Logic
Logics on words

• Regular expressions give operational descriptions of regular languages.

• Often the natural description of a language is declarative:
 – even number of a's and even number of b's vs.
 \((aa + bb + (ab + ba)(aa + bb)^*(ba + ab))^*\)
 – words not containing ‘hello’

• Goal: find a declarative language able to express all the regular languages, and only the regular languages.
Logics on words

• Idea: use a logic that has an interpretation on words
• A formula expresses a property that each word may satisfy or not, like
 – the word contains only a's
 – the word has even length
 – between every occurrence of an a and a b there is an occurrence of a c
• Every formula (indirectly) defines a language: the language of all the words over the given fixed alphabet that satisfy it.
First-order logic on words

• Atomic formulas: for each letter a we introduce the formula $Q_a(x)$, with intuitive meaning: the letter at position x is an a.
First-order logic on words: Syntax

- Formulas constructed out of atomic formulas by means of standard “logic machinery”:
 - Alphabet $\Sigma = \{a, b, \ldots\}$ and position variables $V = \{x, y, \ldots\}$
 - $Q_a(x)$ is a formula for every $a \in \Sigma$ and $x \in V$.
 - $x < y$ is a formula for every $x, y \in V$.
 - If $\varphi, \varphi_1, \varphi_2$ are formulas then so are $\neg \varphi$ and $\varphi_1 \lor \varphi_2$.
 - If φ is a formula then so is $\exists x \varphi$ for every $x \in V$.
Abbreviations

\[\varphi_1 \land \varphi_2 \equiv \neg (\neg \varphi_1 \lor \neg \varphi_2) \]
\[\varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2 \]
\[\varphi_1 \leftrightarrow \varphi_2 \equiv \neg (\varphi_1 \lor \varphi_2) \lor \neg (\neg \varphi_1 \lor \neg \varphi_2) \]
\[\forall x \varphi \equiv \neg \exists x \neg \varphi \]

first(x) :=
last(x) :=
y = x + 1 :=
y = x + 2 :=
y = x + (k + 1) :=
Examples (without semantics yet)

- “The last letter is a b and before it there are only a’s.”

- “Every a is immediately followed by a b.”

- “Every a is immediately followed by a b, unless it is the last letter.”

- “Between every a and every later b there is a c.”
Examples (without semantics yet)

• “The last letter is a b and before it there are only a’s.”

$$\exists x \ Q_b(x) \land \forall x \ (\text{last}(x) \rightarrow Q_b(x) \land \neg \text{last}(x) \rightarrow Q_a(x))$$

• “Every a is immediately followed by a b.”

• “Every a is immediately followed by a b, unless it is the last letter.”

• “Between every a and every later b there is a c. ”
Examples (without semantics yet)

- “The last letter is a b and before it there are only a’s.”

\[\exists x \ Q_b(x) \land \forall x \ (\text{last}(x) \rightarrow Q_b(x) \land \neg \text{last}(x) \rightarrow Q_a(x)) \]

- “Every a is immediately followed by a b.”

\[\forall x \ (Q_a(x) \rightarrow \exists y \ (y = x + 1 \land Q_b(y))) \]

- “Every a is immediately followed by a b, unless it is the last letter.”

- “Between every a and every later b there is a c.”
Examples (without semantics yet)

- “The last letter is a b and before it there are only a’s.”

\[\exists x \ Q_b(x) \land \forall x \ (\text{last}(x) \rightarrow Q_b(x) \land \neg \text{last}(x) \rightarrow Q_a(x)) \]

- “Every a is immediately followed by a b.”

\[\forall x \ (Q_a(x) \rightarrow \exists y \ (y = x + 1 \land Q_b(y))) \]

- “Every a is immediately followed by a b, unless it is the last letter.”

\[\forall x \ (Q_a(x) \rightarrow \forall y \ (y = x + 1 \rightarrow Q_b(y))) \]

- “Between every a and every later b there is a c.”
Examples (without semantics yet)

- “The last letter is a b and before it there are only a’s.”

\[\exists x \ Q_b(x) \land \forall x (\text{last}(x) \rightarrow Q_b(x) \land \neg \text{last}(x) \rightarrow Q_a(x)) \]

- “Every a is immediately followed by a b.”

