Black Ninjas in the Dark: Formal Analysis of Population Protocols

Javier Esparza

Joint work with Michael Blondin, Pierre Ganty, Stefan Jaax, Antonín Kučera, Jérôme Leroux, Rupak Majumdar, Philipp J. Meyer, and Chana Weil-Kennedy

Technical
University
of Munich

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
- They must decide by majority to attack or not (no attack if tie)

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
- They must decide by majority to attack or not (no attack if tie)

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet at a Zen garden in the dark
- They must decide by majority to attack or not (no attack if tie)
- How can they conduct the vote?

Deaf Black Ninjas in the Dark

- Ninjas wander randomly, interacting when they bump into each other.

Deaf Black Ninjas in the Dark

- Ninjas wander randomly, interacting when they bump into each other.
- Ninjas store their current estimation of the final outcome: attack or don't attack.

Deaf Black Ninjas in the Dark

- Ninjas wander randomly, interacting when they bump into each other.
- Ninjas store their current estimation of the final outcome: attack or don't attack.
- Additionally, they are active or passive.

don't attack active
don't attack passive

Deaf Black Ninjas in the Dark

- Ninjas wander randomly, interacting when they bump into each other.
- Ninjas store their current estimation of the final outcome: attack or don't attack.
- Additionally, they are active or passive.

don't attack active don't attack passive
- Initially: all ninjas active, estimation = own vote.

Deaf Black Ninjas in the Dark

Goal of voting protocol:

- eventually all ninjas reach the same estimation, and
- this estimation corresponds to the majority.

Deaf Black Ninjas in the Dark

Goal of voting protocol:

- eventually all ninjas reach the same estimation, and
- this estimation corresponds to the majority.

Graphically:

- Initially more red ninjas \Longrightarrow eventually all ninjas red.
- Initially more blue ninjas or tie eventually all ninjas blue.

- Active ninjas of opposite colors become passive and blue

- Active ninjas of opposite colors become passive and blue

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

$$
\overbrace{5}^{8}
$$

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

者

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Majority protocol: Are there more red ninjas than blue ninjas?

- Active ninjas of opposite colors become passive and blue

- Active ninjas convert passive ninjas to their color

Sad story ...

齐

- The first rule has no priority over the other two.

Majority protocol: Why?

- The first rule has no priority over the other two.

- The first rule has no priority over the other two.

- The first rule has no priority over the other two.

- The first rule has no priority over the other two.

- The first rule has no priority over the other two.

- The first rule has no priority over the other two.

- The first rule has no priority over the other two.

Sensei Il's protocol: Are there more red ninjas than blue ninjas?

Interaction rules:

Sensei II

Sensei Il＇s protocol：Are there more red ninjas than blue ninjas？

Interaction rules：

合合 \rightarrow 合諹
官

Passive blue ninjas convert passive red ninjas to their高启启启启启 color

Sensei Il＇s protocol：Are there more red ninjas than blue ninjas？

Interaction rules：

合合 \rightarrow 合諹

Passive blue ninjas convert passive red ninjas to their
 color

Sensei Il＇s protocol：Are there more red ninjas than blue ninjas？

Interaction rules：

合合 \rightarrow 合諹
命

Passive blue ninjas convert passive red ninjas to their高启启启启启 color

Sensei Il＇s protocol：Are there more red ninjas than blue ninjas？

Interaction rules：

合合 \rightarrow 合諹
命

Passive blue ninjas convert passive red ninjas to their高启启启启启 color

Sensei Il's protocol: Are there more red ninjas than blue ninjas?

Expected number of steps to stable consensus for a population of 15 ninjas.

Very sad story ..

Sensei III's protocol

 Interaction rules:

Sensei III's protocol

Expected number of steps to stable consensus for a population of 15 ninjas.

Sense III's questions

Formalization questions:

- What is a protocol?
- When is a protocol "correct"?
-When is a protocol "efficient"?

Sensei III's questions

Verification questions:

- How do I check that my protocol is correct?
- How do I check that my protocol is efficient?

Sensei III's questions

Expressivity questions:

- Are there protocols for other problems?
- How large is the smallest protocol for a problem?
- And the smallest efficient protocol?

Population protocols

Formal model of distributed computation by collections of identical, finite-state, and mobile agents
like

Population protocols

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like

ad-hoc networks of mobile
sensors

Population protocols

Formal model of distributed computation by collections of

> identical, finite-state, and mobile agents
like

ad-hoc networks of mobile sensors

"soups" of molecules
(Chemical Reaction Networks)

Population protocols

Formal model of distributed computation by collections of identical, finite-state, and mobile agents
like

ad-hoc networks of mobile sensors

"soups" of molecules
(Chemical Reaction Networks)

people in social networks

Population protocols

Formal model of distributed computation by collections of identical, finite-state, and mobile agents
like

ad-hoc networks of mobile sensors

people in social networks

"soups" of molecules
(Chemical Reaction Networks)

... and ninjas!

