State Complexity of Population Protocols

Javier Esparza

Joint work with Michael Blondin, Philipp Czerner, Blaise Genest, Roland Guttenberg, Martin Helfrich, Stefan Jaax, and Jérôme Leroux

- Deaf Black Ninjas meet at a Zen garden in the dark to attack a castle
- They'll only attack if at least 100 ninjas show up

- Deaf Black Ninjas meet at a Zen garden in the dark to attack a castle
- They'll only attack if at least 100 ninjas show up

- Deaf Black Ninjas meet at a Zen garden in the dark to attack a castle
- They'll only attack if at least 100 ninjas show up
- How can they find out?

• When two ninjas bump into each other, one of them gives the other all their pebbles.

• When two ninjas bump into each other, one of them gives the other all their pebbles.

If at least 100 ninjas, some ninja eventually collects at least 100 pebbles \rightarrow knows that at least 100 ninjas.

• When two ninjas bump into each other, one of them gives the other all their pebbles.

If at least 100 ninjas, some ninja eventually collects at least 100 pebbles \rightarrow knows that at least 100 ninjas.

• Ninjas who know they are at least 100 spread the word.

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m,n) \mapsto (m+n,0)$ if m+n < 4

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m,n) \mapsto (m+n,0)$ if m+n < 4

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m,n) \mapsto (m+n,0)$ if m+n < 4

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m,n) \mapsto (m+n,0)$ if m+n < 4

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m,n) \mapsto (m+n,0)$ if m+n < 4

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m,n) \mapsto (m+n,0)$ if m+n < 4

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m,n) \mapsto (m+n,0)$ if m+n < 4

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

- Each ninja is in a state of {0, 1, 2, 3, 4}
- Initially all ninjas in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$

Population protocols: formal model to describe swarms of mobile agents that interact randomly to decide a property of their initial configuration

Population protocols

C.

Population protocols: formal model to describe **swarms of mobile agents** that interact randomly to decide a property of their initial configuration

Examples of properties: Does the initial configurationcontain at least 100 agents? ...contain more agents in state A than in state B ?

Population protocols: formal model to describe **swarms of mobile agents** that interact randomly to decide a property of their initial configuration

Since the late 00s: model of natural computation.

Agents \rightarrow atoms/molecules

Chemical Reaction Networks

 $\mathsf{CH}_4 \textbf{ + 2 } \mathsf{O_2} \rightarrow \mathsf{CO_2} \textbf{ + 2 } \mathsf{H_2O}$

An NSF Expedition in Computing (2008-2018)

DNA Implementation of the Approximate Majority algorithm

nature

Programmable chemical controllers made from DNA

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik 🛤 & Georg Seelig 🎟

- States:
- Opinions:
- Initial states:
- Transitions:

- finite set Q
- $O:Q\to\{\hbox{\rm Im}\ ,\hbox{\rm Im}\ \}$
- $I \subseteq Q$
- $T \subseteq Q^2 \times Q^2$

- States:
- Opinions:
- Initial states:
- Transitions:

- finite set Q
- $I \subseteq Q$
- $T \subseteq Q^2 \times Q^2$

- States:
- Opinions:
- Initial states:
- Transitions:

- finite set Q
- $0: Q \to \{ {\rm I} \ , {\rm I} \ , {\rm I} \ \}$
- $I \subseteq Q$
 - $T \subseteq Q^2 \times Q^2$

- States:
- Opinions:
- Initial states:
- Transitions:

- finite set Q
- $\mathsf{O}:\mathsf{Q}\to\{\blacksquare \hspace{-0.5mm} \stackrel{\frown}{\longrightarrow} , \blacksquare \hspace{-0.5mm} \stackrel{\frown}{\longrightarrow} \}$
- $I \subseteq Q$
- $T \subseteq Q^2 \times Q^2$

- States:
- Opinions:
- Initial states:
- Transitions:
- Configurations: $Q \rightarrow \mathbb{N}$

- finite set Q
- $0: Q \rightarrow \{$
- $I \subseteq Q$
- $T \subseteq Q^2 imes Q^2$