\[\forall x (Q_a(x) \rightarrow \exists y (y = x + 1 \land Q_b(y))) \]

- “Every a is immediately followed by a b, unless it is the last letter.”

\[\forall x (Q_a(x) \rightarrow \forall y (y = x + 1 \rightarrow Q_b(y))) \]

- “Between every a and every later b there is a c."

\[\forall x \forall y (Q_a(x) \land Q_b(y) \land x < y \rightarrow \exists z (x < z \land z < y \land Q_c(z))) \]
First-order logic on words: Semantics

• Formulas are interpreted on pairs \((w, J)\) called interpretations, where

 – \(w\) is a word, and

 – \(J\) assigns positions to the free variables of the formula (and maybe to others too—who cares)

• It does not make sense to say a formula is true or false: it can only be true or false for a given interpretation.

• If the formula has no free variables (if it is a sentence), then for each word it is either true or false.
• Satisfaction relation:

\[(w, J) \models Q_a(x) \iff w[J(x)] = a\]
\[(w, J) \models x < y \iff J(x) < J(y)\]
\[(w, J) \models \neg \varphi \iff (w, J) \not\models \varphi\]
\[(w, J) \models \varphi_1 \lor \varphi_2 \iff (w, J) \models \varphi_1 \text{ or } (w, J) \models \varphi_2\]
\[(w, J) \models \exists x \varphi \iff |w| \geq 1 \text{ and some } i \in \{1, \ldots, |w|\} \text{ satisfies } (w, J[i/x]) \models \varphi\]

• More logic jargon:
 – A formula is **valid** if it is true for all its interpretations
 – A formula is **satisfiable** if it is true for at least one of its interpretations
The empty word ...

- ... is as usual a pain in the eh, neck.
- It satisfies all universally quantified formulas, and no existentially quantified formula.
Can we only express regular languages? Can we express all regular languages?

- The language $L(\varphi)$ of a sentence φ is the set of words that satisfy φ.
- A language L is expressible in first-order logic or FO-definable if some sentence φ satisfies $L(\varphi) = L$.
- Proposition: a language over a one-letter alphabet is expressible in first-order logic iff it is finite or co-finite (its complement is finite).
- Consequence: we can only express regular languages, but not all, not even the language of words of even length.
Proof sketch

1. If L is finite, then it is FO-definable

2. If L is co-finite, then it is FO-definable.
3. If L is FO-definable (over a one-letter alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free fragment)

2) We show that a language is QF-definable iff it is finite or co-finite

3) We show that a language is QF-definable iff it is FO-definable.
1) The logic QF

- $x < k$ $x > k$
 $x < y + k$ $x > y + k$
 $k < \text{last}$ $k > \text{last}$

are formulas for every variable x, y and every $k \geq 0$.

- If f_1, f_2 are formulas, then so are $f_1 \lor f_2$ and $f_1 \land f_2$
2) L is QF-definable iff it is finite or co-finite

(\rightarrow) Let f be a sentence of QF.

Then f is an and-or combination of formulas $k < \text{last}$ and $k > \text{last}$.

$L(k < \text{last}) = \{k + 1, k + 2, \ldots\}$ is co-finite (we identify words and numbers)

$L(k > \text{last}) = \{0,1,\ldots,k\}$ is finite

$L(f_1 \lor f_2) = L(f_1) \cup L(f_2)$ and so if $L(f)$ and $L(g)$ finite or co-finite then L is finite or co-finite.

$L(f_1 \land f_2) = L(f_1) \cap L(f_2)$ and so if $L(f)$ and $L(g)$ finite or co-finite then L is finite or co-finite.
2) L is QF-definable iff it is finite or co-finite

(\leftarrow) If $L = \{k_1, \ldots, k_n\}$ is finite, then

$$(k_1 - 1 < \text{last} \land \text{last} < k_1 + 1) \lor \cdots \lor (k_n - 1 < \text{last} \land \text{last} < k_n + 1)$$

expresses L.

