ω-Automata
ω-Automata

• Automata that accept (or reject) words of infinite length.

• Languages of infinite words appear:
 – in verification, as encodings of non-terminating executions of a program.
 – in arithmetic, as encodings of sets of real numbers.
ω-Languages

- An **ω-word** is an infinite sequence of letters.
- The set of all ω-words is denoted by Σ^ω.
- An **ω-language** is a set of ω-words, i.e., a subset of Σ^ω.
- A language L_1 can be **concatenated** with an ω-language L_2 to yield the ω-language L_1L_2, but two ω-languages cannot be concatenated.
- The **ω-iteration** of a language $L \subseteq \Sigma^*$, denoted by L^ω, is an ω-language.
- Observe: $\emptyset^\omega = \{\varepsilon\}^\omega = \emptyset$
ω-Regular Expressions

• ω-regular expressions have syntax

\[s ::= r^ω \mid rs_1 \mid s_1 + s_2 \]

where \(r \) is an (ordinary) regular expression.

• The ω-language \(L_ω(s) \) of an ω-regular expression \(s \) is inductively defined by

\[
L_ω(r^ω) = (L(r))^ω \quad L_ω(rs_1) = L(r)L_ω(s_1) \\
L_ω(s_1 + s_2) = L_ω(s_1) \cup L_ω(s_2)
\]

• A language is ω-regular if it is the language of some ω-regular expression.
Büchi Automata

• Invented by J.R. Büchi, swiss logician.
Büchi Automata

• Same syntax as DFAs and NFAs, but different acceptance condition.
• A run of a Büchi automaton on an ω-word is an infinite sequence of states and transitions.
• A run is accepting if it visits the set of final states infinitely often.
 – Final states renamed to accepting states.
• A DBA or NBA A accepts an ω-word if it has an accepting run on it; the ω-language $L_ω(A)$ of A is the set of ω-words it accepts.
Some examples
From \(\omega\)-Regular Expressions to NBAs

NFA for \(r\)

NBA for \(r^\omega\)
From ω-Regular Expressions to NBAs
From ω-Regular Expressions to NBAs
From NBAs to ω-Regular Expressions

• **Lemma**: Let A be a NFA, and let q, q' be states of A. The language $L_q^{q'}$ of words with runs leading from q to q' and visiting q' exactly once is regular.

• Let $r_q^{q'}$ denote a regular expression for $L_q^{q'}$.

From NBAs to ω-Regular Expressions

- Example:

\[
\begin{align*}
 r_0^1 &= (a + b + c)^*(b + c) \\
 r_0^2 &= (a + b + c)^*b \\
 r_1^1 &= (b + c) \\
 r_2^2 &= b + (a + c)(a + b + c)^*b
\end{align*}
\]
From NBAs to ω-Regular Expressions

• Given a NBA A, we look at it as a NFA, and compute regular expressions $r_q^{q'}$.

• We show:

$$L_\omega (A) = L \left(\sum_{q \in F} r_q^{q_0} (r_q^q)^\omega \right)$$

– An ω-word belongs to $L_\omega (A)$ iff it is accepted by a run that starts at q_0 and visits some accepting state q infinitely often.
From NBAs to \(\omega \)-Regular Expressions

- Example:

\[
L_\omega(A) = r^1_0 (r^1_1)^\omega + r^2_0 (r^2_2)^\omega
\]

\[
\begin{align*}
r^1_0 &= (a + b + c)^*(b + c) \\
r^2_0 &= (a + b + c)^*b \\
r^1_1 &= (b + c) \\
r^2_2 &= b + (a + c)(a + b + c)^*b
\end{align*}
\]
DBAs are less expressive than NBAs

- Prop.: The ω-language $(a + b)^*b^\omega$ is not recognized by any DBA.

- Proof: By contradiction. Assume some DBA recognizes $(a + b)^*b^\omega$.
 - DBA accepts b^ω → DFA accepts b^{n_0}
 - DBA accepts $b^{n_0}a b^\omega$ → DFA accepts $b^{n_0}a b^{n_1}$
 - DBA accepts $b^{n_0}a b^{n_1} a b^\omega$ → DFA accepts $b^{n_0}a b^{n_1}a b^{n_2}$ etc.
 - By determinism and finite number of states, the DBA accepts
 $b^{n_0}a b^{n_1}a b^{n_2} ... a b^{n_i}(a b^{n_{i+1}} ... a b^{n_j})^\omega$
 which does not belong to $(a + b)^*b^\omega$.

