Black Ninjas in the Dark:
Formal Analysis of Population Protocols

Javier Esparza

Joint work with Michael Blondin, Pierre Ganty, Stefan Jaax, Antonin
Kucera, Jérome Leroux, Rupak Majumdar, Philipp J. Meyer, and Chana
Weil-Kennedy

Technical
University
of Munich

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide by
majority to attack or not
(no attack if tie)

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide

to attack or not
(no attack if tie)

Deaf Black Ninjas in the Dark

- Deaf Black Ninjas meet
at a Zen garden in the
dark

- They must decide

to attack or not
(no attack if tie)

Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.

Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.

« Additionally, they are active or passive .

attack don’t attack
active active

‘# attack # don't attack
passive passive

Deaf Black Ninjas in the Dark

+ Ninjas wander randomly, interacting when they
bump into each other.

+ Ninjas store their current estimation of the final
outcome: attack or don’t attack.

« Additionally, they are active or passive .

attack don’t attack
active active

‘# attack # don't attack
passive passive

« Initially: all ninjas active, estimation = own vote.

Deaf Black Ninjas in the Dark

Goal of voting protocol:

- eventually all ninjas reach the same
estimation, and
- this estimation corresponds to the majority.

Deaf Black Ninjas in the Dark

Goal of voting protocol:

- eventually all ninjas reach the same
estimation, and
- this estimation corresponds to the majority.

Graphically:

- Initially more red ninjas =
eventually all ninjas red.

- Initially more blue ninjas or tie —-
eventually all ninjas blue.

Majority protocol: Are there more

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

8d se 8
e £

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g &
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

- Active ninjas convert
passive ninjas to their
color

[N
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g &
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

- Active ninjas convert
passive ninjas to their
color

[N
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g &
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

- Active ninjas convert
passive ninjas to their
color

[N
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g £
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

[AY

- Active ninjas convert
passive ninjas to their
color

[N
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert
passive ninjas to their
color

TN g £
[N

Majority protocol: Are there more

« Active ninjas of opposite
colors become passive
and blue

B0 8

- Active ninjas convert

passive ninjas to their

color

TN g £
[N

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example1.html

Sad story ...

R CpGLE- com
Fo &Afdo\\\g o™

Majority protocol: Why?

- The first rule has no priority over the other

gapese
paaess

Majority protocol: Why?

- The first rule has no priority over the other
two.

Majority protocol: Why?

- The first rule has no priority over the other

YTy
PPy s

Majority protocol: Why?

- The first rule has no priority over the other
two.

Majority protocol: Why?

- The first rule has no priority over the other

YTy
PAPIPapapey s

Majority protocol: Why?

- The first rule has no priority over the other

PO
PP

Majority protocol: Why?

- The first rule has no priority over the other

g apaee
g apaee

Majority protocol: Why?

- The first rule has no priority over the other

g apaee

NO CONSENSUS!

SRR RAR

Senseill's protocol: Are there more

SAEARRN
SRARRSN

Senseill's protocol: Are there more

Interaction rules:

[AYY
[N

[N
Py g,

Passive blue ninjas convert
passive red ninjas to their
color

Sensei Il

SAEARRN
SRARRSN

Senseill's protocol: Are there more

Interaction rules:

[
TN
#_) # # Sensei Il

[Ny
L Y

color

Senseill's protocol: Are there more

Interaction rules:

[AYY
[N

[N
Py g,

Passive blue ninjas convert
passive red ninjas to their
color

Sensei Il

SEARRN
SRARRN

Senseill's protocol: Are there more

Interaction rules:

[AYY
[N

[N
Py g,

Passive blue ninjas convert
passive red ninjas to their
color

Sensei ll

SEARRN
SRARRN

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example2.html

Senseill's protocol: Are there more

107 |- Sensei |l [
Insenseill

10°

103

10’

Expected number of steps

172 3 45 6 7 8 910 11 12 13 14
Initial number of red ninjas

Expected number of steps to stable consensus
for a population of 15 ninjas.