- States:
- Opinions:
- Initial states: $I \subseteq Q$
- Transitions: $\quad T \subseteq Q^{2} \times Q^{2}$

- States:
- Opinions:
- Initial states: $\quad I \subseteq Q$
- Transitions: $\quad T \subseteq Q^{2} \times Q^{2}$

Population protocols: formal model

- States:
- Opinions:
- Initial states:
- Transitions: finite set Q
$O: Q \rightarrow\{0,1\}$
$I \subseteq Q$
$T \subseteq Q^{2} \times Q^{2}$

- States:
- Opinions:
- Initial states:
- Transitions:

Population protocols: formal model

- States:
- Opinions:
- Initial states: $\quad I \subseteq Q$
- Transitions: $\quad T \subseteq Q^{2} \times Q^{2}$
- Configurations:
$Q \rightarrow \mathbb{N}$

- States:
- Opinions:
$O: Q \rightarrow\{0,1\}$
- Initial states: $\quad I \subseteq Q$
- Transitions:

$$
T \subseteq Q^{2} \times Q^{2}
$$

- Configurations:
- Initial configurations: $\quad \mathrm{I} \rightarrow \mathbb{N}$

Population protocols: runs

Reachability graph for (3, 2, 0, 0):

Population protocols: runs

Underlying Markov chain:

(pairs of agents are picked uniformly at random)

Population protocols: runs

Run: infinite path from initial configuration

Population protocols: computing predicates

Protocol computes φ : InitC $\rightarrow\{0,1\}$:
for every $C \in \operatorname{Init} C$, the runs starting at C reach stable consensus $\varphi(C)$ with probability 1.

Population protocols: computing predicates
Protocol computes φ : InitC $\rightarrow\{0,1\}$:
for every $C \in \operatorname{Init} C$, the runs starting at C reach stable consensus $\varphi(C)$ with probability 1.

Protocol computes $\varphi\left(C_{0}\right)=0, \varphi\left(C_{1}\right)=1, \varphi\left(C_{2}\right)=1, \ldots$

Population protocols: computing predicates

Protocol computes φ : InitC $\rightarrow\{0,1\}$:
for every $C \in \operatorname{Init} C$, the runs starting at C reach stable consensus $\varphi(C)$ with probability 1.

Protocol ill defined for C_{1}

Population protocols: computing predicates

Protocol computes φ : InitC $\rightarrow\{0,1\}$:
for every $C \in \operatorname{Init} C$, the runs starting at C reach stable consensus $\varphi(C)$ with probability 1.

Protocol ill defined for C_{1} (Sensei I's problem)

A protocol is well specified if it computes some predicate

A protocol is well specified if it computes some predicate

A protocol for a predicate φ is correct if it computes φ (in particular, correct protocols are well specified)

What predicates can we compute?
How fast can we compute them?
How succinctly can we compute them?
How can I check correctness?
How can I check efficiency?
To conclude ...

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols compute precisely the predicates definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.' 07

Population protocols compute precisely the predicates definable in Presburger arithmetic, i.e. $\operatorname{FO}(\mathbb{N},+,<)$

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination, it suffices to:

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols compute precisely the predicates definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination, it suffices to:

- Exhibit PPs for threshold and modulo predicates

$$
a_{1} x_{1}+\cdots+a_{n} c_{n} \leq b \quad a_{1} x_{1}+\cdots+a_{n} c_{n} \equiv b(\bmod c)
$$

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols compute precisely the predicates definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination, it suffices to:

- Exhibit PPs for threshold and modulo predicates

$$
a_{1} x_{1}+\cdots+a_{n} c_{n} \leq b \quad a_{1} x_{1}+\cdots+a_{n} c_{n} \equiv b(\bmod c)
$$

- Prove that computable predicates are closed under negation and conjunction

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols compute precisely the predicates definable in Presburger arithmetic, i.e. $\operatorname{FO}(\mathbb{N},+,<)$

Proof: PPs only compute Presburger predicates

- Much harder!

