Running COLA on Embedded Systems

Wolfgang Haberl *

Abstract—Model driven development has become
state of the art in embedded systems software design.
To take the resulting models to the designated hard-
ware platform, automated code generation is sought
for. The code obtained thereby must match the se-
mantics of the model as closely as possible.

In this paper we show how to map models specified
using the Component Language (COLA) [1] to C code
in an automated manner. In addition we present our
concepts for interfacing the effective hardware plat-
form, which in case of embedded systems means the
interaction with sensors and actuators.

Using a prototypical implementation of the code gen-
erator, we validated our approach on a case study us-
ing LEGO® Mindstorms™, which embody all char-
acteristics of embedded systems. This case study in-
cludes benchmarks comparing the automatically gen-
erated code to a hand-written version offering the
same functionality.

Keywords: embedded systems, component-based mod-

els, automated code generation
1 Introduction

Today, roughly 90% of all processors are part of embed-
ded systems [2]. In many cases, these systems are em-
ployed as, at least, parts of mission-critical control sys-
tems that need to conform to various safety requirements.
To meet these goals, model driven development (MDD)
using component-based languages is widely accepted as
the most suitable approach. Therefore, rapid prototyp-
ing, but also the implementation of production level ap-
plications is usually performed using graphical modeling
languages. On the one hand, these models can be sur-
veyed more easily by developers than the textual repre-
sentation in code. On the other hand, graphical model-
ing formalisms may hide error-prone language constructs,
e.g., pointer arithmetic or type casts, and thus prevent
unchecked memory access by the user.

1.1 Related work

Being the favorite approach, there is extensive tool sup-
port for graphical modeling, e.g., MATLAB/Simulink,
ASCET-SD, or SCADE, which is based on Lustre [3].

*Institut fiir Informatik, Technische Universitat Miinchen, 85748
Garching, Germany, {haberl, tautschn, baumgaru}@in.tum.de

TInstitut fiir Informatik, Technische Universitit Darmstadt,
64289 Darmstadt, Germany

Michael Tautschnig '

Uwe Baumgarten *

Furthermore, the Unified Modeling Language (UML) has
become an industry standard that includes means for
component-based modeling. Initially targeted at avionic
systems, the Architecture Analysis and Design Language
(AADL) [4] also offers well-defined models aimed at in-
dustrial applications.

In a tool-backed MDD process, however, not only be-
havioral modeling is sought for, but several views of the
complete system must be distinguished. Following the
nomenclature of Pretschner et al. [5], behavioral models
form the logical architecture. The description of the tar-
get hardware platform and other non-functional require-
ments then comprise the technical architecture. The lat-
ter is usually excluded in the modeling formalisms men-
tioned above, or rather, focused on with a lack of de-
scription of the logical layer. This kind of lower abstrac-
tion is applied, e.g., in the Metropolis project [6] and the
CARAT toolkit [7]. An approach aiming at both layers
is that of the VERTAF framework [8].

COLA, the Component Language [1], initially also fo-
cused on the logical layer. We are currently extend-
ing it to include a hardware model and further means
to describe the technical architecture in a consistent
formalism. Whenever a platform description is avail-
able, executable code may be generated from the be-
havioral (graphical) models. Examples of such compil-
ers include TargetLink, Real-Time Workshop/Embedded
Coder, ASCET-SC, and SCADE Drive. An overview
and comparisons of these tools have been presented by
Reuter [9] as well as Wybo and Putti [10].

1.2 Automated code generation

Asincluded in the requirements expressed by Whalen and
Heimdahl [11], ensuring correctness of the translation re-
quires both the source and the target language to have a
rigorous formal semantics. While this is hardly viable for
the target language C, our source language COLA pro-
vides these. Consequently, we only rely on a subset of C
and a template-like set of transformation rules such that
preservation of behavior of the generator remains easy
to check. At this point it should be noted that COLA
has a slender syntax and thus requires only a small num-
ber of transformation rules. The elements of COLA are
introduced in Section 2.