Sensei lII's protocol

ﬁ-‘ Attack majority ﬁ-‘ Don't attack majority #=Tie

Interactio

##
[N
8o - e

e 8
e o

888
888
Ss - 8e

e 8
o o

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

Sensei lII's protocol

107 |- Sensei | [
In sensei |l
105 Iusensei il |

103

10’

Expected number of steps

172 3 45 6 7 8 910 11 12 13 14
Initial number of red ninjas

Expected number of steps to stable consensus
for a population of 15 ninjas.

Sensei lll's questions

Formalization questions:

c Whet is a Pro+0col 7
. \/\/L.en IS a PI‘O'{'OCO Tcorrect'?

. V\/Lnen S a Pm+0co Teflicient'?

Sensei lll's questions

Verification questions:

- How do | check +lat ny Pr‘o+0col is
correct ?

- How do | check +lat ny Pr-o+0col is
eflicient ?

Sensei lll's questions

Expressivity questions:
- Are tlere PPO"LOCOIS Cor otler

Prob’ems?

- Hows laf‘ée s +L.e sneallest PPO+OCOI

for a Pr-oblem?
- And +le snallest eCCicient Pr-O'/'Ocol.?

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of
identical, finite-state, and mobile agents

like

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

ad-hoc networks of mobile
sensors

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of
identical, finite-state, and mobile agents

like
= D =
- T - o &° 9 %0 o0 § oo
(g =
ad-hoc networks of mobile “soups” of molecules

sensors (Chemical Reaction Networks)

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of
identical, finite-state, and mobile agents

like

= E"\?q;f@ﬁ 808 0 o0 & oo

=
ad-hoc networks of mobile “soups” of molecules
sensors (Chemical Reaction Networks)

S

people in social networks

Population protocols Angluin, Aspnes ct al. PODC'04

Formal model of distributed computation by collections of

identical, finite-state, and mobile agents

like
D~
= - §°9 X o° $ oo
o = %o
ad-hoc networks of mobile “soups” of molecules
sensors (Chemical Reaction Networks)

S

people in social networks

Population protocols: formal model Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

& & 2

Population protocols: formal model Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

« Opinions: 0:Q— {0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

%), (]

“8

Population protocols: formal model

Angluin, Aspnes et al. PODC'04

+ States:

« Opinions:

- Initial states:

- Transitions:

finite set Q
0:Q—{0,1}
ICQ

TCQ xQ

Population protocols: formal model Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ*xQ@?

B8 22 BB

FR 7R & ##—’##

Population protocols: formal model

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

- Configurations: Q — N

T
5 1

(2 3

Angluin, Aspnes et al. PODC'04

Population protocols: formal model Angluin, Aspnes ¢t al. PODC'04

- States: finite set Q

- Opinions: 0:Q—{0,1}
« Initial states: ICcQ

- Transitions: TCQ?xQ?

- Configurations: Q — N

- Initial configurations: | — N

####

(2 0 o)

Population protocols: runs

Reachability graph for (3,2, 0,0):

RESRE

Q Q IR
S88es | |88 | 888

Besss { Basss A Basss

Population protocols: runs

Underlying Markov chain:
(pairs of agents are picked uniformly at random)

|~

ol®

=
3>
2.
;
S
)
o
2

S8&es [

1
»
»
-

1

[~
-
IS

[~
-
o

als
-
IS
3lo
-
o
=
IS

-
o

{ Basss

[Foe

| &~
»
¥ ¢
-
-

|o

=
(=)

-

o

Population protocols: runs

Run: infinite path from initial configuration

[+

aIO

aeaes

Ly 5 2 | A8
(1 10 (1 0 h (1
£88es | I 008 | £89es

a1 2

2 , 10 2 ; 10 2 "

10 = 10 T 10 ETe)

N (IIO h alo A 4 N
Eoses | Fasss | Feses

Slo
-
IS

Population protocols: computing predicates

Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Population protocols: computing predicates

Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Protocol computes ¢(Co) = 0, p(C1) =1, 90(C) =1,...

