MoTraS - A Tool for Modal Transition Systems

Martin Stoll

Informatik VII
Chair for Foundations of Software Reliability and Theoretical Computer Science

Technische Universität München

27.09.2011
Outline

1 Theory

2 MoTraS

3 Implementation and Conclusion

4 Future Work
Outline

1. Theory
2. MoTraS
3. Implementation and Conclusion
4. Future Work
Modal Transition Systems (MTSs)

- Extension of Labeled Transition Systems (LTSs)
- A set of processes \(P \)
- The action alphabet \(\Sigma \)
- Two types of transitions:
 - May-transitions \(\xrightarrow{\text{may}} \) are allowed to be in every refinement of the given system
 - Must-transitions \(\xrightarrow{\text{must}} \) are obliged to be in every refinement of the given system
- SPECIAL CASE: Deterministic Modal Transition Systems (dMTSs)
Example
Disjunctive Modal Transition Systems (DMTSSs)

- Extension of MTSs
- **Disjunctive transitions**: A Set of must-transitions from which only one has to be realized in every refinement of the given system.
Implementations

Each may-transition of the given system is either omitted or turned into a must-transition.
Refinements

The refinement must contain every must-transition of the given system

AND

Every may-transition of the refinement system must be defined in the given (refined) system
Refinements II
Deterministic Hull

smallest (w.r.t. refinement) deterministic system refined by the original system
Conjunction

- greatest lower bound for a given set of processes w.r.t. the modal refinement
- not always expressible as MTS, but as DMTS
Composition

- synchronizing alphabet $\Gamma \subseteq \Sigma$
- sequential and synchronous scheduling of transitions
- Example with $\Gamma = \{a\}$:
Outline

1. Theory
2. MoTraS
3. Implementation and Conclusion
4. Future Work
Features

- single or double GUI
- drawing of MTSs and DMTSs
- import and export (various formats) of DMTSs
- random (d/D)MTS generator and MTS refinement generator
- runtime test for algorithms
- various sample MTSs
Algorithms

- Modal Refinement (two different algorithms)
- Smallest Common Implementation for dMTSs
- Greatest Common Implementation for DMTSs
- Deterministic Hull
- Composition
- Conjunction for DMTSs
- LTL Model Checking for DMTSs
MoTraS - a short demonstration ...
Outline

1. Theory
2. MoTraS
3. Implementation and Conclusion
4. Future Work
Two ways to check MR

MRNaive

Fixed point computation over the whole Cartesian Product of the sets of processes

MRImproved

BFS to find all relevant pairs of processes and fixed point computation on the resulting set
Implementation and Conclusion

Runtime evaluation

(a) transitions-processes-ratio (TPR) $1.5n$

(b) TPR $2n$

(c) TPR $0.25n^2$
Outline

1 Theory

2 MoTraS

3 Implementation and Conclusion

4 Future Work
Future Work

- Extension of algorithms for DMTSs
- Algorithms for checking Thorough Refinement
- Further optimizations of the algorithms
Thank you for your attention!