1.3 Organization

In the following we first give a short introduction to
COLA. In Section 3 the basic rules for compiling such
models to C code are described. The steps required to
effectively run the generated code on a specific target
platform are outlined in Section 4. The results on a case
study are presented in Section 5, including considerations
of the code efficiency. We conclude with an outlook on
possible enhancements.

Throughout the paper we use parts of the model of the
case study to illustrate the abstract transformation steps.

2 Overview of COLA

The key concept of COLA is that of units. These can be
composed hierarchically, or occur in terms of blocks that
define the basic (arithmetic) operations of an application.

Each unit has a set of typed ports describing the inter-
face. These ports form the signature of the unit, and
are categorized into input and output ports. Units can
be used to build more complex components by building
a network of units and by defining an interface to such
a network. The individual connections of sub-units in a
network are called channels and connect an output port
with one or more suitably typed input ports.

In addition to the hierarchy of networks, COLA pro-
vides a decomposition into automata (i.e., finite state
machines, similar to Statecharts [12]). If a unit is decom-
posed into an automaton, each state of the automaton
is associated with a corresponding sub-unit, which deter-
mines the behavior in that particular state. This defini-
tion of an automaton is therefore well-suited to partition
complex networks of units into disjoint operating modes
(cf. [13]), whose respective activation depends on the in-
put signals of the automaton.

The collection of all units forms a COLA system, which
models the application, possibly including its environ-
ment. Such a system does not have any unconnected
input or output ports as there would be no way to pro-
vide input to systems. For effective communication with
the environment not describable within COLA, sources
and sinks provide connectors to the underlying hardware.

2.1 Semantics

In COLA, as a synchronous dataflow language, it is as-
sumed that operations start at the same instant of time
and are performed simultaneously with respect to data
dependencies. The computation of the system over time
can be subdivided into discrete steps, called ticks, and
the execution is performed in a stepwise manner over the
discrete uniform time-base. The data dependencies are
implied by the employed channels. At each step a unit
emits new values to the channels connected to its out-

put ports. These values become available immediately
for ports connected to the reading side of the channel.

To retain data for a series of ticks, a concept of delays is
introduced. These blocks model memory by saving the
actual input value and providing the input of the previous
tick of the global clock at the output port. For initial use,
there is a default value specified in the model.

2.2 Stateful vs. stateless units

In the course of computation a unit may act differently
depending on its history. Such units are considered state-
ful. In COLA only delays and automata retain informa-
tion of previous computations, whereas all other kinds
of units are stateless. Note that an instance of a unit
containing a stateful element becomes stateful as well.

3 Coding basic model elements

In the following we will describe the transformation of
COLA elements into C code. The mapping is exempli-
fied presenting COLA diagrams and the according code
snippets from our case study.

3.1 Units and signatures

For each unit found in the given system, the code gener-
ator creates a C function with an appropriate signature.
As COLA units may carry more than one output port in
their signature, the resulting code has to offer an equiva-
lent concept. We decided to include a variable of appro-
priate type for each input and output port of the unit in
the function’s signature. The C types corresponding to
the type names used in the model are therefor predefined
in the code generator. All variables are passed as pointers
i.e., following the call-by-reference paradigm. In case of
input ports this saves memory when complex data types
are used, as the pointer always uses a fixed amount of
memory independent of the dimension of the data type
pointed to. Plus, for output ports, this is the only way to
allow for multiple return values in C. In addition to these
variables each signature of a stateful unit includes a struct
named unit_state. This struct keeps the actual state,
e.g., of delays or automata. Details on the preservation
of the actual state are given in Section 4.1. If neither the
unit itself, nor any of its sub-units are stateful, the state
struct is superfluous and thus omitted.