Population protocols: computing predicates

Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Protocol ill defined for C;

Population protocols: computing predicates

Protocol computes ¢: InitC — {0,1}:
for every C € InitC, the runs starting at C
reach stable consensus (C) with probability 1.

Protocol ill defined for C; (Sensei I's problem)

Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

Population protocols: computing predicates

A protocol is well specified if it
computes some predicate

A protocol for a predicate ¢ is correct if
it computes ¢ (in particular, correct
protocols are well specified)

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination,
it suffices to:

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination,
it suffices to:

« Exhibit PPs for and predicates

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs compute all Presburger predicates

Since Presburger arithmetic has quantifier elimination,
it suffices to:

« Exhibit PPs for and predicates

« Prove that computable predicates are closed under
negation and conjunction

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates

» Much harder!

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates

+ Much harder!
« Dist. Comp.07 proof is “non-constructive”

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07

Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Proof: PPs only compute Presburger predicates
« Much harder!

« Dist. Comp.07 proof is “non-constructive”

- “Constructive” proof by E., Ganty, Leroux, Majumdar
Acta Inf/17

Expressive power

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols compute precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Other variants considered:

+ Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC'07
 Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput./08
» Protocols with failures Delporte-Gallet et al. DCOSS'06
« Trustful protocols Bournez, Lefevre, Rabie DISC'13

- Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS'11

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)

Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)

Deper\cls on '/'L‘e PoPu[c:vLiOr\ size N

Efficiency measured by the expected number

of interactions until stable consensus: Inter(n)

Depenc's on '/'L‘e PoPula+iOn size N

In a natural model: expected (parallel) time to

consensus satisfies

Time(n) = Inter(n)/n

Angluin, Aspnes et al. , PODC'04

Every Presburger predicate is computable by a protocol
with Inter(n) € O(n*logn)

Angluin, Aspnes et al. , PODC'04

Every Presburger predicate is computable by a protocol
with Inter(n) € O(n*logn)

Angluin, Aspnes, Eisenstat Dist.Comp.’08

Every Presburger predicate is computable by a protocol
and Inter(n) € O(nlog®"(n))

Angluin, Aspnes et al. , PODC'04

Every Presburger predicate is computable by a protocol
with Inter(n) € O(n*logn)

Angluin, Aspnes, Eisenstat Dist.Comp.’08

Every Presburger predicate is computable by a protocol
and Inter(n) € O(nlog®"(n))

OPen whetler O(n |Og ()) aclhievable
W‘+L.OV+ le«c‘er-s.

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm-+n<a

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm-+n<a

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina

state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina

state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina

state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina

state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)

ifm+n<a4

©)

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

« Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

- Initially, sick ninjas @
in state 1, healthy
ninjas in state 0
* (m,n)— (m+n,0) .
(0)

ifm+n<a4

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

+ Initially, sick ninjas @
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

- Initially, sick ninjas @
in state 1, healthy W

ninjas in state 0

* (m,n)— (m+n,0)

ifm+n<a4 @
S ¥ -
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm+n<a @

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm-+n<a

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

(0

« Each ninjaisina
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)

ifm+n<a4

(=]

(=]

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina
state of {0,1,2,3,4}

- Initially, sick ninjas
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)
ifm-+n<a

= (m,n) — (4,4)
ifm+n>4

Succinctness-An Example

Protocol for: Are there at least 4 sick ninjas?

« Each ninjaisina @
state of {0,1,2,3,4}

« Initially, sick ninjas @ IE\I
in state 1, healthy
ninjas in state 0

* (m,n)— (m+n,0)

ifm+n<a4 lE\I lE\I
EESE N
ifm+n>4

Sensei lIl's questions: Succinctness-An Example

Protocol for: Are there at least 2* sick ninjas?

« Each ninjaisina
state of
{0,1,...,2¢ = 1,2%

« Initially, sick ninjas
in state 1, healthy
ninjas in state 0

+ (m.n) = (m + n,0)
ifm+n<2°¢

- (m,n) — (24,29
ifm+n>2¢

Sensei lIl's questions: Succinctness-An Example

Protocol for: Are there at least 2* sick ninjas?

