the
semigroup

Succinctness

O(log log c) without leaders?

Open

And O(log log log c)? Open

O(log |φ|) states for all φ? Open

Succinctness

O(log log c) without leaders?Open

And O(log log log c)? Open

O(log |φ|) states for all φ? Open

Succinctness

O(log log c) without leaders?Open

And O(log log log c)?

Open

O(log |φ|) states for all φ? Open

Succinctness

O(log log c) without leaders?Open

And O(log log log c)? Open

O(log |φ|) states for all φ? Open

Succinctness

O(log log c) without leaders?Open

And O(log log log c)? Open

O(log |φ|) states for all φ?

Open

Succinctness

O(log log c) without leaders?Open

And O(log log log c)? Open

O(log |φ|) states for all φ? Open

Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …

Checking correctness

Protocols can become complex, even forB ≥ R:

Checking correctness

Protocols can become complex, even forB ≥ R:

How can we verify

correctness
automatically?

Checking correctness—Early days

Model checkers:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

Checking correctness—Early days

Model checkers:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

Checking correctness—Early days

Theorem provers:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

Checking correctness—Early days

Theorem provers:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!

Challenge: verifying automatically
all sizes

Checking correctness—Early days

Theorem provers:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!

Challenge: verifying automatically
all sizes

Checking correctness—Decidability Acta Inf.’17

E., Ganty, Leroux, Majumdar Acta Inf.’17
It is decidable if a population protocol is well specified
(i.e., if it computes some predicate).

Checking correctness—Decidability Acta Inf.’17

Initial confs.C0

0 0

C1

1 1

C2

1

. . .

Checking correctness—Decidability Acta Inf.’17

Initial confs.

Bottom confs.

C0

0 0

C1

1 1

C2

1

. . .

Checking correctness—Decidability Acta Inf.’17

Initial confs.

Bottom confs.

C0

0 0

C1

1 1

C2

1

. . .

Effectively Presburger set

Checking correctness—Decidability Acta Inf.’17

Initial confs.

Bottom confs.

C0

0 0

C1

1 1

C2

1

. . .

Effectively Presburger set

Eilenberg and Schützenberger ’69:
Semilinear set
→ Presburger

Checking correctness—Decidability Acta Inf.’17

Initial confs.

Bottom confs.

C0

0 0

C1

1 1

C2

1

. . .

Effectively Presburger set

Eilenberg and Schützenberger ’69:
Semilinear set
→ Presburger

Leroux ’11:
Effectively semilinear
→ effectively Presburger

Checking correctness—Decidability Acta Inf.’17

Initial confs.

Bottom confs.

C0

0 0

C1

1 1

C2

1

. . .

Effectively Presburger set

Eilenberg and Schützenberger ’69:
Semilinear set
→ Presburger

Leroux ’11:
Effectively semilinear
→ effectively Presburger

Reduction to the VAS reachability problem between Presburger sets

Checking correctness—Decidability Acta Inf.’17

Initial confs.

Bottom confs.

C0

0 0

C1

1 1

C2

1

. . .

Effectively Presburger set

Eilenberg and Schützenberger ’69:
Semilinear set
→ Presburger

Leroux ’11:
Effectively semilinear
→ effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
⇒ Reduction to the VAS reachability problem (VAS engineering)

Checking correctness—Decidability Acta Inf.’17

Initial confs.

Bottom confs.

C0

0 0

C1

1 1

C2

1

. . .

Effectively Presburger set

Eilenberg and Schützenberger ’69:
Semilinear set
→ Presburger

Leroux ’11:
Effectively semilinear
→ effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
⇒ Reduction to the VAS reachability problem (VAS engineering)
⇒ Decidable (Mayr ’81, Kosaraju ‘83).

Checking correctness—Decidability Acta Inf.’17

E., Ganty, Leroux, Majumdar Acta Inf.’17
It is decidable if a population protocol computes a given
predicate (Presburger formula).