In Figure 1 the main network, i.e., the system diagram
of the case study used throughout the paper is shown.
As can be seen in the diagram, the system consists
of six units named net_ui, net_rotation, net_radar,
net_acc_on_off, DEV_ADISPLAY, and DEV_A_MOTOR.
These are connected using channels, which forward data
from the output ports to the designated input ports of
the succeeding unit. Listing 1 shows the generated code
for Figure 1. As the shown parent unit, named ACC, car-
ries no ports, the only variable in its signature is the

<net_ACC>

net_ui
mode
S_user

net_ rotation, F
dist
E_l

Figure 1: The net_ACC diagram

DEV_A_

. DISPLAY
acc_disp
s_mot

- DEV_A_

MOTOR

[>

P

L net_ ACC_on_off
s _ _on_
P

unit_state. In the following we will explain the con-
struction of the function body for this network.

3.2 Networks

The body of a generated C function implements the re-
lated unit’s behavior. For a network this means, that
the generated function for each sub-unit included in the
network is called. Of course the sequence of calls has to
preserve the order induced by semantics of the data flow.
To do so, the set of sub-units provided for the network
is searched for units not dependent on other units in the
network. Each such unit can instantly be inserted in the
resulting C code and removed from the set. This is true
for all units which are connected to an input port of the
parent unit, to an output port of a unit already coded,
or to a unit which represents a constant value or a de-
lay. The described iteration over the set of sub-units is
repeated until the set is empty. Then all sub-units are
coded in a sequential order preserving the data flow se-
mantics.

1 wvoid run_module(overall module_state *unit_state)

2 {

3 int s_act_0;

4 int dist_1;

5 int mode_2;

6 int s_user_3;

7 int acc_disp_4;

8 int s_mot_5;

9 net_rotation200399(&(unit_state->state_rotation200399_num0), &s_act_0);

10 net_radar200400 (&(unit_state->state_radar200400_numi), &dist_1);

11 net_ui200398(&(unit_state->state_userinterface200398_num2), &mode_2, &s_user_3);
12 net_acc_on_off200401 (&(unit_state->state_acc200401_num3), &s_user_3, &s_act_0,
13 &dist_1, &mode_2, &acc_disp_4, &s_mot_5);

14 mw_vrite (DEV_A_MOTOR, *&s_mot_5);

15 mw_vrite (DEV_A_DISPLAY, *&acc_disp_4);

16 }

Listing 1: The net_ACC code

The code in Listing 1 is the code generated for the net-
work from Figure 1. In the listing, the preservation of
the causality according to the data flow can be seen.
The formal semantics for the evaluation order of net-
works is given in [1], Section 5.3. Looking at the ex-
ample in Figure 1 there are three sub-units which can be
evaluated independently, namely net_ui, net_rotation
and net_radar. Thus they are called first in the result-
ing code, cf. lines 9 through 11 in Listing 1. The or-
der of the three calls is arbitrary. After their process-
ing, net_acc_on_off can be executed and then finally

DEV_A DISPLAY and DEV_A_MOTOR are written to. The re-
sulting code is shown in lines 12 through 15 of Listing 1.
The last two units are sinks, indicating interaction with
the hardware platform. We will go into details of sources
and sinks in Section 4.2.

In addition to the evaluation order, the listing shows how
each channel connecting two sub-units is realized. A vari-
able is used to pass data from one function call to the
next. It is being written to by the ancestor unit and read
from by the descendant one.

3.3 Automata

In COLA automata provide a means of control flow. As
described in [1], an automaton’s behavior is implemented
by the currently active state. Hence, firstly, the automa-
ton has to know its current state and check for a necessary
transition and, secondly, evaluate the implementing unit
for the actual state. As the automaton’s actual state is
stored from one invocation to the next, it is included in
the automaton’s state struct.

While COLA automata describe general Moore-type fi-
nite automata [14], the transformation to C code must
yield deterministic behavior. In the actual prototype it
is the responsibility of the modeler to employ only de-
terministic automata. Further efforts are put in an au-
tomated test for non-determinism while assuming data
types with finite domains. Note that the problem is un-
decidable in case of unbounded data types (undecidability
of equivalence).

In Figure 2 a COLA unit implemented by an automa-
ton with two states is given. The states are named
atm_dist_35_check and net_emergency. The actual
state is changed either if the value for dist equals zero
or is greater than zero and depending on the actual state.
Listing 2 shows the code for the automaton given in Fig-
ure 2.