Generalized Büchi Automata

- Same power as Büchi automata, but more adequate for some constructions.
- Several sets of accepting states.
- A run is accepting if it visits each set of accepting states infinitely often.
From NGAs to NBAs

• Important fact:

All the sets F_1, \ldots, F_n are visited infinitely often is equivalent to

F_1 is eventually visited and
every visit to F_i is eventually followed by a visit to $F_i \oplus 1$
From NGAs to NBAs

NGA with 3 sets of accepting states

Equivalent NBA with 3 copies of the NGA
$NGAtoNBA(A)$

Input: NGA $A = (Q, \Sigma, Q_0, \delta, \mathcal{F})$, where $\mathcal{F} = \{F_0, \ldots, F_{m-1}\}$

Output: NBA $A' = (Q', \Sigma, \delta', Q'_0, F')$

1. $Q', \delta', F' \leftarrow \emptyset$; $Q'_0 \leftarrow \{[q_0, 0] | q_0 \in Q_0\}$
2. $W \leftarrow Q'_0$
3. **while** $W \neq \emptyset$ **do**
4. **pick** $[q, i]$ **from** W
5. **add** $[q, i]$ **to** Q'
6. **if** $q \in F_0$ **and** $i = 0$ **then** **add** $[q, i]$ **to** F'
7. **for all** $a \in \Sigma$, $q' \in \delta(q, a)$ **do**
8. **if** $q \notin F_i$ **then**
9. **if** $[q', i] \notin Q'$ **then** **add** $[q', i]$ **to** W
10. **add** $([q, i], a, [q', i])$ **to** δ'
11. **else** /* $q \in F_i$ */
12. **if** $[q', i \oplus 1] \notin Q'$ **then** **add** $[q', i \oplus 1]$ **to** W
13. **add** $([q, i], a, [q', i \oplus 1])$ **to** δ'
14. **return** $(Q', \Sigma, \delta', Q'_0, F')$
\[\mathcal{F} = \{ \{q\}, \{r\} \} \]
DGAs have the same expressive power as DBAs, and so are not equivalent to NGAs.

• **Question:** Are there other classes of omega-automata with
 – the same expressive power as NBAs or NGAs, and
 – with equivalent deterministic and nondeterministic versions?

We are only willing to change the acceptance condition!
A nondeterministic co-Büchi automaton (NCA) is syntactically identical to a NBA, but a run is accepting iff it only visits accepting states finitely often.
Which are the languages?
Determinizing co-Büchi automata

• Given a NCA A we construct a DCA B such that $L(A) = L(B)$.

• We proceed in three steps:
 – We assign to every ω-word w a directed acyclic graph $\text{dag}(w)$ that ```contains``` all runs of A on w.
 – We prove that w is accepted by A iff $\text{dag}(w)$ is infinite but contains only finitely many breakpoints.
 – We construct a DCA B that accepts an ω-word w iff $\text{dag}(w)$ is infinite and contains finitely many breakpoints.
• Running example:
\[\text{dag}(aba^\omega) \]

\[\text{dag}((ab)^\omega) \]
• A accepts w iff some infinite path of $\text{dag}(w)$ only visits accepting states finitely often
Levels of a *dag*
Breakpoints of a dag

- We defined inductively the set of levels that are breakpoints:
 - Level 0 is always a breakpoint
 - If level l is a breakpoint, then the next level l' such that every path between l and l' visits an accepting state is also a breakpoint.
Only two breakpoints

Infinitely many breakpoints
Lemma: A accepts w iff $\text{dag}(w)$ is infinite and has only finitely many breakpoints.

Proof:

If A accepts w, then it has at least one run on w, and so $\text{dag}(w)$ is infinite. Moreover, the run visits accepting states only finitely often, and so after it stops visiting accepting states there are no further breakpoints.

If $\text{dag}(w)$ is infinite, then it has an infinite path, and so A has at least one run on w. Since $\text{dag}(w)$ has finitely many breakpoints, then every infinite path visits accepting states only finitely often.
Constructing the DCA

• If we could tell if a level is a breakpoint by looking at it, we could take the set of breakpoints as states of the DCA.
• However, we also need some information about its `history`.
• Solution: add that information to the level!
Constructing the DCA

• States: pairs \([P, O]\) where:
 – \(P\) is the set of states of a level, and
 – \(O \subseteq P\) is the set of states `that owe a visit to the set of accepting states``.