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols compute precisely the predicates definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

Proof: PPs only compute Presburger predicates

- Much harder!
- Dist. Comp.'07 proof is "non-constructive"

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.' 07

Population protocols compute precisely the predicates definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

Proof: PPs only compute Presburger predicates

- Much harder!
- Dist. Comp.'07 proof is "non-constructive"
- "Constructive" proof by E., Ganty, Leroux, Majumdar Acta Inf.' 17

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.'07
 Population protocols compute precisely the predicates definable in Presburger arithmetic, i.e. $\mathrm{FO}(\mathbb{N},+,<)$

Other variants considered:

- Approximate protocols
- Protocols with leaders
- Protocols with failures
- Trustful protocols
- Mediated protocols, etc.
e.g. Angluin, Aspnes, Eisenstat DISC'07

Angluin, Aspnes, Eisenstat Dist. Comput.'08
Delporte-Gallet et al. DCOSS'06
Bournez, Lefevre, Rabie DISC'13
Michail, Chatzigiannakis, Spirakis TCS'11

What predicates can we compute?
How fast can we compute them?
How succinctly can we compute them?
How can I check correctness?
How can I check efficiency?
To conclude ...

Efficiency

Efficiency measured by the expected number of interactions until stable consensus: Inter(n)

Efficiency

Efficiency measured by the expected number of interactions until stable consensus: Inter(n)

Depends on the population size n

Efficiency

Efficiency measured by the expected number of interactions until stable consensus: Inter(n)

Depends on the population size n

In a natural model: expected (parallel) time to consensus satisfies

$$
\operatorname{Time}(n)=\operatorname{Inter}(n) / n
$$

Angluin, Aspnes et al. , PODC'04
Every Presburger predicate is computable by a protocol with Inter $(n) \in \mathcal{O}\left(n^{2} \log n\right)$

Efficiency

Angluin, Aspnes et al. , PODC'04

Every Presburger predicate is computable by a protocol with Inter $(n) \in \mathcal{O}\left(n^{2} \log n\right)$

Angluin, Aspnes, Eisenstat Dist.Comp.'08

Every Presburger predicate is computable by a protocol with a leader and $\operatorname{Inter}(n) \in \mathcal{O}\left(n \log ^{O(1)}(n)\right)$

Efficiency

Angluin, Aspnes et al. , PODC'04

Every Presburger predicate is computable by a protocol with Inter $(n) \in \mathcal{O}\left(n^{2} \log n\right)$

Angluin, Aspnes, Eisenstat Dist.Comp.'08

Every Presburger predicate is computable by a protocol with a leader and $\operatorname{Inter}(n) \in \mathcal{O}\left(n \log ^{O(1)}(n)\right)$

Open whether $\mathcal{O}\left(n \log ^{O(1)}(n)\right)$ achievable without leaders.

What predicates can we compute?
How fast can we compute them?
How succinctly can we compute them?
How can I check correctness?
How can I check efficiency?
To conclude ...

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<4$
- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

- Each ninja is in a state of $\{0,1,2,3,4\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$

$$
\text { if } m+n<4
$$

- $(m, n) \mapsto(4,4)$

$$
\text { if } m+n \geq 4
$$

Sensei Ill's questions: Succinctness-An Example

Protocol for: Are there at least 2^{ℓ} sick ninjas?

- Each ninja is in a
state of
$\left\{0,1, \ldots, 2^{\ell}-1,2^{\ell}\right\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<2^{\ell}$
- $(m, n) \mapsto\left(2^{\ell}, 2^{\ell}\right)$

$$
\text { if } m+n \geq 2^{\ell}
$$

Sensei Ill's questions: Succinctness-An Example

Protocol for: Are there at least 2^{ℓ} sick ninjas?

- Each ninja is in a state of $\left\{0,1, \ldots, 2^{\ell}-1,2^{\ell}\right\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<2^{\ell}$
- Each ninja is in a state of $\left\{0,2^{0}, \ldots, 2^{\ell-1}, 2^{\ell}\right\}$
- Initially, sick ninjas in state 2^{0}, healthy ninjas in state 0
- $\left(2^{m}, 2^{m}\right) \mapsto\left(2^{m+1}, 0\right)$

$$
\text { if } m+1 \leq \ell
$$

- $\left(2^{\ell}, n\right) \mapsto\left(2^{\ell}, 2^{\ell}\right)$
- $(m, n) \mapsto\left(2^{\ell}, 2^{\ell}\right)$

$$
\text { if } m+n \geq 2^{\ell}
$$

Sensei Ill's questions: Succinctness-An Example

Protocol for: Are there at least 2^{ℓ} sick ninjas?