<atm_dist_0_check>
dist == 0

atm_dist_35_check

Figure 2: The atm_dist_O_check diagram

s_user :int [[> emg :int

s_act :int E E s_int :int

dist : int E E disp : int

dist > 0

During code generation each state of an automaton is
given a numeric id. In line 5 the automaton’s state is
used to decide on the transitions to check and the behav-
ior to process subsequently. Here two states are coded,
as can be seen in lines 7 and 19, represented by a case-
switch based on the stored automaton state. In either
case the guards for the outgoing transitions are evalu-

ated. A guard is coded as a separate function returning
a Boolean result. If one of the guards, called in line 8
and 20 respectively in our example, evaluates to true,
the transition is taken. Thus the automaton’s state is
changed and the behavior of the target state is executed
as exemplified in lines 9 through 15 and 21 through 27
respectively. If in contrast the guards evaluate to false,
the behavior of the actual state is processed. In our ex-
ample this is shown in lines 16 and 28. As mentioned in
Section 3.1, the state struct is omitted for stateless units.
An example of this approach can be seen in the calls in
line 16 and 24.

In Listing 2 the analogousness of the automaton’s sig-
nature and the signature of its states is apparent. The
variables passed to the automaton in line 1 are forwarded
to the function calls in lines 12, 16, 24, and 28. The only
variable differing is the unit_state as it is distinct for
each unit.

1 wvoid dist_0_check200695(state_dist_0_check200695 *unit_state, int *s_user_in_0,

2 int *s_act_in_1, int *dist_in_2, int *emg_out_0, int *s_int_out_1, int *disp_out_2)
3 {

4 int guard_result;

5 switch (unit_state->atm_state)

6 {

7 case 0:

8 emergency_guard200747 (s_user_in_0, s_act_in_1, dist_in_2, &guard_result);

9 if(guard_result)

10 {

11 unit_state->atm_state = 1;

12 atm_dist_35_check200787 (& (unit_state->state_dist_gt_0_behavior200787_numi),
13 s_user_in_0, s_act_in_1, dist_in_2, emg_out_0, s_int_out_1, disp_out_2);
14 break;

15 }

16 net_emergency200764 (s_user_in_0, s_act_in_1, dist_in_2, emg_out_0,

17 s_int_out_1, disp_out_2);

18 break;

19 case 1:
20 dist_35_guard200730(s_user_in_0, s_act_in_1, dist_in_2, &guard_result);
21 if(guard_result)
22 {
23 unit_state->atm_state = 0;
24 net_emergency200764(s_user_in_0, s_act_in_1, dist_in_2, emg_out_0,
25 s_int_out_1, disp_out_2);
26 break;
27 }
28 atm_dist_35_check200787 (&(unit_state->state_dist_gt_0_behavior200787_numi),
29 s_user_in_0, s_act_in_1, dist_in_2, emg_out_0, s_int_out_1, disp_out_2)
30 break;
31 }
32 }

Listing 2: Code for atm_dist_0O_check

3.4 Functional blocks and delays

Having only dealt with COLA elements allowing for hi-
erarchical composition so far, we will now describe the
coding of blocks. They form the base of the model repre-
senting elementary operations and marking the endpoint
of the hierarchy. We distinguish functional blocks and
timing blocks, i.e., delays. The functional blocks allow for
constants, and arithmetic and Boolean operations, while
the timing blocks provide a means of storing values.

