Optimization Problems and Approximation

We are unable to solve NP-complete problems efficiently, i.e., there is no known way to solve them in polynomial time. Most of them are decision versions of optimization problems... with a set of feasible solutions for each instance with an associated quality measure. Why not looking for an approximate solution? Is there a difference in complexity?

Example Knapsack revisited

All set $T \subseteq S$ satisfy $\sum_{i\in T} w(i) \leq W$ are feasible solutions. $\sum_{i\in T} \nu(i)$ is the quality of the solution T wrt. to the instance i.

Definition of Optimization Problems

Example Problem: MaxkSat

MaxSat has all CNF - Expressions as instances. There is also a weighted version: Each clause has a weight -- the measure is the sum of the weights of the satisfied clauses.

Example Problem: MaxkSat

Max3Sat(D) is certainly NP - complete (thus Max3Sat is NP - hard): 3SAT is a special case. But also Max2Sat(D) is NP - complete....
Optimization Problems and Approximation

Performance Ratio

Approximation algorithms deliver solutions of guaranteed quality – they are not heuristics.

But how to measure the quality of a solution?

Let \(O := \{s, m, \text{type} \} \) be an optimization problem.

Given \(i \in I \) and a \(s \in \text{sol}(i) \) we define

\[
\mathcal{R}(i, s) = \max \left\{ \frac{\text{opt}(i)}{m(i, s)} : \frac{m(i, s)}{\text{opt}(i)} \right\}
\]

as the performance ratio.

\(s \in \text{sol}(i) \) is an \(r - \text{approximate solution} \) if \(\mathcal{R}(i, s) \leq r \).

Example Problem MaxkSat

Performance Ratio

MaxkSat \(:= \{s, m, \text{max} \} \)

\(I \in \text{CNF} - \text{Formulas} \) with at most \(k \) literals per clause

\(\text{sol}(\phi) \) = set of assignments to the vars. of \(\phi \)

\(m(\phi, A) \) = the number of clauses which are satisfied by \(A \)

\[
\mathcal{R}(\phi, A) = \frac{\text{opt}(\phi)}{m(\phi, A)}
\]

If we have an \(A \) with \(\mathcal{R}(\phi, A) \leq \frac{3}{2} \)

no \(A \) can satisfy more than \(\frac{3}{2} m(\phi, A) \) clauses.

Optimization Problems and Approximation

Approximation Problem

Let \(O := \{s, m, \text{type} \} \) be an optimization problem and \(r \) a function \(N \to \{1, \infty\} \).

Then the approximation problem \(\langle O, r \rangle \) is to find for all instances \(i \in I \) an \(r(i) \) - approximate solution \(s \in \text{sol}(i) \).

The question is which approximation problems \(\langle O, r \rangle \) are located in \(\text{FP} \).

And how to prove that they are not (under some assumption such as \(\text{P} \neq \text{NP} \)).

Optimization Problems and Approximation

The Class NPO

NPO is the class of optimization problems whose decision versions are in \(\text{NP} \).

\[
\text{OPTPROB} := \{s, m, \text{type} \} \in \text{NPO} \iff
\]

\(\exists \text{ polynomial } p : \forall i \in I, s \in \text{sol}(i) : |s| \leq p(i) \)

deciding \(s \in \text{sol}(i) \) is in \(\text{P} \)

computing \(m(s, i) \) is in \(\text{FP} \)

Optimization Problems and Approximation

Approximation Algorithm

Example Problem: MaxSat

approxMaxSat(\(\phi \))

1. for \(i = 1 \) to \(n \)
2. \(\text{val} := E(m(\phi, A \cup \{x_i = \text{true}\}) : E(m(\phi, A \cup \{x_i = \text{false}\})) ;
3. \(A := A \cup \{x_i = \text{val}\} ;\) \(\phi := \phi \cup \{x_i = \text{val}\};
4. return \(A;\)

\[
E(\phi) = \sum_{x_i} 1 - 2^{-x_i} \geq \sum_{x_i} 1 - 2^{-x_i} = \frac{1}{2} |\phi|
\]

Thus, this algorithm is a 2-approximate algorithm or better.
Approximation Algorithm

Example Problem: VertexCover

1. \(C := \emptyset \)
2. while \(E \neq \emptyset \) do
3. \(a \leftarrow \langle u, v \rangle \in E \)
4. \(C := C \cup \{u, v\} \)
5. remove \(\{u, v\} \) from \(V, E \)
6. return \(C \)

C is indeed a valid cover. Every cover must cover all the edges picked in line 3. Thus every cover must contain at least \(|C| / 2 \) vertexes.

\[R(G, C) = \frac{m(G, C)}{\text{opt}(G)} \leq 2 \]

Approximation Classes

APX

We have two approximation problems, which can be solved within a constant performance ratio within polynomial time.