- Each ninja is in a state of $\left\{0,1, \ldots, 2^{\ell}-1,2^{\ell}\right\}$
- Initially, sick ninjas in state 1, healthy ninjas in state 0
- $(m, n) \mapsto(m+n, 0)$ if $m+n<2^{\ell}$
- $(m, n) \mapsto\left(2^{\ell}, 2^{\ell}\right)$

$$
\text { if } m+n \geq 2^{\ell}
$$

- Each ninja is in a state of $\left\{0,2^{0}, \ldots, 2^{\ell-1}, 2^{\ell}\right\}$
- Initially, sick ninjas in state 2^{0}, healthy ninjas in state 0
- $\left(2^{m}, 2^{m}\right) \mapsto\left(2^{m+1}, 0\right)$

$$
\text { if } m+1 \leq \ell
$$

- $\left(2^{\ell}, n\right) \mapsto\left(2^{\ell}, 2^{\ell}\right)$
- Can be generalized to non-powers of 2

Succinctness

Just gave a protocol for $\mathbf{X} \geq \mathbf{c}$ with $\mathcal{O}(\log \mathrm{c})$ states.

Succinctness

Just gave a protocol for $\mathbf{X} \geq \mathbf{c}$ with $\mathcal{O}(\log \mathrm{c})$ states.
Is $\mathcal{O}(\log \log c)$ possible?

Succinctness

Just gave a protocol for $\mathbf{X} \geq \mathbf{c}$ with $\mathcal{O}(\log \mathrm{c})$ states. Is $\mathcal{O}(\log \log c)$ possible?
Not for every c...

Blondin, E., Jaax STACS'18

There exist infinitely many \mathbf{c} such that every protocol for $\mathbf{X} \geq \mathbf{C}$ has at least $(\log \mathbf{C})^{1 / 4}$ states

Succinctness

Just gave a protocol for $\mathbf{X} \geq \mathbf{c}$ with $\mathcal{O}(\log \mathrm{c})$ states.
Is $\mathcal{O}(\log \log c)$ possible?
Not for every c...

Blondin, E., Jaax STACS'18

There exist infinitely many \mathbf{c} such that every protocol for $X \geq \mathbf{c}$ has at least $(\log \mathbf{c})^{1 / 4}$ states
...but for some c, if we allow leaders:

Blondin, E., Jaax STACS'18

For infinitely many \mathbf{c} there is a protocol with two leaders and $\mathcal{O}(\log \log \mathbf{c})$ states that computes $\mathbf{X} \geq \mathbf{c}$

Succinctness

Blondin, E., Jaax STACS'18

For infinitely many \mathbf{c} there is a protocol with two leaders and $\mathcal{O}(\log \log \mathbf{c})$ states that computes $\mathbf{X} \geq \mathbf{c}$

Proof:

Succinctness

Blondin, E., Jaax STACS'18

For infinitely many \mathbf{c} there is a protocol with two leaders and $\mathcal{O}(\log \log \mathbf{c})$ states that computes $\mathbf{X} \geq \mathbf{c}$

Proof:

- Mayr and Meyer '82: For every n there is a commutative semigroup presentation and two elements s, t such that the shortest word α leading from s to t (i.e., $t=s \alpha$) has length $|\alpha| \geq 2^{2^{n}}$

Succinctness

Blondin, E., Jaax STACS'18

For infinitely many \mathbf{c} there is a protocol with two leaders and $\mathcal{O}(\log \log \mathbf{c})$ states that computes $\mathbf{X} \geq \mathbf{c}$

Proof:

- Mayr and Meyer '82: For every n there is a commutative semigroup presentation and two elements s, t such that the shortest word α leading from s to t (i.e., $t=s \alpha$) has length $|\alpha| \geq 2^{2^{n}}$
- Construct a protocol that "simulates" derivations in the semigroup
$\mathcal{O}(\log \log c)$ without leaders?
$\mathcal{O}(\log \log c)$ without leaders? Open

Succinctness

$\mathcal{O}(\log \log c)$ without leaders? Open And $\mathcal{O}(\log \log \log c)$?

Succinctness

$\mathcal{O}(\log \log c)$ without leaders? Open
And $\mathcal{O}(\log \log \log c)$? Open

Succinctness

$\mathcal{O}(\log \log c)$ without leaders? Open
And $\mathcal{O}(\log \log \log c)$? Open
$\mathcal{O}(\log |\varphi|)$ states for all φ ?

Succinctness
$\mathcal{O}(\log \log c)$ without leaders? Open
And $\mathcal{O}(\log \log \log c)$? Open
$\mathcal{O}(\log |\varphi|)$ states for all φ ? Open

What predicates can we compute?
How fast can we compute them?
How succinctly can we compute them?
How can I check correctness?
How can I check efficiency?
To conclude ...