Population protocols: formal model

- States:
- Opinions:
- Initial states:
- Transitions:

- finite set O
- $O: Q \rightarrow \{ \square, \square \}$
- $I \subset Q$
- $T \subset Q^2 \times Q^2$
- Configurations: $Q \rightarrow \mathbb{N}$
- Initial configurations: $I \rightarrow \mathbb{N}$

Reachability graph for an initial configuration

Underlying Markov chain:

(pairs of agents are picked uniformly at random)

Run: infinite path from initial configuration

Protocol decides φ : InitC \rightarrow {0, 1}: for every $C \in$ InitC, the runs starting at C reach **stable consensus** $\varphi(C)$ with probability 1.

Protocol decides φ : InitC \rightarrow {0, 1}: for every $C \in$ InitC, the runs starting at C reach stable consensus $\varphi(C)$ with probability 1.

Our protocol decides the predicate $x \ge 4$

The quest for succinct protocols

Protocol for $\mathbf{x} \geq \mathbf{c}$

- States: $\{0, 1, 2, \dots, c\}$ $\rightarrow c + 1$ states
- Initially, all agents in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < c
- $(m, n) \mapsto (c, c)$ if $m + n \ge c$

Protocol for $\mathbf{x} \geq \mathbf{c}$

- States: $\{0, 1, 2, \dots, c\}$ $\rightarrow c + 1$ states
- Initially, all agents in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < c
- $(m, n) \mapsto (c, c)$ if $m + n \ge c$

Exponentially many states in $\log c$, the length of $X \ge c$

Protocol for $\mathbf{x} \geq \mathbf{c}$

- States: $\{0, 1, 2, \dots, c\}$ $\rightarrow c + 1$ states
- Initially, all agents in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < c
- $(m, n) \mapsto (c, c)$ if $m + n \ge c$

Exponentially many states in log c, the length of $x \ge c$ Can we do better?

Protocol for $\mathbf{x} \geq \mathbf{c}$

- States: $\{0, 1, 2, \dots, c\}$ $\rightarrow c + 1$ states
- Initially, all agents in state 1
- $(m, n) \mapsto (m + n, 0)$ if m + n < c
- $(m, n) \mapsto (c, c)$ if $m + n \ge c$

Exponentially many states in log c, the length of $x \ge c$ Can we do better?

State complexity of $x \ge c$: minimal number of states of a protocol deciding it.

 $\bullet \; \text{Agent} \to \text{molecule}$

- $\bullet \; \text{Agent} \to \text{molecule}$
- State \rightarrow current **species** of the molecule

- $\bullet \; \text{Agent} \to \text{molecule}$
- State \rightarrow current **species** of the molecule
- Transition ightarrow chemical reaction

$$CH_4 + 2\,O_2 \ \, \rightarrow \ \, CO_2 + 2\,H_2O$$

- $\bullet \; \text{Agent} \to \text{molecule}$
- State \rightarrow current **species** of the molecule
- Transition ightarrow chemical reaction

 $\begin{array}{rcl} \mathsf{CH}_4 + 2\,\mathsf{O}_2 & \rightarrow & \mathsf{CO}_2 + 2\,\mathsf{H}_2\mathsf{O} \\ \\ (\mathsf{A},\,\mathsf{B},\,\mathsf{B}) & \mapsto & (\mathsf{C},\,\mathsf{D},\,\mathsf{D}) \end{array}$

Color should change when the number of molecules in the flask reaches **c**.

We need to implement a protocol for $\mathbf{x} \geq \mathbf{c}$.

Color should change when the number of molecules in the flask reaches **c**.

We need to implement a protocol for $\mathbf{x} \geq \mathbf{c}$.

Avogadro's number is $\sim 6 \times 10^{23}$, so we need the protocol for $\rm c \sim 2^{60}.$

Color should change when the number of molecules in the flask reaches **c**.

We need to implement a protocol for $\mathbf{x} \geq \mathbf{c}$.

Avogadro's number is $\sim 6 \times 10^{23}$, so we need the protocol for $\rm c \sim 2^{60}.$

But in chemical reaction networks

states = # chemical species

We need **2⁶⁰ species**.