To avoid the function call overhead, all blocks are ex-
panded inline instead of calling a function. An example
of coding blocks and delays is given in Listing 3. It shows
the code generated for the diagram in Figure 3. As can be
seen, all units in this diagram are marked with a black tri-
angle in the upper right corner, indicating a block. Again,
two sources are included, the concept of which will be de-
scribed in Section 4.2. Furthermore, a constant value of
425 is given. It is multiplied with the value delivered by

<net_rotation>

DEV_S_
ROTATION

rotation_out : int

Figure 3: The net_rotation diagram

the source DEV_S_ROTATION and the result divided by the
value calculated in the lower part of the diagram. The
according code is given in line 7 of Listing 3. The de-
lay included in Figure 3 is depicted by a black and white
square. This timing block functions as a one-step FIFO.
It outputs the value given to it during the previous invo-
cation of the network. Thus, in our example, the value of
DEV_S_TIME is delivered. In change the data pending at
its input port is stored for the next invocation. The two
described working steps of the delay can be seen in lines
6 and 8.
void rotation200399(state_rotation200399 *unit_state, int *rotation_out_0)

int rotation_0;

int time_1;

oo s T, we D

*rotation_out_0 = ((rotation_0 * 425) / (time_1 - (unit_state->delay200513)));

(unit_state->delay200513) = time_1;
}

©O N U s W

Listing 3: Code for net_rotation

3.5 Prototypical implementation

For our prototypic implementation, the COLA model
is represented using the OOMEGA! framework. This
framework stores the model using an object oriented
database and offers functions for accessing the model el-
ements through a Java API. Thus our code generator is
also realized in Java. Currently the code generator pro-
duces a single task out of the model in question.

4 Running the generated code

The presented code generator implements a part of a
model driven system realization demanded for future em-
bedded real-time systems [15]. Assuming the use of a
standardized middleware enables for the use of our com-
piler in combination with various platforms. Thus the
effort for coupling the application to the underlying hard-
ware is no more demanded to be done separately for every
program, but is shifted to the implementation of the mid-
dleware. As this layer remains unchanged for every appli-
cation, the complexity of the application is decreased and
the development resources saved can be used to develop
a high-quality middleware.

Ihttp://www.oomega.net

When generating code for embedded hardware, the ques-
tion of how to execute the code arises. First of all, of
course, the code has to be compiled using a valid C com-
piler for the intended target platform. But there are other
prerequisites for enabling the applicability of the code.
One important point is data retention for stateful tasks.
Besides that, another point is the access of sensor and
actuator values. In the following we will present our so-
lutions to these problems using a middleware layer.

4.1 Preserving the actual state

Regarding COLA elements, two kinds can be distin-
guished. Namely stateful and stateless elements. Cur-
rently the only stateful constructs in COLA are delays
and automata. A delay keeps its actual value from one
invocation of the enclosing unit to the next. Analogously,
an automaton maintains its actual state from one invo-
cation to the next. In case of an automaton or network
this is also true for all sub-units contained in any of their
implementing units.

As we are generating tasks for the target operating sys-
tem, we need to find a means of initializing and storing
data. We address this problem by defining a struct for
every unit containing its state, which retains the values
of all contained delays and each automaton’s active state
number. Further instances of the respective structs of all
sub-units of the unit are included. We have a struct for
the top-level unit, i.e., the system code is generated for.
As stated before this struct contains nested structs for all
stateful sub-units. During startup, the struct is initial-
ized with default values specified in the model. Later on,
this top-level struct is read from the middleware by the
task at the beginning of every invocation. The modified
struct is written back to the middleware at the end of the
task. The middleware maintains an appropriate amount
of memory for every task.

4.2 Interfacing sensors and actuators

It’s in the nature of an embedded system that a lot of
hardware interaction has to be done. So, COLA and
thus the code generator as well, have to provide a way to
interface sensors and actuators. To allow the use of an
arbitrary number of such devices, we propose the use of a
middleware. Its task is the mapping of logical addresses,
which are in numeric format, to real hardware addresses
as well as the subsequent hardware interaction.

Due to this abstraction the generated code uses
mw_read () and mw_write () for any hardware interaction.
The calls take the logical address of the device in ques-
tion as a parameter. Regarding the COLA model, such
a logical address is a unique name. The code genera-
tor inserts this name as a constant into the function call.
The middleware’s header file features according #define
statements to replace the constants with numeric values.