There is an algorithm that returns the predicate computed
by a well-specified protocol.

Checking correctness—Decidability Acta Inf.’17

E., Ganty, Leroux, Majumdar Acta Inf.’17
It is decidable if a population protocol computes a given
predicate (Presburger formula).

There is an algorithm that returns the predicate computed
by a well-specified protocol.

Checking correctness—Decidability Acta Inf.’17

E., Ganty, Leroux, Majumdar Acta Inf.’17
VAS reachability is reducible to the well-specification
problem for population protocols

⇒ Well specification is EXSPACE-hard, and all known
algorithms for it have hyper-ackermannian complexity

Checking correctness—Decidability Acta Inf.’17

E., Ganty, Leroux, Majumdar Acta Inf.’17
VAS reachability is reducible to the well-specification
problem for population protocols

⇒ Well specification is EXSPACE-hard, and all known
algorithms for it have hyper-ackermannian complexity

Checking correctness—Feasibility PODC’17

A class P of protocols is complete if for every
Presburger predicate φ some protocol in P
computes φ

Goal: Find a complete class
of protocols verifiable in
reasonable time

Checking correctness—Feasibility PODC’17

A class P of protocols is complete if for every
Presburger predicate φ some protocol in P
computes φ

Goal: Find a complete class
of protocols verifiable in
reasonable time

Checking correctness—Feasibility PODC’17

Blondin, E., Jaax, Meyer , PODC’17

The class of strongly silent protocols is
complete, and its verification problem is in DP.

Mission accomplished?

Not yet. For some predicates no strongly silent
succinct protocols are known.

Checking correctness—Feasibility PODC’17

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol Predicate |Q| |T| Time[s]
Majority[1] x ≥ y 4 4 0.1
Approx. Majority[2] Not well-specified 3 4 0.1
Broadcast[3] x1 ∨ . . . ∨ xn 2 1 0.1
Threshold[4] Σiαixi < c 76 2148 2375.9
Remainder[5] Σiαixi mod 70 = 1 72 2555 3176.5
Sick ninjas[6] x ≥ 50 51 1275 181.6
Sick ninjas[7] x ≥ 325 326 649 3470.8
Poly-log sick ninjas x ≥ 8 · 104 66 244 12.79

[1] Draief et al., 2012 [2] Angluin et al., 2007 [3] Clément et al., 2011
[4][5] Angluin et al., 2006 [6] Chatzigiannakis et al., 2010 [7] Clément et al., 2011

Checking correctness—Feasibility PODC’17

Blondin, E., Jaax, Meyer , PODC’17

The class of strongly silent protocols is
complete, and its verification problem is in DP.

Mission accomplished?

Not yet. For some predicates no strongly silent
succinct protocols are known.

Checking correctness—Feasibility PODC’17

Blondin, E., Jaax, Meyer , PODC’17

The class of strongly silent protocols is
complete, and its verification problem is in DP.

Mission accomplished?

Not yet. For some predicates no strongly silent
succinct protocols are known.

Checking correctness—Feasibility PODC’17

A class P of protocols is complete and succinct
if for every Presburger predicate φ some
protocol in P with log(|φ|) states computes φ

A class P of protocols is complete and efficient
if for every Presburger predicate φ some
protocol in P computes φ in O(n2 log n) time.

Checking correctness—Feasibility PODC’17

Are strongly silent protocols complete
and succinct?

Open

Are strongly silent protocols complete
and efficient? Open

What is the lowest expected time for a
complete class of protocols? Open

…and for a complete and succinct class?
Open

…and for a complete and efficient
class? Open

Checking correctness—Feasibility PODC’17

Are strongly silent protocols complete
and succinct?

Open

Are strongly silent protocols complete
and efficient?

Open

What is the lowest expected time for a
complete class of protocols? Open

…and for a complete and succinct class?
Open

…and for a complete and efficient
class? Open

Checking correctness—Feasibility PODC’17

Are strongly silent protocols complete
and succinct?