The quest for succinct protocols

Protocol for $x \ge 2^k$

- States: $\{0, 1, 2, \dots, 2^k\}$ $\rightarrow 2^k + 1$ states
- Initially, all agents in state 1
- $(m, n) \mapsto (m + n, 0)$ if $m + n < 2^k$
- $(m, n) \mapsto (2^k, 2^k)$ if $m + n \ge 2^k$

The quest for succinct protocols

Protocol for
$$\mathbf{x} \geq \mathbf{2}^{k}$$

- States: $\{0, 1, 2, \dots, 2^k\}$ $\rightarrow 2^k + 1$ states
- Initially, all agents in state 1
- $(m, n) \mapsto (m + n, 0)$ if $m + n < 2^k$
- $(m, n) \mapsto (2^k, 2^k)$ if $m + n \ge 2^k$

Protocol for
$$\mathbf{x} \geq \mathbf{2}^{k}$$

- States: $\{0, 2^0, \dots, 2^{k-1}, 2^k\}$ $\rightarrow \mathbf{k} + \mathbf{2}$ states
- Initially, all agents in state 2⁰
- $(\mathbf{2}^{\ell}, \mathbf{2}^{\ell}) \mapsto (\mathbf{2}^{\ell+1}, \mathbf{0})$ if $\ell + \mathbf{1} \leq \mathbf{k}$
- $(\mathbf{2^k}, \mathbf{n}) \mapsto (\mathbf{2^k}, \mathbf{2^k})$

Protocol for $x \ge 2^k$

Extensible to arbitrary $x \ge c$ predicates: $\mathcal{O}(\log c)$ states (not totally trivial).

- States: $\{0, 2^0, \dots, 2^{k-1}, 2^k\}$ $\rightarrow \mathbf{k} + \mathbf{2}$ states
- Initially, all agents in state 2⁰
- $(\mathbf{2}^{\ell}, \mathbf{2}^{\ell}) \mapsto (\mathbf{2}^{\ell+1}, \mathbf{0})$ if $\ell + \mathbf{1} \leq k$

•
$$(\mathbf{2}^{k}, \mathbf{n}) \mapsto (\mathbf{2}^{k}, \mathbf{2}^{k})$$

Protocol for $x \ge 2^k$

Extensible to arbitrary $x \ge c$ predicates: $\mathcal{O}(\log c)$ states (not totally trivial).

Can we do even

better?

Is O(log log C) possible?

- States: $\{0, 2^0, \dots, 2^{k-1}, 2^k\}$ $\rightarrow \mathbf{k} + \mathbf{2}$ states
- Initially, all agents in state 2⁰
- $(\mathbf{2}^{\ell}, \mathbf{2}^{\ell}) \mapsto (\mathbf{2}^{\ell+1}, \mathbf{0})$ if $\ell + \mathbf{1} \leq \mathbf{k}$

•
$$(\mathbf{2}^{k}, \mathbf{n}) \mapsto (\mathbf{2}^{k}, \mathbf{2}^{k})$$

Not for every **c** ...

Blondin, E., Jaax STACS'18 There exist infinitely many **c** such that every protocol for $\mathbf{x} \ge \mathbf{c}$ has at least $(\log \mathbf{c})^{1/4}$ states Not for every **c** ...

Blondin, E., Jaax STACS'18 There exist infinitely many **c** such that every protocol for $\mathbf{x} \ge \mathbf{c}$ has at least $(\log \mathbf{c})^{1/4}$ states

...but for infinitely many **c**, if we allow leaders.

Initially ninjas are blue or red.

Question to be decided: same number of blue and red ninjas?

<u>One</u> leader helps the ninjas. Leader searches for pairs of blue-red ninjas, "neutralizing them", until no such pairs left.

Initially ninjas are blue or red.

Question to be decided: same number of blue and red ninjas?

<u>One</u> leader helps the ninjas. Leader searches for pairs of blue-red ninjas, "neutralizing them", until no such pairs left.

Initially ninjas are blue or red.

Question to be decided: same number of blue and red ninjas?