Checking correctness

Protocols can become complex, even for $B \geq R$:

Fast and Exact Majority in Population Protocols

```
    Dan Alistarh
Microsoft Research
```

Rati Gelashvili ${ }^{*}$ MIT

Milan Vojnović Microsoft Research

```
1 weight (x)={}|{\begin{array}{ll}{|x}&{\mathrm{ if }x\in\mathrm{ StrongStates or }x\in\mathrm{ WeakStates;}}\\{1}&{\mathrm{ if }x\in\mathrm{ (ntm}}
```

1 weight (x)={}|{\begin{array}{ll}{|x}\&{\mathrm{ if }x\in\mathrm{ StrongStates or }x\in\mathrm{ WeakStates;}}
{1}\&{\mathrm{ if }x\in\mathrm{ (ntm}}
1}\quad\mathrm{ if }x\in\mathrm{ IntermediateStates.
1}\quad\mathrm{ if }x\in\mathrm{ IntermediateStates.
2 }\operatorname{sgn}(x)={\begin{array}{lc}{1}\&{\mathrm{ if }x\in{+0,\mp@subsup{1}{d}{},···,\mp@subsup{1}{1}{},3,5,···,m}
{-1}\&{\mathrm{ otherwise. }}
2 }\operatorname{sgn}(x)={\begin{array}{lc}{1}\&{\mathrm{ if }x\in{+0,\mp@subsup{1}{d}{},···,\mp@subsup{1}{1}{},3,5,···,m}
{-1}\&{\mathrm{ otherwise. }}
3}\operatorname{value}(x)=\operatorname{sgn}(x)\cdotweight (x
3}\operatorname{value}(x)=\operatorname{sgn}(x)\cdotweight (x
/* Functions for rounding state interactions */
/* Functions for rounding state interactions */
\phi(x)=-1 if }x=-1;\mp@subsup{1}{1}{}\mathrm{ if }x=1;x\mathrm{ , otherwise
\phi(x)=-1 if }x=-1;\mp@subsup{1}{1}{}\mathrm{ if }x=1;x\mathrm{ , otherwise
}}\mp@subsup{R}{\downarrow}{}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k-1\mathrm{ if }k\mathrm{ even)
}}\mp@subsup{R}{\downarrow}{}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k-1\mathrm{ if }k\mathrm{ even)
|}\mp@subsup{R}{\uparrow}{}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k+1\mathrm{ if }k\mathrm{ even)

```
|}\mp@subsup{R}{\uparrow}{}(k)=\phi(k\mathrm{ if }k\mathrm{ odd integer, }k+1\mathrm{ if }k\mathrm{ even)
```



```
Shift-to-Zero(x)={{ll
```

Shift-to-Zero(x)={{ll
otherwise.
otherwise.
Sign-to-Zero (x)={}+{\begin{array}{ll}{+0}\&{\mathrm{ if }\operatorname{sgn}(x)>0}
{-0}\&{\mathrm{ oherwise}}
Sign-to-Zero (x)={}+{\begin{array}{ll}{+0}\&{\mathrm{ if }\operatorname{sgn}(x)>0}
{-0}\&{\mathrm{ oherwise}}
procedure update \langlex, y)
procedure update \langlex, y)
if (weight (x)>0 and weight (y)>1) or (weight (y)>0 and weight (x)>1) then
if (weight (x)>0 and weight (y)>1) or (weight (y)>0 and weight (x)>1) then
x
x
else if weight (x)\cdotweight (y)=0 and value(x)+value (y)>0 then
else if weight (x)\cdotweight (y)=0 and value(x)+value (y)>0 then
if weight }(x)\not=0\mathrm{ then }\mp@subsup{x}{}{\prime}\leftarrow\mathrm{ Shift-to-Zero (x) and }\mp@subsup{y}{}{\prime}\leftarrow\mathrm{ Sign-to-Zero (}x\mathrm{ (
if weight }(x)\not=0\mathrm{ then }\mp@subsup{x}{}{\prime}\leftarrow\mathrm{ Shift-to-Zero (x) and }\mp@subsup{y}{}{\prime}\leftarrow\mathrm{ Sign-to-Zero (}x\mathrm{ (
else }\mp@subsup{y}{}{\prime}\leftarrow\operatorname{Shift-to-Zero(y) and }\mp@subsup{x}{}{\prime}\leftarrow\operatorname{Sign-to-Zero(y)
else }\mp@subsup{y}{}{\prime}\leftarrow\operatorname{Shift-to-Zero(y) and }\mp@subsup{x}{}{\prime}\leftarrow\operatorname{Sign-to-Zero(y)
else if (x\in{-1d,+1, }
else if (x\in{-1d,+1, }
(y\in{-1d,+1d}}\mathrm{ and weight }(x)=1\mathrm{ and }\operatorname{sgn}(y)\not=\operatorname{sgn}(x))\mathrm{ then
(y\in{-1d,+1d}}\mathrm{ and weight }(x)=1\mathrm{ and }\operatorname{sgn}(y)\not=\operatorname{sgn}(x))\mathrm{ then
x
x
else
else
x ^ { \prime } \leftarrow \operatorname { S h i f t - t o - Z e r o (x) ~ a n d ~ } y ^ { \prime } \leftarrow Shift-to-Zero(y)

```
        x ^ { \prime } \leftarrow \operatorname { S h i f t - t o - Z e r o ( x ) ~ a n d ~ } y ^ { \prime } \leftarrow \text { Shift-to-Zero(y)}
```