If L is co-finite, then its complement is finite, and so expressed by some formula. We show that for every f some formula $\neg f(L(f))$ expresses $L(f)$

- $\neg (k < \text{last}) = (k - 1 < \text{last} \land \text{last} < k + 1) \lor \text{last} < k$
- $\neg (f_1 \lor f_2) = \neg f_1 \land \neg f_2$
- $\neg (f_1 \land f_2) = \neg f_1 \lor \neg f_2$
3) Every first-order formula φ has an equivalent QF-formula $QF(\varphi)$

- $QF(x < y) = x < y + 0$
- $QF(\neg \varphi) = neg(QF(\varphi))$
- $QF(\varphi_1 \lor \varphi_2) = QF(\varphi_1) \lor QF(\varphi_2)$
- $QF(\varphi_1 \land \varphi_2) = QF(\varphi_1) \land QF(\varphi_2)$
- $QF(\exists x \varphi) =$
 - Put $QF(\varphi)$ in disjunctive normal form. Assume $QF(\varphi) = (\varphi_1 \lor ... \lor \varphi_n)$, where each φ_i is a conjunction of atomic formulas.
 - Since $\exists x (\varphi_1 \lor ... \lor \varphi_n) \equiv \exists x \varphi_1 \lor ... \lor \exists x \varphi_n$, it suffices to define $QF(\exists x \varphi)$ for the case in which φ is a conjunction of atomic formulas of QF.
 - For this case, see example in the next slide.
• Consider the formula
 \[\exists x \quad x < y + 3 \quad \land \\
 z < x + 4 \quad \land \\
 z < y + 2 \quad \land \\
 y < x + 1 \]

• The equivalent QF-formula is
 \[z < y + 8 \quad \land \quad y < y + 5 \quad \land \quad z < y + 2 \]
Monadic second-order logic

- First-order variables: interpreted on positions
- **Monadic second-order variables**: interpreted on **sets of positions**.
 - Diadic second-order variables: interpreted on relations over positions
 - Monadic third-order variables: interpreted on sets of sets of positions
 - New atomic formulas: \(x \in X \)
Expressing „even length“

- Express

 There is a set X of positions such that
 – X contains exactly the even positions, and
 – the last position belongs to X.

- Express

 X contains exactly the even positions as

 A position is in X iff it is the second position or the second successor of another position of X.
Syntax and semantics of MSO

• New set \(\{X,Y,Z,...\} \) of second-order variables
• New syntax: \(x \in X \) and \(\exists X \, \varphi \)
• New semantics:
 – Interpretations now also assign sets of positions to the free second-order variables.
 – Satisfaction defined as expected.
Expressing „even length“

- $\text{second}(x) = \exists y \ (\text{first}(y) \land x = y + 1)$

- $\text{Even}(X) =
\forall y \ (x \in X \leftrightarrow (\text{second}(x) \lor \exists y \ (x = y + 2 \land y \in X)))$

- $\text{EvenLength}(X) =
\exists X \ (\text{Even}(X) \land \forall x \ (\text{last}(x) \rightarrow x \in X))$
Expressing \(c^* (ab)^* d^* \)

- Express:

 There is a block \(X \) of consecutive positions such that

 – before \(X \) there are only \(c \)'s;
 – after \(X \) there are only \(d \)'s;
 – \(a \)'s and \(b \)'s alternate in \(X \);
 – the first letter in \(X \) is an \(a \), and the last is a \(b \).

- Then we can take the formula

\[
\exists X \ (Cons(X) \land Boc(X) \land Aod(X) \land Alt(X) \\
\land Fa(X) \land Lb(X))
\]
• X is a block of consecutive positions

• Before X there are only c‘s

• In X a‘s and b‘s alternate
• X is a block of consecutive positions

$$\text{Cons}(X) := \forall x \in X \forall y \in X \ (x < y \rightarrow (\forall z \ (x < z \land z < y) \rightarrow z \in X))$$

• Before X there are only c's

• In X a's and b's alternate
• **X** is a block of consecutive positions

\[
\text{Cons}(X) := \forall x \in X \forall y \in X \ (x < y \rightarrow (\forall z \ (x < z \land z < y) \rightarrow z \in X))
\]

• **Before** \(X\) there are only **c**‘s

\[
\text{Before}(x, X) := \forall y \in X \ x < y
\]

\[
\text{Before_only_c}(X) := \forall x \ \text{Before}(x, X) \rightarrow Q_c(x)
\]