<u>One</u> leader helps the ninjas. Leader searches for pairs of blue-red ninjas, "neutralizing them", until no such pairs left.

A protocol with a leader for x = y

Transitions:

Blondin, E., Jaax STACS'18

Blondin, E., Jaax STACS'18

For infinitely many **c** there is a protocol with a leader and $\mathcal{O}(\log \log \mathbf{c})$ states that computes $\mathbf{x} \ge \mathbf{c}$

Proof:

Mayr and Meyer '82: For every *n* there is a <u>reversible</u> Petri net of size O(n) and two places **s**, **t** such that the shortest firing sequence leading from **s** to **t** has length $\Theta(2^{2^n})$

Blondin, E., Jaax STACS'18

For infinitely many **c** there is a protocol with a leader and $\mathcal{O}(\log \log \mathbf{c})$ states that computes $\mathbf{x} \ge \mathbf{c}$

Proof:

For every n there is a <u>reversible</u> protocol with a leader and O(n) states and transitions s.t.

- The leader may move from 1/2 to 1/2 iff the number of

Blondin, E., Jaax STACS'18

For infinitely many **c** there is a protocol with a leader and $\mathcal{O}(\log \log \mathbf{c})$ states that computes $\mathbf{x} \ge \mathbf{c}$

Proof:

For every n there is a <u>reversible</u> protocol with a leader and O(n) states and transitions s.t.

- The leader may move from $rac{1}{rac{p}{r}}$ to $rac{1}{rac{p}{r}}$ iff the number of

rightarrow is at least $2^{2^n} \rightarrow$ by reversibility it eventually will!

Blondin, E., Jaax STACS'18

Blondin, E., Jaax STACS'18

Blondin, E., Jaax STACS'18

How far can we go?

Every protocol for $\mathbf{x} \geq \mathbf{c}$, with or without leaders, has $\Omega(\alpha(\mathbf{c}))$ states, where α is the inverse of (some variant of) the Ackermann function.

Every protocol for $\mathbf{x} \geq \mathbf{c}$, with or without leaders, has $\Omega(\alpha(\mathbf{c}))$ states, where α is the inverse of (some variant of) the Ackermann function.

Proof technique for all bounds:

Find numbers **a**, **b** such that

- if protocol outputs \square for a + b, then it outputs \square for $a + \lambda b$ for every $\lambda \in \mathbb{N}$.

Then protocol outputs \square for **a** and \square for **a** + **b**, which implies $a < c \le a + b$.

Every protocol for $\mathbf{x} \geq \mathbf{c}$, with or without leaders, has $\Omega(\alpha(\mathbf{c}))$ states, where α is the inverse of (some variant of) the Ackermann function.

Proof technique for all bounds:

Find numbers **a**, **b** such that

- if protocol outputs \square for a + b, then it outputs \square for $a + \lambda b$ for every $\lambda \in \mathbb{N}$.

Then protocol outputs \Box for **a** and \Box for **a** + **b**, which implies $a < c \le a + b$.

Existence of \boldsymbol{a} and $\boldsymbol{a} + \boldsymbol{b}$ derived from **Dickson's lemma**.

Every leaderless protocol for $\mathbf{x} \ge \mathbf{c}$ has $\Omega(\log \log \log \mathbf{c})$ states.

Every leaderless protocol for $\mathbf{x} \geq \mathbf{c}$ has $\Omega(\log \log \log \mathbf{c})$ states.

Czerner, E., Leroux 21, Submitted

Every leaderless protocol for $\mathbf{x} \geq \mathbf{c}$ has $\Omega(\log \log \mathbf{c})$ states.

Every leaderless protocol for $\mathbf{x} \geq \mathbf{c}$ has $\Omega(\log \log \log \mathbf{c})$ states.

Czerner, E., Leroux 21, Submitted

Every leaderless protocol for $\mathbf{x} \geq \mathbf{c}$ has $\Omega(\log \log \mathbf{c})$ states.

Bound on $\boldsymbol{a} + \boldsymbol{b}$ derived from

- **Rackoff's theorem** (used to obtain a clover of the set of configurations that are a stable consensus whose elements have double exponential norm).
- **Pottier's small basis theorem** for systems of Diophantine equations.