The current implementation of COLA doesn’t provide
separate model elements to depict sensors and actuators.
For our example we solved this lack by using COLA
blocks with distinguished names. The operator was de-
fined as “DEV_S_” for sensor devices and “DEV_A_” for ac-
tuator devices respectively, followed by the device name.
This requires the code generator to check for those string
patterns. In a future version of COLA it is intended
to render devices more precisely by introducing separate
model elements. Thus the risk of generating not properly
working code because of malformed identifiers is reduced.

As another difference compared to regular COLA blocks,
these device blocks have exactly one port. An output
port for sensors, delivering the sensor’s values and an
input port for actuators accepting the calculated value
of the control loop algorithm. To avoid the possibility
of race conditions, each sensor or actuator may only be
inserted once into a COLA model. Since every device
features just one port, this demands the developer to ex-
plicitly model the control of every concurrent hardware
interaction.

5 Case study

To prove the practical viability of our approach, we did
a case study using LEGO® Mindstorms™ controllers as
hardware platform, equipped with the BrickOS? operat-
ing system. The demonstrator should realize the func-
tionality of an adaptive cruise control (ACC) [16]. This
is a control device for cars providing the functionality
of keeping the car’s speed at a value set by the driver,
while maintaining a minimum distance to the car driving

ahead.

The presented example is an imitation of the concerns
and requirements of automotive design, and does not rep-
resent a real set of control algorithms for an actual prod-
uct or prototype.

5.1 Functionality of the demonstrator

The intended functionality of the demonstrator includes
the possibility to turn the ACC on and off. If the device is
turned off, the motor speed set by the user is forwarded to
the engine control without any modification. The display
indicates the current ACC state. By engaging the ACC,
the speed and distance regulation are activated. This
includes the measurement and comparison of the pace
set by the user and the actual measured car velocity. If
the desired user speed sy, differs from the actual speed
Sact, the target speed for the motor control is corrected
by (Suser — Sact)/20. This results in a speed correction
of 5 percent of the difference between actual and desired
speed. This regulation is used as long as no object is
detected within 35 centimeters ahead of the car. If the
distance drops below this threshold, the actual speed is

2http://brickos.sourceforge.net

continuously decreased by 5 percent. The minimum dis-
tance allowed constitutes 15 centimeters. If the actual
distance is lower, the car performs an emergency stop.
After either reducing speed or coming to a halt, the ACC
should speed up the car smoothly again, if the obstacle
is out of the critical region.

5.2 The ACC COLA model

The implementation of this functionality is severely in-
fluenced by the hardware available. The used controller
offers only two buttons available for control actions to
the programmer. Further, three sensor and three actua-
tor ports are present. For the demonstrator we use the
two controller buttons for setting the desired user speed.
A touch sensor is employed to switch the ACC on and
off. The remaining two sensor ports are used to connect
a rotation and an ultrasonic sensor. Two motors are con-
nected to the actuator ports, while the third port was
utilized to connect some brake lights.

The top-level network of the ACC COLA model is
shown in Figure 1. This network has no ports as
all sensors and actuators used for the ACC’s op-
eration are included in the network. Namely the
buttons DEV_S_VIEW, DEV_S_PRGM, the rotation sensor
DEV_S_ROTATION, the system clock DEV_S_TIME, the touch
sensor DEV_S_TOUCH and the distance sensor DEV_S_RADAR
can be seen. The actuators of the network are the con-
troller’s display DEV_A_DISPLAY and the motor control
DEV_A_MOTOR. As described in Section 4.2 these blocks
are coded as mw_read() and mw_write() statements,
e.g., the call to DEV_A_MOTOR would be transformed into
mw_write (MOTOR, *value) where *value is the calcu-
lated output for the motor speed. MOTOR and all other
device labels are mapped to a numeral using define state-
ments in a header file. A hand-written middleware then
forwards the read and write calls to hardware driver calls
provided by BrickOS, which in turn provide sensor values
or modify some actuator state.