• **In** \(X\) **a**‘s and **b**‘s alternate
• **X is a block of consecutive positions**

\[
\text{Cons}(X) := \forall x \in X \ \forall y \in X \ (x < y \rightarrow (\forall z \ (x < z \land z < y) \rightarrow z \in X))
\]

• **Before X there are only c‘s**

\[
\text{Before}(x, X) := \forall y \in X \ x < y
\]

\[
\text{Before_only_c}(X) := \forall x \ \text{Before}(x, X) \rightarrow Q_c(x)
\]

• **In X a‘s and b‘s alternate**

\[
\text{Alternate}(X) := \forall x \in X \ (Q_a(x) \rightarrow \forall y \in X \ (y = x + 1 \rightarrow Q_b(y)) \land Q_b(x) \rightarrow \forall y \in X \ (y = x + 1 \rightarrow Q_a(y)))
\]
Every regular language is expressible in MSO logic

- **Goal**: given an arbitrary regular language L, construct an MSO sentence φ such having $L = L(\varphi)$.

- We use: if L is regular, then there is a DFA A recognizing L.

- Idea: construct a formula expressing the run of A on this word is accepting
• Fix a regular language \(L \).
• Fix a DFA \(A \) with states \(q_0, \ldots, q_n \) recognizing \(L \).
• Fix a word \(w = a_1 a_2 \ldots a_m \).
• Let \(P_q \) be the set of positions \(i \) such that after reading \(a_1 a_2 \ldots a_i \) the automaton \(A \) is in state \(q \).
• We have:

\[
A \text{ accepts } w \text{ iff } m \in P_q \text{ for some final state } q.
\]
• Assume we can construct a formula

\[\text{Visits}(X_0, \ldots, X_n) \]

which is true for \((w, J)\) iff

\[J(X_0) = P_{q_0}, \ldots, J(X_n) = P_{q_n} \]

• Then \((w, J)\) satisfies the formula

\[
\psi_A := \exists X_0 \ldots \exists X_n \text{Visits}(X_0, \ldots X_n) \wedge \exists x \left(\text{last}(x) \wedge \bigvee_{q_i \in F} x \in X_i \right)
\]

iff \(w\) has a last letter and \(w \in L\), and we easily get a formula expressing \(L\).
• To construct \(\text{Visits}(X_0, \ldots, X_n) \) we observe that the sets \(P_q \) are the unique sets satisfying

 a) \(1 \in P_{\delta(q_0,a_1)} \) i.e., after reading the first letter the DFA is in state \(\delta(q_0, a_1) \).

 b) The sets \(P_q \) build a partition of the set of positions, i.e., the DFA is always in exactly one state.

 c) If \(i \in P_q \) and \(\delta(q, a_{i+1}) = q' \) then \(i + 1 \in P_{q'} \), i.e., the sets "match" \(\delta \).

• We give formulas for a), b), and c)
\[
\text{Init}(X_0, \ldots, X_n) = \exists x \left(\text{first}(x) \land \left(\bigvee_{a \in \Sigma} (Q_a(x) \land x \in X_{i_a}) \right) \right)
\]

\[
\text{Partition}(X_0, \ldots, X_n) = \forall x \left(\bigvee_{i=0}^n x \in X_i \land \bigwedge_{i, j=0}^n (x \in X_i \implies x \notin X_j) \right)
\]
• Formula for c)

\[
\text{Respect}(X_0, \ldots, X_n) = \exists x \forall y \left(y = x + 1 \rightarrow \bigvee_{a \in \Sigma} (x \in X_i \land Q_a(x) \land y \in X_j) \right)
\]

\[
i, j \in \{0, \ldots, n\}
\]

\[
\delta(q_i, a) = q_j
\]

• Together:

\[
\text{Visits}(X_0, \ldots X_n) := \text{Init}(X_0, \ldots, X_n) \land \\
\text{Partition}(X_0, \ldots, X_n) \land \\
\text{Respect}(X_0, \ldots, X_n)
\]
Every language expressible in MSO logic is regular

- Recall: an interpretation of a formula is a pair \((w, I)\) consisting of a word \(w\) and assignments \(I\) to the free first and second order variables (and perhaps to others).
• We encode interpretations as words.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
• Given a formula with \(n \) free variables, we encode an interpretation \((w, \mathcal{I})\) as a word \(enc(w, \mathcal{I}) \) over the alphabet \(\Sigma \times \{0,1\}^n \).