So it’s time to define a corresponding class: APX.

Let \(O \) be an NPO problem. \(O \in \text{APX} \) if there exists an \(r \) -approximation algorithm for \(O \) which run in polynomial time for some constant \(r \geq 1 \).

Approximation Classes

Example Problem: TSP (I)

We will show that \(\text{TSP} \in \text{APX} \Leftrightarrow P = \text{NP} \).

We use another NP-complete problem to reduce from: \(\text{HAMILTONIANCYCLE} \)

\(\text{HAMILTONIANCYCLE} \): Given a graph \(G = (V, E) \), is there a cycle, which visits any node exactly once?

We construct a distance matrix \(M \) as follows (for \(r \geq 1 \)):

\[
M(u, v) = \begin{cases}
1 & \langle u, v \rangle \in E \\
\left\lfloor \frac{r |V|}{|V|} \right\rfloor & \text{otherwise}
\end{cases}
\]

Approximation Classes

Example Problem: TSP (II)

We construct a distance matrix \(M \) as follows (for \(r \geq 1 \)):

\[
M(u, v) = \begin{cases}
1 & \langle u, v \rangle \in E \\
\left\lfloor \frac{r |V|}{|V|} \right\rfloor & \text{otherwise}
\end{cases}
\]

If \(G \) is a positive instance, then \(\text{opt}(M) = |V| \).
Otherwise \(\text{opt}(M) \geq \left\lfloor \frac{r |V|}{|V|} \right\rfloor - 1 \).

Now assume that there is an \(r \)-approximate algorithm for \(\text{TSP} \).

Approximation Classes

Example Problem: TSP (III)

If \(G \) is a positive instance, then \(\text{opt}(M) = |V| \).
Otherwise \(\text{opt}(M) \geq \left\lfloor \frac{r |V|}{|V|} \right\rfloor - 1 \).

Now assume that there is an \(r \)-approximate algorithm for \(R(M) \).

If \(G \in \text{HAMILTONIANCYCLE} \), we find

\[
r \geq R(M, x) = \frac{m(M, x)}{\text{opt}(M)} \geq \frac{m(M, x)}{|V|} \quad \text{and so} \quad |V| r \geq m(M, x).
\]

But otherwise we have

\[
m(M, x) \geq \text{opt}(M) \geq \left\lfloor \frac{r |V|}{|V|} \right\rfloor - 1 > \left\lfloor \frac{r |V|}{|V|} \right\rfloor
\]

Approximation Classes

Example Problem: TSP (IV)

So we could prove that \(\text{TSP} \not\in \text{APX} \) (assuming \(P \neq \text{NP} \)) by giving a reduction from an \(\text{NP} \)-hard problem, which established a gap between positive and negative instances.

The gap was large enough to distinguish whether we reduced from a positive or a negative instance.

Wanted: A generic reduction from \(\text{NP} \)-hard problems, to approximation problems which produces gaps.
Approximation Classes

Relationships

\[\text{APX} \subseteq \text{NPO} \]

\[\text{TSP} \in \text{APX} \iff \text{P} = \text{NP} \]

\[\text{APX} \subseteq \text{NPO} \iff \text{P} \neq \text{NP} \]

Max3Sat and VertexCover are in APX.

Approximation Classes

Approximation Schemes

An algorithm which can be parametrized with the performance ratio to achieve is called approximation scheme.