5.3 Code efficiency

Embedded systems typically provide limited amounts of
memory and processing speed. Thus the code executed
must be small and predictable in its memory usage. This
applies to the amount of coded instructions as well as
variables. To achieve this goal, the code generator uses
call-by-reference wherever possible. As pointer variables
have a fixed size, the memory footprint of each function
call becomes independent of the data structures passed
around. In case of complex data types, the usage of point-
ers may even reduce the amount of memory needed and
lower the execution time.

Another way to save memory is the employment of re-use,
i.e., the size of the generated code is kept small by making
use of already coded components. Thus, if a unit appears

multiple times in a given model, it is only once trans-
formed into a C function. This function is then called
every time the unit is referenced. Of course there is a
separate state_struct for each unit instance, in case of
a stateful unit.

5.4 Benchmarking the ACC code

When working with generated code, efficiency aspects
surely play an important role. Using any valid tricks the
programmer is aware of, hand-written code may be then
considerably smaller and faster. Consequently, the bene-
fit of automatic code generation rather is its deterministic
result. If (to a certain extent) behavioral correctness of
the model has been established using techniques such a
(correct) code generator will produce equivalently cor-
rect code. Coding errors like unintentional casts, wrong
pointer arithmetic and the like are avoided. Finally a ma-
jor fraction of the potential performance draw backs are
negligible due to optimizations performed by compiler.

handcoded mmm generated =1 generated (static fct's) =

Runtime (ms)
-
&
T

o, Q,

Q

Optimization Level
Figure 4: Benchmarking runtime results

To get an idea of the performance of the generated ACC
code, we compiled it successively using the optimization
levels O1, O2 and O3 of the GNU C compiler and checked
the runtime results against the ones of a hand-coded ver-
sion of the ACC. To give an impression of the quality
of our manually coded version, we give the lines of code
(LOC) as metrics. The hand-coded version fulfills the
same functionality using 75 LOC, while the code gener-
ator produced 249 LOC for the modeled ACC. The re-
sulting binaries were compared regarding their execution
times. To minimize errors in the measurement of the run-
ning period induced by interrupts, context switches, etc.,
the ACC algorithm was called consecutively 100 times.
We ran this benchmark 20 times for each optimization
level. The averaged resulting times are given in Figure 4.
The third bar in the diagram, named generated (static
fct’s), indicates the values for a version of the generated
code with all functions being declared static. As this al-
lows the compiler to disregard the use of the functions
from outside the binary, the functions calls can be re-
placed by their implementation. Thus there is no jump
to fulfill and thus the execution time decreases. As can
be seen in the diagram, this effect makes most impact in
case of the O2 optimization level.

The measurements show that the execution time of our
generated code isn’t too far from the version implemented
by hand. Especially when using the higher optimization
levels of the compiler. There the generated code benefits
even more than the alternative. At maximum optimiza-
tion level, i.e., O3, the generated code even nearly reaches
the execution times of the hand written version.

6 Conclusions

We presented a translation scheme of models given in the
Component Language (COLA) to C code, and a proto-
typical implementation thereof. The formal semantics of
COLA and its small number of syntactic elements allow
for a transformation that fully retains the behavior of the
model. The performance evaluation shows that, using an
optimizing compiler, the execution time of the generated
code only has an overhead of 20% when compared to a
hand-crafted fully optimized version. We assume that
such a low overhead immediately pays off as the gener-
ated code is guaranteed to realize the behavior of the
model, which has undergone functional validation.

Future enhancements of the code generator will focus on
generating more efficient code, i.e., using less memory
and CPU time, and integrating more syntactic elements
as the vocabulary of COLA is still growing. Recent ad-
ditions to COLA include the introduction of multidimen-
sional data types, called records, and the use of distin-
guished model elements representing sensor and actuator
elements, namely sources and sinks. Additionally, the
COLA standard library is intended to be filled with reg-
ularly used units, e.g., integrator, counter, saturation,
PID-regulator, etc. The code for these units can be gen-
erated and saved for future code generation, thus avoid-
ing to generate it more than once and speeding up the
transformation.