Checking correctness

Protocols can become complex, even for $B \geq R$:

Fast and Exact Majority in Population Protocols

Dan Alistarh
Microsoft Research

Rati Gelashvili ${ }^{*}$ MIT

Milan Vojnović Microsoft Research

```
1 weight \((x)= \begin{cases}|x| & \text { if } x \in \text { StrongStates or } x \in \text { WeakStates; } \\ 1 & \text { if } x \in \text { IntermediateStates. }\end{cases}\)
\(2 \operatorname{sgn}(x)= \begin{cases}1 & \text { if } x \in\left\{+0,1_{d}, \ldots, 1_{1}, 3,5, \ldots, m\right\} ; \\ -1 & \text { otherwise. }\end{cases}\)
3 value \((x)=\operatorname{sgn}(x) \cdot\) weight \((x)\)
/* Functions for rounding state interactions */
\(4(x)=-1_{1}\) if \(x=-1 ; 1_{1}\) if \(x=1 ; x\), otherwise
\(5 R_{\downarrow}(k)=\phi(k\) if \(k\) odd integer, \(k-1\) if \(k\) even)
6 \(R_{\uparrow}(k)=\phi(k\) if \(k\) odd integer, \(k+1\) if \(k\) even)
7 Shift-to-Zero \((x)= \begin{cases}-1_{j+1} & \text { if } x=-1_{j} \text { for some index } j<d \\ 1_{j+1} & \text { if } x=1_{j} \text { for some index } j<d\end{cases}\)
Shift-to-Zero \((x)= \begin{cases}1_{j+1} & \text { if } x=1_{j} \text { for some index } j<d \\ x & \text { otherwise. }\end{cases}\)
\(\operatorname{Sign-to-Zero}(x)= \begin{cases}+0 & \text { if } \operatorname{sgn}(x)>0 \\ -0 & \text { oherwise. }\end{cases}\)
procedure update \(\langle x, y\rangle\)
if \((\) weight \((x)>0\) and weight \((y)>1)\) or \((\) weight \((y)>0\) and weight \((x)>1)\) then \(x^{\prime} \leftarrow R_{\downarrow}\left(\frac{\text { value }(x)+\text { value }(y)}{2}\right)\) and \(y^{\prime} \leftarrow R_{\uparrow}\left(\frac{\text { value }(x)+\text { vahee }(y)}{2}\right)\)
else if weight \((x) \cdot\) weight \((y)=0\) and value \((x)+\operatorname{value}(y)>0\) then
if weight \((x) \neq 0\) then \(x^{\prime} \leftarrow \operatorname{Shift-to-Zero}(x)\) and \(y^{\prime} \leftarrow \operatorname{Sign}\)-to-Zero \((x)\)
else \(y^{\prime} \leftarrow\) Shift-to-Zero \((y)\) and \(x^{\prime} \leftarrow \operatorname{Sign}\)-to-Zero \((y)\)
else if \(\left(x \in\left\{-1_{d},+1_{d}\right\}\right.\) and weight \((y)=1\) and \(\left.\operatorname{sgn}(x) \neq \operatorname{sgn}(y)\right)\) or
\[
\left(y \in\left\{-1_{d},+1_{d}\right\} \text { and weight }(x)=1 \text { and } \operatorname{sgn}(y) \neq \operatorname{sgn}(x)\right) \text { then }
\]
\[
x^{\prime} \leftarrow-0 \text { and } y^{\prime} \leftarrow+0
\]
else
\(x^{\prime} \leftarrow \operatorname{Shift-to-Zero}(x)\) and \(y^{\prime} \leftarrow \operatorname{Shift-to-Zero}(y)\)
```


Checking correctness-Early days

Model checkers:

- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)
- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS'10)
- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

Checking correctness-Early days

Model checkers:

- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)
- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS'10)
- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)
Only for populations of fixed size!