• The language of the formula \(\varphi \), denoted by \(L(\varphi) \), is given by

\[
L(\varphi) = \{ enc(w, \mathcal{I}) \mid (w, \mathcal{I}) \models \varphi \}
\]

• We prove by induction on the structure of \(\varphi \) that \(L(\varphi) \) is regular (and explicitly construct an automaton for it).
Case \(\varphi = Q_\alpha(x) \)

- \(\varphi = Q_\alpha(x) \). Then \(\text{free}(\varphi) = x \), and the interpretations of \(\varphi \) are encoded as words over \(\Sigma \times \{0, 1\} \). The language \(L(\varphi) \) is given by

\[
L(\varphi) = \left\{ \begin{bmatrix} a_1 \\ b_1 \end{bmatrix} \ldots \begin{bmatrix} a_k \\ b_k \end{bmatrix} \middle| \begin{array}{l}
 k \geq 0, \\
 a_i \in \Sigma \text{ and } b_i \in \{0, 1\} \text{ for every } i \in \{1, \ldots, k\}, \text{ and} \\
 b_i = 1 \text{ for exactly one index } i \in \{1, \ldots, k\} \text{ such that } a_i = a
\end{array} \right\}
\]

and is recognized by

[Diagram of a finite automaton]
Case $\varphi = x < y$

- $\varphi = x < y$. Then $\text{free}(\varphi) = \{x, y\}$, and the interpretations of φ are encoded as words over $\Sigma \times \{0, 1\}^2$. The language $L(\varphi)$ is given by

$$L(\varphi) = \left\{ \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix}, \ldots, \begin{bmatrix} a_k \\ b_k \\ c_k \end{bmatrix} \right\}$$

- $k \geq 0,$
- $a_i \in \Sigma$ and $b_i, c_i \in \{0, 1\}$ for every $i \in \{1, \ldots, k\}$,
- $b_i = 1$ for exactly one index $i \in \{1, \ldots, k\}$,
- $c_j = 1$ for exactly one index $j \in \{1, \ldots, k\}$, and
- $i < j$

and is recognized by

![Diagram](image-url)
Case $\varphi = x \in X$

- $\varphi = x \in X$. Then $\text{free}(\varphi) = \{x, X\}$, and interpretations are encoded as words over $\Sigma \times \{0, 1\}^2$. The language $L(\varphi)$ is given by

$$L(\varphi) = \left\{ \begin{bmatrix} a_1 \\ b_1 \\ c_1 \\ \vdots \\ a_k \\ b_k \\ c_k \end{bmatrix} \mid \begin{array}{l} k \geq 0, \\
a_i \in \Sigma \text{ and } b_i, c_i \in \{0, 1\} \text{ for every } i \in \{1, \ldots, k\}, \\
b_i = 1 \text{ for exactly one index } i \in \{1, \ldots, k\}, \text{ and} \\
\text{for every } i \in \{1, \ldots, k\}, \text{ if } b_i = 1 \text{ then } c_i = 1 \end{array} \right\}$$

and is recognized by

[Diagram of a nondeterministic finite automaton with states and transitions labeled with symbols indicating the language $L(\varphi)$.]
Case $\varphi = \neg \psi$

- Then $\text{free}(\varphi) = \text{free}(\psi)$. By i.h. $L(\psi)$ is regular.
- $L(\varphi)$ is equal to $\overline{L(\psi)}$ minus the words that do not encode any implementation (”the garbage”).
- Equivalently, $L(\varphi)$ is equal to the intersection of $\overline{L(\psi)}$ and the encodings of all interpretations of ψ.
- We show that the set of these encodings is regular.
 - Condition for encoding: Let x be a free first-order variable of ψ. The projection of an encoding onto x must belong to 0^*10^* (because it represents one position).
 - So we just need an automaton for the words satisfying this condition for every free first-order variable.
Example: \(\text{free}(\varphi) = \{x, y\} \)
\textbf{Case } \varphi = \varphi_1 \lor \varphi_2 \\

- Then \(\text{free}(\varphi) = \text{free}(\varphi_1) \cup \text{free}(\varphi_2). \) By i.h. \(L(\varphi_1) \) and \(L(\varphi_2) \) are regular.