Leroux 21, arXiv

Every protocol for $\mathbf{x} \geq \mathbf{c}$, with or without leaders, has $\Omega((\log \log \mathbf{c})^{1/3})$ states.

Leroux 21, arXiv

Every protocol for $\mathbf{x} \ge \mathbf{c}$, with or without leaders, has $\Omega((\log \log \mathbf{c})^{1/3})$ states.

Bound uses all of the above, plus some stuff I'll leave to Jérôme ...

Summary

For every \boldsymbol{c} , there is a leaderless protocol with $\mathcal{O}(\log \boldsymbol{c})$ states.

For every **c**, every protocol, with or without a leader, has $\Omega((\log \log c)^{1/3})$ states.

For infinitely many \boldsymbol{c} , there is a protocol with a leader with $\mathcal{O}(\log \log \boldsymbol{c})$ states.

Open question: Are there leaderless protocols with $\mathcal{O}(\log \log c)$ states for infinitely many c ?

State complexity of general Presburger predicates

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols decide precisely the predicates definable in Presburger arithmetic, i.e. $FO(\mathbb{N}, +, <)$

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols decide precisely the predicates definable in Presburger arithmetic, i.e. $FO(\mathbb{N}, +, <)$

PPs for all Presburger predicates

Using that Presburger arithmetic has quantifier elimination, Angluin et al. proceed as follows:

1) Exhibit PPs for threshold and modulo predicates

 $a_1x_1 + \cdots + a_kx_k \leq b$ $a_1x_1 + \cdots + a_kx_k \equiv b \mod c$

2) Show that predicates decidable by PPs are closed under negation and conjunction

State complexity of general Presburger predicates

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols decide precisely the predicates definable in Presburger arithmetic, i.e. $FO(\mathbb{N}, +, <)$

Exponential state complexity in both • the number of bits of the coefficients, and • the number of threshold and

modulo predicates.

State complexity of general Presburger predicates

Angluin, Aspnes, Eisenstat Dist. Comp.'07

Population protocols decide precisely the predicates definable in Presburger arithmetic, i.e. $FO(\mathbb{N}, +, <)$

Can polynomial state complexity be achieved ?

Protocol for $\mathbf{x} \geq \mathbf{2}^{k}$

States: $\{0, 2^0, \dots, 2^k\}$ Initially: all ninjas in state 1 $(2^{\ell}, 2^{\ell}) \mapsto (2^{\ell+1}, 0)$ if $\ell + 1 \le k$ $(2^k, n) \mapsto (2^k, 2^k)$

Protocol for
$$\mathbf{x} \ge \mathbf{2}^k$$

States: $\{0, 2^0, \dots, 2^k\}$ Initially: all ninjas in state 1 $(2^{\ell}, 2^{\ell}) \mapsto (2^{\ell+1}, 0)$ if $\ell + 1 \leq k$ $(2^k, n) \mapsto (2^k, 2^k)$

Protocol for
$$\mathbf{x} \geq \mathbf{2}^{k}$$

States: $\{0, 2^0, \dots, 2^k\}$ Initially: all ninjas in state 1 $(2^{\ell}, 2^{\ell}) \mapsto (2^{\ell+1}, 0)$ if $\ell + 1 \leq k$ $(2^k, n) \mapsto (2^k, 2^k)$

Protocol for
$$\mathbf{x} \geq \mathbf{2}^{k}$$

States: $\{0, 2^0, \dots, 2^k\}$ Initially: all ninjas in state 1 $(2^{\ell}, 2^{\ell}) \mapsto (2^{\ell+1}, 0)$ if *ℓ* + 1 < *k* $(2^k, n) \mapsto (2^k, 2^k)$ A ninja that "climbs the ladder" attracts all others to the top

Protocol for
$$x - y \ge 2^k$$

States: $\{-1, 0, 2^0, \dots, 2^k\}$
Initially: x, y ninjas in $1, -$
 $(2^{\ell}, 2^{\ell}) \mapsto (2^{\ell+1}, 0)$
if $\ell + 1 \le k$
 $(2^k, n) \mapsto (2^k, 2^k)$
 $(1, -1) \mapsto (0, 0)$

Protocol for
$$x-y \ge 2^k$$

States: $\{-1, 0, 2^0, \dots, 2^k\}$
Initially: x, y ninjas in $1, -(2^\ell, 2^\ell) \mapsto (2^{\ell+1}, 0)$
if $\ell + 1 \le k$
 $(2^k, n) \mapsto (2^k, 2^k)$
 $(1, -1) \mapsto (0, 0)$
Not yet
correct!