Another ongoing project is the use of a model checker for
verification of COLA models. To facilitate this, the model
is transformed into Promela code and checked using the
SPIN [17] model checker. The generator for Promela code
is based on the implementation of the C code generator
presented here.

References

[1] S. Kugele, M. Tautschnig, A. Bauer, C. Schallhart,
S. Merenda, W. Haberl, C. Kiihnel, F. Miiller, Z. Wang,
D. Wild, S. Rittmann, and M. Wechs, “COLA — The
component language,” Tech. Rep. TUM-10714, Institut
fiir Informatik, Technische Universitat Miinchen, Sept.
2007.

[2] S. Schulz, J. W. Rozenblit, and K. Buchenrieder, “Multi-
level testing for design verification of embedded systems,”
IEEE Design & Test of Computers, vol. 19, no. 2, pp. 60—
69, 2002.

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pi-
laud, “The synchronous data-flow programming language

(10]

(11]

(12]

(13]

(14]

LUSTRE,” Proceedings of the IEEFE, vol. 79, pp. 1305—
1320, September 1991.

P. H. Feiler, B. Lewis, and S. Vestal, “The SAE avion-
ics architecture description language (AADL) standard:
A basis for model-based architecture-driven embedded
systems engineering,” in Proceedings of the RTAS 2003
Workshop on Model-Driven Embedded Systems (MDES),
May 2003.

A. Pretschner, M. Broy, I. H. Kriiger, and T. Stauner,
“Software engineering for automotive systems: A
roadmap,” in Future of Software Engineering (FOSE
’07), pp. 55-71, 2007.

F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. L. Sangiovanni-Vincentelli,
“Metropolis: An integrated electronic system design en-
vironment.,” IEEE Computer, vol. 36, no. 4, pp. 45-52,
2003.

E. Bondarev, M. Chaudron, and P. H. N. de With,
“CARAT: a toolkit for design and performance analysis
of component-based embedded systems,” in Proceedings
of the conference on Design, automation and test in Eu-
rope (DATE 2007), pp. 1024-1029, Mar. 2007.

P.-A. Hsiung, S.-W. Lin, C.-H. Tseng, T.-Y. Lee, J.-M.
Fu, and W.-B. See, “VERTAF: An Application Frame-
work for the Design and Verification of Embedded Real-
Time Software,” IEEE Transactions on Software Engi-
neering, vol. 30, no. 10, pp. 656674, 2004.

J. W. Reuter, “Analysis and comparison of 3 code gen-
eration tools,” in Proceedings of the SAE 2004 World
Congress, Society of Automotive Engineers, Mar. 2004.

D. Wybo and D. Putti, “A qualitative analysis of auto-
matic code generation tools for automotive powertrain
applications,” in Proceedings of the 1999 IEEE Inter-
national Symposium on Computer Aided Control System
Design, pp. 225-230, 1999.

M. W. Whalen and M. P. E. Heimdahl, “An approach to
automatic code generation for safety-critical systems,” in
ASE, pp. 315-318, 1999.

G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

A. Bauer, M. Broy, J. Romberg, B. Schétz, P. Braun,
U. Freund, N. Mata, R. Sandner, and D. Ziegen-
bein, “AutoMoDe— Notations, Methods, and Tools for
Model-Based Development of Automotive Software,” in
Proceedings of the SAE 2005 World Congress, Society of
Automotive Engineers, Apr. 2005.

E. F. Moore, “Gedanken-experiments on sequential ma-
chines,” in Automata Studies (C. E. Shannon and J. Mac-
Carthy, eds.), pp. 129-153, Princeton University Press,
1956.

A. Sangiovanni-Vincentelli and M. D. Natale, “Embed-
ded system design for embedded automotive applica-
tions,” Computer, vol. 40, no. 10, pp. 42-51, 2007.

R. B. GmbH, Kraftfahrtechnisches Taschenbuch. Vieweg,
26" ed., Jan. 2007.
G. J. Holzmann, The SPIN Model Checker : Primer and

Reference Manual. Addison-Wesley Professional, Sept.
2003.