- If \(\text{free}(\varphi_1) = \text{free}(\varphi_2) \) then \(L(\varphi) = L(\varphi_1) \cup L(\varphi_2) \) and so \(L(\varphi) \) is regular.

- If \(\text{free}(\varphi_1) \neq \text{free}(\varphi_2) \) then we extend \(L(\varphi_1) \) to \(L_1 \) encoding all interpretations of \(\text{free}(\varphi_1) \cup \text{free}(\varphi_2) \) whose projection onto \(\text{free}(\varphi_1) \) belongs to \(L(\varphi_1) \). Similarly we extend \(L(\varphi_2) \) to \(L_2 \). We have
 - \(L_1 \) and \(L_2 \) are regular.
 - \(L(\varphi) = L_1 \cup L_2. \)
Example: \(\varphi = Q_a(x) \lor Q_b(y) \)

- \(L_1 \) contains the encodings of all interpretations \((w, \{x \mapsto n_1, y \mapsto n_2\})\) such that the encoding of \((w, \{x \mapsto n_1\})\) belongs to \(L(Q_a(x)) \).

- Automata for \(L(Q_a(x)) \) and \(L_1 \):

![Automata for \(L(Q_a(x)) \) and \(L_1 \).]
Cases $\varphi = \exists x \psi$ and $\varphi = \exists X \psi$

- Then $\text{free}(\varphi) = \text{free}(\psi) \setminus \{x\}$ or $\text{free}(\varphi) = \text{free}(\psi) \setminus \{X\}$
- By i.h. $L(\psi)$ is regular.
- $L(\varphi)$ is the result of projecting $L(\psi)$ onto the components for $\text{free}(\psi) \setminus \{x\}$ or for $\text{free}(\psi) \setminus \{X\}$.
Example: $\varphi = Q_\alpha(x)$

- Automata for $Q_\alpha(x)$ and $\exists x Q_\alpha(x)$
The mega-example

• We compute an automaton for
 \(\exists x \ (\text{last}(x) \land Q_b(x)) \land \forall x \ (\neg \text{last}(x) \rightarrow Q_a(x)) \)
• First we rewrite it into
 \(\exists x \ (\text{last}(x) \land Q_b(x)) \land \neg \exists x \ (\neg \text{last}(x) \land \neg Q_a(x)) \)
• In the next slides we
 1. compute a DFA for \(\text{last}(x) \)
 2. compute DFAs for \(\exists x \ (\text{last}(x) \land Q_b(x)) \) and \(\neg \exists x \ (\neg \text{last}(x) \land \neg Q_a(x)) \)
 3. compute a DFA for the complete formula.
• We denote the DFA for a formula \(\psi \) by \([\psi]\).
\[\text{last}(x)\]

\[x < y\]

\[
\begin{array}{c|c}
[0|0] & [a|b] \\
[1|0] & [0|1] \\
\end{array}
\]

\[
\begin{array}{c|c}
[0|0] & [a|b] \\
[1|1] & [0|0] \\
\end{array}
\]

\[
\begin{array}{c|c}
[0|0] & [a|b] \\
[0|0] & [0|0] \\
\end{array}
\]
\[\text{last}(x) \]

\[[x < y] \]

\[[\exists y \ x < y] \]
$[\text{last}(x)]$

$[x < y]$

$[\forall y \ x < y]$

$\text{Enc}(\forall y \ x < y)$

$\Sigma \times \{0, 1\}$
\[\text{last}(x) \]

\[x < y \]

\[\exists y \ x < y \]

\[\text{Enc}(\exists y \ x < y) \]

\[\Sigma \times \{0, 1\} \]

\[\text{last}(x) \]
$[\exists x \ (\text{last}(x) \land Q_b(x))]$

$[Q_b(x)]$

$[\exists x \ (\text{last}(x) \land Q_b(x)))]$
$[-Q_a(x)]$

Enc($Q_a(x)$)

$\Sigma \times \{0, 1\}$

$[-Q_a(x)]$
$$\lnot \exists x (\lnot \text{last}(x) \land \lnot Q_a(x))$$
$[\exists x \left(\text{last}(x) \land Q_b(x) \right) \land \neg \exists x \left(\neg \text{last}(x) \land \neg Q_a(x) \right)]$