« Each ninjaisina
state of
{0,1,...,2¢ = 1,2%

« Initially, sick ninjas
in state 1, healthy
ninjas in state 0

+ (m.n) = (m + n,0)
ifm+n<2°¢

- (m,n) — (24,29
ifm+n>2¢

« Each ninjaisina

state of {0,2°, ..., 2=1.26)

« Initially, sick ninjas in

state 2Y, healthy ninjas
in state 0

o (2m7 2m) — (2mv17 O)

ifm+1<é¢

- (2°,n) — (2429

Sensei lIl's questions: Succinctness-An Example

Protocol for: Are there at least 2* sick ninjas?

« Each ninjaisina
state of
{0,1,...,2¢ = 1,2%

« Initially, sick ninjas
in state 1, healthy
ninjas in state 0

+ (m.n) = (m + n,0)
ifm+n<2°¢

- (m,n) — (24,29
ifm+n>2¢

« Each ninjaisina

state of {0,2°, ..., 2=1.26)

« Initially, sick ninjas in

state 2Y, healthy ninjas
in state 0

o (2m7 2m) — (2mv17 O)

ifm+1<é¢

« (25 n) = (24,29
- Can be generalized to

non-powers of 2

Just gave a protocol for X 2 ¢ with O(log c) states.

Just gave a protocol for X 2 ¢ with O(log c) states.

Is O(loglog <) Possible?

Just gave a protocol for X 2 ¢ with O(log c) states.

Not for every c....

Blondin, E., Jaax STACS'18
There exist infinitely many ¢ such that every protocol for
X 2 ¢ has at least (log€)"/* states

Just gave a protocol for X 2 ¢ with O(log c) states.

Not for every c....

Blondin, E., Jaax STACS'18
There exist infinitely many ¢ such that every protocol for
X 2 ¢ has at least (log€)"/* states

..but for some ¢, if we allow

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Blondin, E., Jaax STACS'18
For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Proof:

Blondin, E., Jaax STACS'18

For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Proof:

- Mayr and Meyer '82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word « leading from sto t (i.e., t = s«) has
length |a| > 27"

Blondin, E., Jaax STACS'18

For infinitely many c there is a protocol with two leaders and
O(log log €) states that computes X2 ¢

Proof:

- Mayr and Meyer '82: For every n there is a commutative
semigroup presentation and two elements s, t such that
the shortest word « leading from sto t (i.e., t = s«) has
length |a| > 27"

+ Construct a protocol that “simulates” derivations in the
semigroup

O(|Og log c) without leades?

O(|Og log c) without leades? OPen

O(|Og log c) without leades? OPen
And O(logloglog <)?

O(|Og log c) without leades? OPen
And O(logloglog <)? Open

Succinctness

O(|Og log c) without leade~s? OPen
And O(logloglog <)? Open
O(log |¢|) stetes For all 7

Succinctness

O(|Og log c) without leade~s? OPen
And O(logloglog <)? Open
O(log |¢|) stetes For all p? Open

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Checking correctness

Protocols can become complex, even for B 2 R:
Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili’ Milan Vojnovi¢
Microsoft Research mIT Microsoft Research

cight(z) = [1¢] if @ € StrongStates or = € WeakStates;
weght(x) =19 1 if z € IntermediateStates.

_ 1 ifz € {+0,14,...,11,3,5,...,m};
S22 ‘{ ~1 otherwise.