• Formally: \(q \in O\) if \(q\) is the endpoint of a path starting at the last breakpoint that has not yet visited any accepting state.
Constructing the DCA

- **States**: pairs \([P, O]\)
- **Initial state**: pair \([\{q_0\}, \emptyset]\) if \(q_0 \in F\), and \([\{q_0\}, \{q_0\}]\) otherwise.
- **Transitions**: \(\delta([P, Q], a) = [P', O']\) where \(P' = \delta(P, a)\), and
 - \(O' = \delta(O, a) \setminus F\) if \(O \neq \emptyset\)
 (automaton updates set of owing states)
 - \(O' = \delta(P, a) \setminus F\) if \(O = \emptyset\)
 (automaton starts search for next breakpoint)
- **Accepting states**: pairs \([P, \emptyset]\) (no owing states)
\textbf{NCAtoDCA}(A)

\textbf{Input:} NCA A = (Q, \Sigma, \delta, q_0, F)

\textbf{Output:} DCA B = (\tilde{Q}, \Sigma, \tilde{\delta}, \tilde{q}_0, \tilde{F}) with L_\omega(A) = \tilde{B}

1. \tilde{Q}, \tilde{\delta}, \tilde{F} \leftarrow \emptyset; \text{if } q_0 \in F \text{ then } \tilde{q}_0 \leftarrow [q_0, \emptyset] \text{ else } \tilde{q}_0 \leftarrow \{\{q_0\}, \{q_0\}\}
2. W \leftarrow \{\tilde{q}_0\}
3. \text{while } W \neq \emptyset \text{ do}
4. \hspace{1em} \text{pick } [P, O] \text{ from } W; \text{ add } [P, O] \text{ to } \tilde{Q}
5. \hspace{1em} \text{if } P = \emptyset \text{ then add } [P, O] \text{ to } \tilde{F}
6. \hspace{1em} \text{for all } a \in \Sigma \text{ do}
7. \hspace{1em} \hspace{1em} P' = \delta(P, a)
8. \hspace{1em} \hspace{1em} \text{if } O \neq \emptyset \text{ then } O' \leftarrow \delta(O, a) \setminus F \text{ else } O' \leftarrow \delta(P, a) \setminus F
9. \hspace{1em} \hspace{1em} \text{add } ([P, O], a, [P', O']) \text{ to } \tilde{\delta}
10. \hspace{1em} \hspace{1em} \text{if } [P', O'] \notin \tilde{Q} \text{ then add } [P', Q'] \text{ to } W

- **Complexity:** at most 3^n states
Running example
Recall ...

• **Question:** Are there other classes of omega-automata with
 – the same expressive power as NBAs or NGAs, and
 – with equivalent deterministic and nondeterministic versions?

Are co-Büchi automata a positive answer?
Lemma: No DCA recognizes the language \((b^*a)^\omega\).

Proof: Assume the contrary. Then the same automaton seen as a DBA recognizes the complement \((a + b)^* b^\omega\). Contradiction.

So the quest goes on ...
Muller automata

• A nondeterministic Muller automaton (NMA) has a collection \(\{F_0, F_1, \ldots, F_{m-1}\}\) of sets of accepting states.

• A run is accepting if the set of states it visits infinitely often is equal to one of the sets in the collection.
• Let A be a NBA with set F of accepting states.
• A set of states of A is good if it contains some state of F.
• Let G be the set of all good sets of A.
• Let A' be "the same automaton" as A, but with Muller condition G.
• Let ρ be an arbitrary run of A and A'. We have
 ρ is accepting in A
 iff $\inf(\rho)$ contains some state of F
 iff $\inf(\rho)$ is a good set of A
 iff ρ is accepting in A'
From Muller to Büchi automata

• Let A be a NMA with condition $\{F_0, F_1, \ldots, F_{m-1}\}$.
• Let A_0, \ldots, A_{m-1} be NMAs with the same structure as A but Muller conditions $\{F_0\}, \{F_1\}, \ldots, \{F_{m-1}\}$ respectively.

• We have: $L(A) = L(A_0) \cup \ldots \cup L(A_{m-1})$

• We proceed in two steps:
 1. we construct for each NMA A_i an NGA A'_i such that $L(A_i) = L(A'_i)$
 2. we construct an NGA A' such that $L(A') = L(A'_0) \cup \ldots \cup L(A'_{m-1})$
Transitions leaving F_i are duplicated and resent to the copy of F_i.

NGA with accepting condition $\{\{q'_1\}, \ldots, \{q'_m\}\}$
NMA1toNGA(A)

Input: NMA $A = (Q, \Sigma, q_0, \delta, \{F\})$

Output: NGA $A = (Q', \Sigma, q'_0, \delta', \mathcal{F}')$

1. $Q', \delta', \mathcal{F}' \leftarrow \emptyset$
2. $q'_0 \leftarrow [q_0, 0]$
3. $W \leftarrow \{[q_0, 0]\}$
4. while $W \neq \emptyset$ do
 5. pick $[q, i]$ from W; add $[q, i]$ to Q'
 6. if $q \in F$ and $i = 1$ then add $\{[q, 1]\}$ to \mathcal{F}'
 7. for all $a \in \Sigma$, $q' \in \delta(q, a)$ do
 8. if $i = 0$ then
 9. add $([q, 0], a, [q', 0])$ to δ'
 10. if $[q', 0] \notin Q'$ then add $[q', 0]$ to W
 11. if $q' \in F$ then
 12. add $([q, 0], a, [q', 1])$ to δ'
 13. if $[q', 1] \notin Q'$ then add $[q', 1]$ to W
 14. else /* $i = 1$ */
 15. if $q' \in F$ then
 16. add $([q, 1], a, [q', 1])$ to δ'
 17. if $[q', 1] \notin Q'$ then add $[q', 1]$ to W
 18. return $(Q', \Sigma, q'_0, \delta', \mathcal{F}')$
$\mathcal{F} = \{F_0, F_1\}$