Open

Are strongly silent protocols complete
and efficient?

Open

What is the lowest expected time for a
complete class of protocols?

Open

…and for a complete and succinct class?
Open

…and for a complete and efficient
class? Open

Checking correctness—Feasibility PODC’17

Are strongly silent protocols complete
and succinct?

Open

Are strongly silent protocols complete
and efficient?

Open

What is the lowest expected time for a
complete class of protocols?

Open

…and for a complete and succinct class?

Open

…and for a complete and efficient
class? Open

Checking correctness—Feasibility PODC’17

Are strongly silent protocols complete
and succinct?

Open

Are strongly silent protocols complete
and efficient?

Open

What is the lowest expected time for a
complete class of protocols?

Open

…and for a complete and succinct class?

Open

…and for a complete and efficient
class?

Open

Checking correctness—Feasibility PODC’17

Are strongly silent protocols complete
and succinct? Open

Are strongly silent protocols complete
and efficient? Open

What is the lowest expected time for a
complete class of protocols? Open

…and for a complete and succinct class?
Open

…and for a complete and efficient
class? Open

Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …

Checking expected termination time Blondin, E., Kucera CONCUR’18

Our approach:

• Most protocols are naturally designed in stages

• Construct these stages automatically

• Derive upper bounds on Inter(n) from
stages structure

Checking expected termination time Blondin, E., Kucera CONCUR’18

B,R 7→ b,b

B, r 7→ B,b

R,b 7→ R, r

b, r 7→ b,b

(B ∨ R) ∧
∧

q ̸∈{B,R}

¬q

�

B ∧
∧
q ̸=B

¬q

 �

R ∧
∧
q ̸=R

¬q

 �(¬B ∨ ¬R) ∧ b ∧ ¬b!

�(¬B ∧ ¬R ∧ b ∧ ¬r) �(B ∧ ¬R ∧ b ∧ ¬r) �(¬B ∧ R ∧ ¬b ∧ r)

O(1)
O(1)

O(n2 log n)

O(n2 log n)

O(n2 log n)
O(exp(n))

Checking expected termination time Blondin, E., Kucera CONCUR’18

• Prototype implemented in +
Microsoft Z3

• Can report: O(1),O(n2),O(n2 log n),O(n3),O(poly(n))
or O(exp(n))

• Decidability of checking Inter(n) ≥ f(n) ?
Open

Checking expected termination time Blondin, E., Kucera CONCUR’18

• Prototype implemented in +
Microsoft Z3

• Can report: O(1),O(n2),O(n2 log n),O(n3),O(poly(n))
or O(exp(n))

• Decidability of checking Inter(n) ≥ f(n) ?
Open

Checking expected termination time Blondin, E., Kucera CONCUR’18

• Prototype implemented in +
Microsoft Z3

• Can report: O(1),O(n2),O(n2 log n),O(n3),O(poly(n))
or O(exp(n))

• Decidability of checking Inter(n) ≥ f(n) ?
Open

Sensei III’s questions

What predicates can we compute?

How fast can we compute them?

How succinctly can we compute them?

How can I check correctness?

How can I check efficiency?

To conclude …

Peregrine: a tool for population protocols Blondin, E., Jaax CAV’18

Peregrine: + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

• Design of protocols

• Manual and automatic simulation

• Statistics of properties such as termination time

• Automatic verification of correctness

• More to come!

Conclusion

Population protocols are a great model to
study fundamental questions of distributed
computation:

• Power of anonymous computation
• Network-independent algorithms
• Role of leaders
• Emergent behaviour and its limits

Conclusion

…and of formal verification:

• Verification of stochastic parameterized
systems (parameterization, liveness under
fairness)

• Automatic synthesis of parameterized
systems

Join the team!

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

• Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

• Start of the project: Sept. 1, 2018

• Start of employment: flexible, from Sept. 1, 2018
to about Sept. 1, 2019

Go!

THANK YOU!

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

Go!

THANK YOU!

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