Checking correctness-Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

Checking correctness-Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)
Not automatic!

Checking correctness-Early days

Theorem provers:

- Verification with the interactive theorem prover Con (Deng and Monin TASE’09)

Challenge: verifying automatically all sizes

E., Ganty, Leroux, Majumdar Acta Inf.'17

It is decidable if a population protocol is well specified (i.e., if it computes some predicate).

Checking correctness-Decidability

Effectively Presburger set
 \downarrow

Checking correctness-Decidability

Effectively Presburger set

\uparrow
Eilenberg and Schützenberger '69:
Semilinear set
\rightarrow Presburger

Checking correctness-Decidability

Effectively Presburger set

Checking correctness-Decidability

Effectively Presburger set

Reduction to the VAS reachability problem between Presburger sets

Checking correctness-Decidability

Effectively Presburger set

Reduction to the VAS reachability problem between Presburger sets
\Rightarrow Reduction to the VAS reachability problem (VAS engineering)

Checking correctness-Decidability

Effectively Presburger set

\uparrow
Eilenberg and Schützenberger '69:
Semilinear set
\rightarrow Presburger

Leroux '11:
Effectively semilinear
\rightarrow effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
\Rightarrow Reduction to the VAS reachability problem (VAS engineering)
\Rightarrow Decidable (Mayr '81, Kosaraju '83).

E., Ganty, Leroux, Majumdar Acta Inf.'17

It is decidable if a population protocol computes a given predicate (Presburger formula).

E., Ganty, Leroux, Majumdar Acta Inf.'17

It is decidable if a population protocol computes a given predicate (Presburger formula).

There is an algorithm that returns the predicate computed by a well-specified protocol.

E., Ganty, Leroux, Majumdar Acta Inf.'17

VAS reachability is reducible to the well-specification problem for population protocols

E., Ganty, Leroux, Majumdar Acta Inf.'17

VAS reachability is reducible to the well-specification problem for population protocols
\Rightarrow Well specification is EXSPACE-hard, and all known algorithms for it have hyper-ackermannian complexity

A class \mathcal{P} of protocols is complete if for every Presburger predicate φ some protocol in \mathcal{P} computes φ

A class \mathcal{P} of protocols is complete if for every Presburger predicate φ some protocol in \mathcal{P} computes φ

Goal: Find a complete class of protocols verifiable in reasonable time

Blondin, E., Jaax, Meyer , PODC'17
The class of strongly silent protocols is complete, and its verification problem is in DP.

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol	Predicate	$\|Q\|$	$\|T\|$	Time[s]
Majority[1]	$x \geq y$	4	4	0.1
Approx. Majority[2]	Not well-specified	3	4	0.1
Broadcast[3]	$x_{1} \vee \ldots \vee x_{n}$	2	1	0.1
Threshold[4]	$\Sigma_{i} \alpha_{i} x_{i}<c$	76	2148	2375.9
Remainder[5]	$\Sigma_{i} \alpha_{i} x_{i} \bmod 70=1$	72	2555	3176.5
Sick ninjas[6]	$x \geq 50$	51	1275	181.6
Sick ninjas[7]	$x \geq 325$	326	649	3470.8
Poly-log sick ninjas	$x \geq 8 \cdot 10^{4}$	66	244	12.79

[1] Draief et al., 2012 [2] Angluin et al., 2007 [3] Clément et al., 2011
[4][5] Angluin et al., 2006 [6] Chatzigiannakis et al., 2010 [7] Clément et al., 2011

Blondin, E., Jaax, Meyer , PODC'17
The class of strongly silent protocols is complete, and its verification problem is in DP.

Mission accomplished?

Blondin, E., Jaax, Meyer , PODC'17
The class of strongly silent protocols is complete, and its verification problem is in DP.

Mission accomplished?
Not yet. For some predicates no strongly silent succinct protocols are known.

A class \mathcal{P} of protocols is complete and succinct if for every Presburger predicate φ some protocol in \mathcal{P} with $\log (|\varphi|)$ states computes φ

A class \mathcal{P} of protocols is complete and efficient if for every Presburger predicate φ some protocol in \mathcal{P} computes φ in $\mathcal{O}\left(n^{2} \log n\right)$ time.

Are strongly silent protocols complete and succinct?