$F_0 = \{q\}$

$F_1 = \{r\}$

$\mathcal{F}_0' = \{[q, 1]\}$

$\mathcal{F}_1' = \{[r, 1]\}$
Theorem (Safra): Any NBA with n states can be effectively transformed into a DMA of size $n^{O(n)}$.

Proof: Omitted.

DMA for $(a + b)^* b^\omega$:

\[
\begin{array}{c}
q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \\
q_1 \xrightarrow{b} q_1 \xrightarrow{a} q_0
\end{array}
\]

with accepting condition \{\{q_1\}\}
• **Question:** Are there other classes of omega-automata with
 – the same expressive power as NBAs or NGAs, and
 – with equivalent deterministic and nondeterministic versions?

• **Answer:** Yes, Muller automata
Is the quest over?

- Recall the translation \(\text{NBA} \Rightarrow \text{NMA} \)
- The NMA has the same structure as the NBA; its accepting condition are all the good sets of states.
- The translation has \textit{exponential} complexity.

New question: Is there a class of \(\omega \)-automata with
- the same expressive power as NBAs,
- equivalent deterministic and nondeterministic versions, and
- polynomial conversions to and from Büchi automata?
Rabin automata

• The acceptance condition is a set of pairs \(\{ \langle F_0, G_0 \rangle, \ldots, \langle F_{m-1}, G_{m-1} \rangle \} \)

• A run \(\rho \) is accepting if there is a pair \(\langle F_i, G_i \rangle \) such that \(\rho \) visits the set \(F_i \) infinitely often and the set \(G_i \) finitely often.

• Translations \(\text{NBA} \Rightarrow \text{NRA} \) and \(\text{NRA} \Rightarrow \text{NBA} \) are left as an exercise.

• Theorem (Safra): Any NBA with \(n \) states can be effectively transformed into a DRA with \(n^{O(n)} \) states and \(O(n) \) accepting pairs.
Is the quest over?

- The accepting condition of Rabin automata is not closed under negation: the negation of
 \[\exists i \in \{1, \ldots, m\}: \inf(\rho) \cap F_i \neq \emptyset \land \inf(\rho) \cap G_i = \emptyset \]
 is of the form
 \[\forall i \in \{1, \ldots, m\}: \inf(\rho) \cap F_i = \emptyset \lor \inf(\rho) \cap G_i \neq \emptyset \]
 or, equivalently
 \[\forall i \in \{1, \ldots, m\}: \inf(\rho) \cap G_i = \emptyset \Rightarrow \inf(\rho) \cap F_i = \emptyset \]
- This is the **Streett condition**.
- The Büchi condition is a special case of the Streett condition.
- However, the translation from Streett to Bchi is exponential.
New question: Is there a class of ω-automata with
 – the same expressive power as NBAs,
 – equivalent deterministic and nondeterministic versions,
 – polynomial conversions to and from Büchi automata, and
 – an accepting condition closed under negation?
Parity automata

- The acceptance condition is a sequence \((F_1, \ldots, F_{2n}) \) of sets of states such that \(F_1 \subseteq F_2 \subseteq \cdots \subseteq F_{2n} = Q \).

- NBA → NPA. \(F \rightarrow (\emptyset, F, Q, Q) \)

- NPA → NBA. NPA → NRA → NBA.

- NPA → NRA. \((F_1, \ldots, F_{2n}) \rightarrow \{\langle F_{2k}, F_{2k-1} \rangle, \ldots, \langle F_3, F_2 \rangle, \langle F_1, F_0 \rangle\} \)

- Theorem (Safra, Piterman): Any NBA with \(n \) states can be effectively transformed into a DPA with \(n^{O(n)} \) states and \(O(n) \) accepting sets.

- Complementation of NPAs. \((F_1, \ldots, F_{2n}) \rightarrow (\emptyset, F_1, \ldots, F_{2n}, Q) \)
New question: Is there a class of \(\omega \)-automata with

- the same expressive power as NBAs,
- equivalent deterministic and nondeterministic versions,
- polynomial conversions to and from Büchi automata, and
- an accepting condition closed under negation?

• Answer: Yes, parity automata