"

N

@

value(z) = sgn(z) - weight(x)
/* Functions for rounding state interactions */

4 §(z) = 1 ifx = —1;1; if = = 1;z, otherwise
5 R (k) = o(k if k odd integer, k — 1 if k even)
6 Ri(k) = o(k if k odd integer, k+ 1 if k even)
—1j41 ife = —1; for some index j < d
7 Shift-to-Zero(z) = { 1;51 if o= 1; for some index j < d

T otherwise.
oy 40 if sgn(z) > 0
8 S"’”'“"Z””(”’{ —0 oherwise.
9 procedure update(z, y)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

11 o R, (vume,(l.);ralm(u)) and y « Ry (u“tm,u);wm(u)

12 else if weight() - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then a’ < Shift-to-Zero(z) and y' « Sign-to-Zero(x)
14 else y' « Shift-to-Zero(y) and z' « Sign-to-Zero(y)

15 elseif (x € {—1q,+14} and weight(y) = 1 and sgn(x) # sgn(y)) or

16 (y € {—1a,+1q} and weight(z) = 1 and sgn(y) # sgn(x)) then

17 2’ + —0 and y' < +0

else
19 '+ Shift-to-Zero(x) and y' Shift-to-Zero(y)

Checking correctness

Protocols can become complex, even for B 2 R:
Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili’ Milan Vojnovi¢
Microsoft Research mIT Microsoft Research

eight(z) = |¢1 1[@ € StrongSlates or & & WeakStates;
weghtlT) =\ 1 ife € IntermediateStates.

eg"(,):{ 1 ifz € {+0,1a,...,11,3,5,...,m}; HOW c.eN we Ver‘|p\7

-

N

—1 otherwise.

@

value (z) = sgn(z) - weight(z)

/* Functions for rounding state interactions */
4 ¢(z) = -1, if e = —1;1; if @ = L, otherwise
5 Ry (k) = ¢(k if k odd integer, k — 1 if k even) correcitness
6 Ri(k) = o(k if k odd integer, k + 1 if k even)

—1j41 ife = —1; for some index j < d

Shift-to-Zero(x) = { L ':)f”a“mwllégfm some index j < d au+o M&+‘ CG(17 _?

+0 if sgn(z) > 0
0 oherwise.

<

8 Sign-to-Zero(x: :{

9 procedure update(z, y)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

11 o R, (w)hm(l.);ruhu(u)) and y « Ry (uulue,(.z);uuhu,(y)

12 else if weight() - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then a’ < Shift-to-Zero(z) and y' « Sign-to-Zero(x)
14 else i « Shift-to-Zero(y) and a' < Sign-to-Zero(y)

15 elseif (z€{—1q,+14} and weight(y) =1 and sgn() # sgn(y)) or

16 (y € {—1a,+1q} and weight(z) = 1 and sgn(y) # sgn(x)) then

17 2’ + —0 and y' < +0
18 else
19 2’ « Shift-to-Zero(x) and y' « Shift-to-Zero(y)

Checking correctness—Early days

Model checkers:

« PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

Checking correctness—Early days

Model checkers:

« PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

On’y for PoPula‘/'ions of QXecl sizel

Checking correctness—Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

Checking correctness—Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

NO+ aV'l’OMa'l'iC!

Checking correctness—Early days

Theorem provers:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

CL.aNenée: ver*i-ﬁ,iné au+OMa+iCaII7

a_” sizes

Checking correctness—Decidability Acta Inf.'17

E., Ganty, Leroux, Majumdar Acta Inf."17
It is decidable if a population protocol is well specified
(i.e., if it computes some predicate).

Checking correctness—Decidability Acta Inf.'17

Checking correctness—Decidability Acta Inf.'17

Bottom confs.

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

T

Eilenberg and Schiitzenberger '69:
Semilinear set
— Presburger

Checking correctness—Decida Acta Inf.17

Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Reduction to the VAS reachability problem between Presburger sets

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
= Reduction to the VAS reachability problem (VAS engineering)

Checking correctness—Decidability Acta Inf.'17

Effectively Presburger set

!

Bottom confs.

T T

Eilenberg and Schiitzenberger '69: Leroux "11:
Semilinear set Effectively semilinear
— Presburger — effectively Presburger

Reduction to the VAS reachability problem between Presburger sets
= Reduction to the VAS reachability problem (VAS engineering)
= Decidable (Mayr '81, Kosaraju ‘83).

Checking correctness—Decidability Acta Inf.'17

E., Ganty, Leroux, Majumdar Acta Inf."17
It is decidable if a population protocol computes a given
predicate (Presburger formula).