Protocol for
$$x - y \ge 2^k$$

States: $\{-1, 0, 2^0, \dots, 2^k\}$
Initially: x, y ninjas in $1, -1$
 $(2^{\ell}, 2^{\ell}) \mapsto (2^{\ell+1}, 0)$
if $\ell + 1 \le k$
 $(2^k, n) \mapsto (2^k, 2^k)$
 $(1, -1) \mapsto (0, 0)$
 $(2^{\ell}, 0) \mapsto (2^{\ell-1}, 2^{\ell-1})$
if $\ell < 1$

Blondin, E., Genest, Helfrich, Jaax STACS'20

Every predicate φ of quantifier-free Presburger arithmetic can be decided by a leaderless protocol with a polynomial number of states in $|\varphi|$.

Blondin, E., Genest, Helfrich, Jaax STACS'20

Every predicate φ of quantifier-free Presburger arithmetic can be decided by a leaderless protocol with a polynomial number of states in $|\varphi|$.

Construction

Quite sophisticated "protocol engineering" !

1) Use "up and down" ladders plus other constructions to give PPs for threshold and modulo predicates with polynomial number of states.

2) Given protocols with sets of states n_1 and n_2 for φ_1 and φ_2 , construct a protocol for $\varphi_1 \land \varphi_2$ with $\mathcal{O}(n_1 + n_2)$ states using protocols with *reversible dynamic initialization*.

But are they fast ... ?

Protocol for
$$x - y \ge 2^k$$

States: $\{-1, 0, 2^0, \dots, 2^k\}$
Initially: x, y) ninjas in $1, -1$
 $(2^{\ell}, 2^{\ell}) \mapsto (2^{\ell+1}, 0)$
if $\ell + 1 \le k$
 $(2^k, n) \mapsto (2^k, 2^k)$
 $(1, -1) \mapsto (0, 0)$
 $(2^{\ell}, 0) \mapsto (2^{\ell-1}, 2^{\ell-1})$
if $\ell < 1$

Very slow!

Exponential expected time to convergence in the number of ninjas.

Protocols of Angluin et al. run in $\mathcal{O}(n \log n)$ time.

Czerner, Guttenberg, Helfrich, E. Submitted

Every predicate φ of quantifier-free Presburger arithmetic can be decided by a leaderless protocol

- with $|\varphi|$ states,
- running in $\mathcal{O}(\mathbf{n})$ expected time for all inputs of size $\Omega(|\varphi|)$.
One of the ideas ...

One of the ideas ...

One of the ideas ...

State complexity of population protocols is a fundamental question of distributed computation:

- Crucial for applications in natural computing
- Limits of collective knowledge
- Role of leaders

State complexity of counting predicates $x \ge c$

Leaderless protocols

- $\Omega((\log \log c)^{1/3})$ and $\mathcal{O}(\log c)$ states.
- Not known if $\Theta((\log \log c)^{1/3})$ achievable for some family of c.

State complexity of counting predicates $x \ge c$

Protocols with a leader

- $\Omega((\log \log c)^{1/3})$ and $\mathcal{O}(\log c)$ states.
- $\Theta(\log \log c)$ for infinitely many c.

Succint protocols for Presburger predicates:

StatesExpected timeAngluin et al. '04 $2^{\Theta(|\varphi|)}$ $\Theta(n \log n)$ Blondin et al. '20 $poly(|\varphi|)$ $2^{\Omega(n)}$ Czerner et al. '21 $\Theta(|\varphi|)$ $\Theta(n)$
for inputs of size $\Omega(|\varphi|)$

THANK YOU!