Are strongly silent protocols complete and succinct?
Are strongly silent protocols complete and efficient?

Are strongly silent protocols complete and succinct?

Are strongly silent protocols complete and efficient?

What is the lowest expected time for a complete class of protocols?

Are strongly silent protocols complete and succinct?

Are strongly silent protocols complete and efficient?

What is the lowest expected time for a complete class of protocols?
...and for a complete and succinct class?

Are strongly silent protocols complete and succinct?

Are strongly silent protocols complete and efficient?

What is the lowest expected time for a complete class of protocols? ...and for a complete and succinct class?
...and for a complete and efficient class?

Are strongly silent protocols complete and succinct?

Are strongly silent protocols complete and efficient?

What is the lowest expected time for a complete class of protocols?

Open ...and for a complete and succinct class?

Open
...and for a complete and efficient class?

What predicates can we compute?
How fast can we compute them?
How succinctly can we compute them?
How can I check correctness?
How can I check efficiency?
To conclude ...

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically
- Derive upper bounds on Inter(n) from stages structure

Checking expected termination time

$$
\begin{aligned}
& B, \mathbf{R} \mapsto b, b \\
& B, r \quad \mapsto \quad B, b \\
& \mathbf{R}, \mathbf{b} \quad \mapsto \quad \mathbf{R}, \mathbf{r} \\
& \mathbf{b}, \mathbf{r} \mapsto \mathbf{b}, \mathbf{b} \\
& (B \vee R) \wedge \bigwedge_{q \notin\{B, R\}} \neg q \\
& \square\left(\mathrm{~B} \wedge \bigwedge_{q \neq \mathrm{B}} \neg q\right) \\
& \left.\right|^{\mathcal{O}(1)} \quad \mathcal{O}\left(n^{2} \log n\right) \\
& \square\left(R \wedge \bigwedge_{q \neq R} \neg q\right) \\
& \square(\neg \mathbf{B} \vee \neg \mathbf{R}) \wedge \mathbf{b} \wedge \neg \mathbf{b} \text { ! } \\
& \mathcal{O}\left(n^{2} \log n\right) \\
& \square(\neg \mathbf{B} \wedge \neg \mathbf{R} \wedge \mathbf{b} \wedge \neg \mathbf{r}) \\
& \square(B \wedge \neg \mathbf{R} \wedge \mathrm{~b} \wedge \neg \mathrm{r})
\end{aligned}
$$

Checking expected termination time

- Prototype implemented in ${ }^{2}$ python" + Microsoft Z3

Checking expected termination time Blondin, E., Kucera CONCUR'18

- Prototype implemented in ${ }^{2}$ python" + Microsoft Z3
- Can report: $\mathcal{O}(1), \mathcal{O}\left(n^{2}\right), \mathcal{O}\left(n^{2} \log n\right), \mathcal{O}\left(n^{3}\right), \mathcal{O}($ poly $(n))$ or $\mathcal{O}(\exp (n))$
- Prototype implemented in \boldsymbol{R}^{2} python" + Microsoft Z3
- Can report: $\mathcal{O}(1), \mathcal{O}\left(n^{2}\right), \mathcal{O}\left(n^{2} \log n\right), \mathcal{O}\left(n^{3}\right), \mathcal{O}($ poly $(n))$ or $\mathcal{O}(\exp (n))$
- Decidability of checking $\operatorname{Inter}(n) \geq f(n)$? Open

What predicates can we compute?
How fast can we compute them?
How succinctly can we compute them?
How can I check correctness?
How can I check efficiency?
To conclude ...

Peregrine: $\lambda \lambda=H a s k e l l+$ Microsoft $Z 3+J a v a S c r i p t$ peregrine.model.in.tum.de

- Design of protocols
- Manual and automatic simulation
- Statistics of properties such as termination time
- Automatic verification of correctness
- More to come!

Conclusion

Population protocols are a great model to study fundamental questions of distributed computation:

- Power of anonymous computation
- Network-independent algorithms
- Role of leaders
- Emergent behaviour and its limits

Conclusion

...and of formal verification:

- Verification of stochastic parameterized systems (parameterization, liveness under fairness)
- Automatic synthesis of parameterized systems

Join the team!

ERC Advanced Grant -

PaVeS: Parameterized Verification and Synthesis

- Goal: Develop proof and synthesis techniques for distributed algorithms working correctly for an arbitrary number of processes
- Start of the project: Sept. 1, 2018
- Start of employment: flexible, from Sept. 1, 2018 to about Sept. 1, 2019

THANK YOU!

THANK YOU!