Checking correctness—Decidability Acta Inf.'17

E., Ganty, Leroux, Majumdar Acta Inf."17

It is decidable if a population protocol computes a given
predicate (Presburger formula).

There is an algorithm that returns the predicate computed
by a well-specified protocol.

Checking correctness—Decidability Acta Inf.17

E., Ganty, Leroux, Majumdar Acta Inf."17
VAS reachability is reducible to the well-specification
problem for population protocols

Checking correctness—Decidability Acta Inf.17

E., Ganty, Leroux, Majumdar Acta Inf."17
VAS reachability is reducible to the well-specification
problem for population protocols

= Well specification is EXSPACE-hard, and all known
algorithms for it have hyper-ackermannian complexity

Checking correctness—Feasibility PODC'17

A class P of protocols is complete if for every
Presburger predicate ¢ some protocol in P
computes ¢

Checking correctness—Feasibility PODC'17

A class P of protocols is complete if for every
Presburger predicate ¢ some protocol in P
computes ¢

Goel: Find - comple-/'e class
of Pro+0cols verifiable in

reasonable +inne

Checking correctness—Feasibility PODC'17

Blondin, E., Jaax, Meyer , PODC'17
The class of protocols is
complete, and its verification problem is in DP.

Checking correctness—Feasibility

PODC'17

Intel Core i7-4810MQ CPU and 16 GB of RAM.

Protocol

Majority[1]

Approx. Majority2]
Broadcast[3]
Thresholdis]
Remainder(s]

Sick ninjasle]

Sick ninjas[7]
Poly-log sick ninjas

[1] Draief et al., 2012
[4][5] Angluin et al., 2006

[2] Angluin et al., 2007

Predicate Q|
x>y 4
Not well-specified 3
X1 V...V Xy 2
Z,-a;x,- <C 76
Z,-a;x, mod 70 = 1 72
X >50 51
X > 325 326
x> 8-10% 66

[6] Chatzigiannakis et al., 2010

[3] Clément et al., 2011
[7] Clément et al., 2011

Timel[s]
0.1

0.1

0.1
23759
3176.5
181.6
3470.8
12.79

Checking correctness—Feasibility PODC'17

Blondin, E., Jaax, Meyer , PODC'17
The class of protocols is
complete, and its verification problem is in DP.

Mission accOMPlisL.ecl.?

Checking correctness—Feasibility PODC'17

Blondin, E., Jaax, Meyer , PODC'17
The class of protocols is
complete, and its verification problem is in DP.

Mission accOMPlisL.ecl.?

Not yet. For some predicates no strongly silent
succinct protocols are known.

Checking correctness—Feasibility PODC'17

A class P of protocols is complete and succinct
if for every Presburger predicate ¢ some
protocol in P with log(|,|) states computes ¢

A class P of protocols is complete and efficient
if for every Presburger predicate ¢ some
protocol in P computes ¢ in O(n?logn) time.

Checking correctness—Feasibility PODC'17

Are s-/'ronély silent Pr‘O'/’OCOIS comple'f'e

af\c' succinet?

Checking correctness—Feasibility PODC'17

Are S'/'r‘or\élt, silent PPO'/’OCO!S comple‘/‘e

af\c' succinet?

Are S'lLr‘Of\éIV silent PPO'ILOC_OIS comPle'lLe
and eflicient?

Checking correctness—Feasibility PODC'17

Are s+r~onél~7 silent Pr-o+0cols comple‘/’e

af\c’ SUccinc')L.?

Ar‘e S‘lLr‘onéIV silent Pr‘O‘l‘Ocols comple‘lLe
and eflicient?

V\/L.c:vL s '/’L.e lowes+ exPe-c""ec:j +ine For a

comple-/'e class of PfO'/'Ocols.?

Checking correctness—Feasibility PODC'17

Are s+r~onél~7 silent PPO+OCOIS comple‘/’e

af\c’ SUccinc')L.?

