Theorem: If every path of \(N \) contains a step needed at \(M_0 \), then \((N, M_0) \) is live.

Proof: Let \(M \) be a marking of \(N \). A transient is:
- dead at \(M \) if it is not enabled at any marking reachable from \(M \).
- live at \(M \) if it is "cannot die", i.e., it is not (invariantly) dead at any marking reachable from \(M \).
- marked at \(M \) if there is \(M \rightarrow M' \) such that it is dead at \(M' \).

Claim: There is a reachable marking \(M' \) such that every transient is either dead or marked at \(M' \).

Claim: For every \(t \) dead at \(M \), there exists some \(s \in T \) such that:
- \(M(s) = 0 \) and
- every \(t' \in s' \) is dead at \(M \).

Proof of the claim: Let \(t \) be dead at \(M \) and let \(\{s_1, \ldots, s_n\} \) be the places in \(t \) not marked at \(M \). Assume that for every \(s_i \), there is \(t_i \in s_i \) such that \(M \rightarrow M_i \). Since \(N \) is free-choice, there are markings \(M_i \rightarrow M_i \) such that:

Conclude why that \(t \) is dead at \(M' \).
Theorem. If (M, M_0) is free, dense and live, then every region of M contains a trap located at M_0.

Proof sketch. Let R be a region, and let Q be the maximal trap included in R. Let $D = R \setminus Q$.

Assume Q is actually connected.

We find a strongly connected τ that empties D without adding states to Q. After the execution of τ, R is empty, which implies that (M, M_0) is not live.

The sequence τ is constructed as follows:

- We construct an allocation that ensures to each place S a transition of S. The firing sequence τ only contains allocated transitions.

We need to guarantee:

- the allocation does not define cycles
- the allocation does not allocate any transition of Q (this would undo the trap)
- while there are tokens in D we can always fire allocated transitions you and you
Definition: Let x be a place or transition of a net $N = (S, T, F)$. The cluster of x, denoted by $[x]$, is the minimal set of nodes such that:
- $x \in [x]$
- If $s \in [x] \cap S$ then $s \subseteq [x]$
- If $t \in [x] \cap T$ then $t \subseteq [x]$

Proposition: Every node of a net belongs to exactly one cluster.

The set of clusters is a partition of $S \cup T$.

Definition: Let $N = (S, T, F)$ be a net, and let C be a set of clusters of N. An allocation of C is a function $\alpha : C \rightarrow T$ satisfying $\alpha(c) \in c$.

Proposition: Let N be a place-choice net, let R be a set of places, let Q be the maximal trap included in R, and let $D = R \setminus Q$.

Let $C = \{ [t] \mid t \in D^+ \}$.

There exists a circuit-free allocation $\alpha : C \rightarrow T$ such that $\alpha(c) \subseteq Q$.

(circuit-free: the set of runs $\{ (s, \nu(o)) \mid s \in D \} \cup F \cap (T \times \bar{I})$ does not contain any circuit)

Proof:

By induction on $|R|$.

If $|R| = 0$, then $C = \emptyset$.

If $|R| > 0$, if R is a trap then $C = \emptyset$.

If R is not a trap, then:

Let $R^1 = R \setminus \{t\}$, $D^1 = R^1 \setminus Q^1$, $Q^1 = \{ [t] \mid t \in D^+ \}$.

By induction hypothesis, there exists $\alpha^1 : C^1 \rightarrow T$ circuit-free for D^1 such that $\alpha^1(c) \subseteq D^1$.

Define $\alpha : C \rightarrow T$ by

$$\alpha(c) = \begin{cases} \alpha^1(c) & \text{if } c \neq [t] \\ \{t\} & \text{if } c = [t] \end{cases}$$

We have to prove:
- $\alpha(C) = \alpha^1(C^1) \cup \{t\}$ (well-defined)
- α is circuit-free for D
- α puts t in Q whenever $t \in Q$.
Proposition: Let \(\pi \) be an allocation of a logic-free choice system with domain \(C \). Then \(\pi \) is in infinite occurrence sequence \(S \) if and only if

- \(\pi \) never allocated transition infinitely often
- \(\pi \) never fires any non-allocated transition of \(C \)

Proof: Immediate consequence of

\[
\begin{array}{c}
\text{Condition: The Hansen pattern for free-choice net}
\end{array}
\]

is \(\text{NP} \)-complete

Proof: \(\text{NP} \)-hardness: by reduction from \(\text{SAT} \)

- Membership in \(\text{NP} \): given a system (or just its \(\pi \)
- Compute the legal tree on the \(\pi \)
- Check: the tree is empty at \(\mu_0 \)