Ar‘e s+r‘onél\7 silent Pr‘O‘l‘Ocols comple'/'e
and eflicient?

Whet is the lowest exPec""ec:j +ine For a

comple'/'e class of PfO'/'Ocols.?

...ar\cl por a COMPle‘lLe c\"\cl SUcci'\c_‘IL CIaSS.?

Checking correctness—Feasibility PODC'17

Are s+r~ongl7 silent PPO'/’OCOIS comple‘/’e

aﬂc’ SUccinc')L?

Ar‘e S'iLr‘onély silent Pr‘O‘l‘Ocols comple‘lLe
and eflicient?

Whet is the lowest exPec"Lec‘ +ine For a

comple'/'e class of PfO'/'Ocols.?

...a’\c‘ por a C.OMPle‘lLe c\"\cl SUC_C_I"\C_+ CIaSS.?

cand For a comple'/'e and eflicient

claSS.?

Checking correctness—Feasibility PODC'17

Are s+r~ongl7 silent PPO'/’OCOIS comple‘/’e
aﬂc’ succinet? OPen

Ar‘e S'iLr‘onély silent Pr‘O‘l‘Ocols comple‘lLe
and eflicient? OPen

Whet is the lowest exPec"Lec‘ +ine For a
comple'/'e class of PfO'/'Ocols.? OPen

...a’\c‘ por a C.OMPle‘lLe c\"\cl SUC_C_I"\C_+ CIaSS.?
OPen

cand For a comple'/'e and eflicient

class? OPen

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Checking expected termination time Blondin, E., Kucera CONCUR'18

Our approach:

« Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive upper bounds on Inter(n) from
stages structure

Checking expected termination time Blondin, E., Kucera CONCUR'18

B,R — b,b

B,r — B,b BVRA A —q

b R o) e O(n*log n)
R — r og

) bl 0(1)

b,r — b,b f—/ L \

O(BAA-q O RA/\ﬁq) O(-BV —-R) A b A =b!
q#B g#R

O(n*logn)

O(exp(n))

O(-BA-RAbA-T) OB A-RAbA-I) O(-BARA=bAT)

Checking expected termination time Blondin, E., Kucera CONCUR'18

- Prototype implemented in @ python +
Microsoft Z3

Checking expected termination time Blondin, E., Kucera CONCUR'18

- Prototype implemented in @ python +
Microsoft Z3

« Can report: O(1),0(n?),0(n?logn), O(n?), O(poly(n))
or O(exp(n))

Checking expected termination time Blondin, E., Kucera CONCUR'18

- Prototype implemented in @ python +
Microsoft Z3

« Can report: O(1),0(n?),0(n?logn), O(n?), O(poly(n))
or O(exp(n))

* Decidability of clecking Inter(n) > f(n) 7
OP@V\

Sensei lll's questions

WL‘a:{' Pr‘ec’ica‘(’es can we comPU‘('e.? J

How Last can we compu+e +Len? }

How SUccinc_‘lLly can we C_OMPU'lLe +L.em.? }

How can | cleck correctness? j

How can | cleck e;-paciencv.’.? }

(N () () () ()

T o conclude ... |

Peregrine: a tool for population protocols Blondin, E., Jaax CAV'18

Peregrine: »Haskell + microsoft Z3 + JavaScript

peregrine.model.in.tum.de

Design of protocols

Manual and automatic simulation

Statistics of properties such as termination time

Automatic verification of correctness

More to come!

Population protocols are a great model to
study fundamental questions of distributed
computation:

- Power of anonymous computation
- Network-independent algorithms
* Role of leaders

- Emergent behaviour and its limits

...and of formal verification:

- Verification of stochastic parameterized
systems (parameterization, liveness under
fairness)

- Automatic synthesis of parameterized
systems

Join the team!

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

« Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

- Start of the project: Sept. 1, 2018

- Start of employment: flexible, from Sept. 1, 2018
to about Sept. 1, 2019

T HANIK yOUI

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

T HANIK yOUI

file:///C:/Users/Esparza/Desktop/MisCharlas/LICS18/html/example4.html