Let \(O := (I, \text{sol}, m, \text{type}) \) be an optimization problem. Then an algorithm \(A \) is an approximation scheme for \(O \) iff for all \(i \in I \), \(r \geq 1 \) and \(s = A(i, r) \)\n
\[s \in \text{sol}(i) \text{ and } R(i, s) \leq r. \]

Approximation Schemes

The classes PTAS and FPTAS

\[O \in \text{FPTAS} \text{ if there is an approximation scheme } A \]

such that \(A(i, r) \) runs in \(\text{DTIME}(\text{poly}(|i|/ (r-1))) \)

for all \(i \in I \) and \(r > 1 \).

\[O \in \text{PTAS} \text{ if there is an approximation scheme } A \]

such that \(A(i, r) \) runs in \(\text{DTIME}(\text{poly}(|i|)) \)

for all \(i \in I \) and any fixed \(r > 1 \).

Example Problem: KNAPSACK

A Pseudo-Polynomial Algorithm

Let \(W(x, v) \) be the minimum weight attainable by selecting among the first \(x \) items such that their total value is exactly \(v \).

\[W(0, 0) = 0 \]

\[W(0, v) = \infty \text{ if } v > 0 \]

\[W(x+1, v) = \min \{ W(x, v), W(x, v - (x+1)) + w(x+1) \} \]

By building the table of the \(W(x, v) \) for \(0 \leq x \leq n \) and \(0 \leq v \leq V = \sum v(x) \) we can solve KNAPSACK.

This algorithm runs in \(\text{DTIME}(|n, V|) \) (pseudo-poly.)

Example Problem: KNAPSACK

An FPTAS (I)

This algorithm runs in \(\text{DTIME}(\text{poly}(n, V)) \) (pseudo-poly.)

Assume \(\varepsilon > 0 \) fixed.

Let \(l = \left\lfloor \log_{\log_{n}} v(x) \right\rfloor \)

Choose \(k \) with \(\frac{n}{n} < \varepsilon \).

Set \(L = l - k \log n \).

Define \(v' \) with \(v'(x) = \left\lfloor v(x)/2^{l-k} \right\rfloor \).

We keep the most significant \(k \) log \(n \) bits.

The rest, i.e., \(L = l - k \log n \), gets zeroized.
Example Problem: KNAPSACK
An FPTAS (II)
This algorithm runs in $\text{DTIME}(\text{poly}(n,V^2))$ (pseudo-poly.)
Assume $\varepsilon > 0$ fixed.
Let $l = \left\lfloor \log \max_{x \in S} v(x) \right\rfloor$
Choose k with $\frac{n}{\varepsilon} < k$.
Set $L = l - k \log n$.
Define i' with
$v'(x) = \left\lfloor \frac{v(x)}{2^l} \right\rfloor$
$$\sum_{i \in S} v(x) + \sum_{i' \in S} v'(x) + |T| 2^l$$
$$\text{opt}(i) \leq \text{opt}(i') + n2^l$$
$$\text{opt}(i') \leq 1 + \frac{n2^l}{\max_{x \in S} v(x)}$$
$$\leq 1 + \frac{n2^l}{\varepsilon} \leq 1 + \varepsilon$$

Example Problem: KNAPSACK
An FPTAS (III)
This algorithm runs in $\text{DTIME}(\text{poly}(n,V^2))$ (pseudo-poly.)
Assume $\varepsilon > 0$ fixed.
Let $l = \left\lfloor \log \max_{x \in S} v(x) \right\rfloor$
Choose k with $\frac{n}{\varepsilon} < k$.
Set $L = l - k \log n$.
Define i' with
$v'(i') = \left\lfloor \frac{v(i')}{2^l} \right\rfloor$
$$\sum_{i \in S} v(x) + \sum_{i' \in S} v'(x)$$
$$\text{opt}(i) \leq \text{opt}(i') + \frac{n2^l}{\max_{x \in S} v(x)}$$
$$\leq 1 + \frac{n2^l}{\varepsilon} \leq 1 + \varepsilon$$
Solving i' optimally yields an $1 + \varepsilon$ approximate solution for I

Example Problem: KNAPSACK
An FPTAS (IV)
This algorithm runs in $\text{DTIME}(\text{poly}(n,V^2))$ (pseudo-poly.)
Assume $\varepsilon > 0$ fixed.
Let $l = \left\lfloor \log \max_{x \in S} v(x) \right\rfloor$
Choose k with $\frac{n}{\varepsilon} < k$.
Set $L = l - k \log n$.
Define i' with
$v'(x) = \left\lfloor \frac{v(x)}{2^l} \right\rfloor$
We can solve i' in
$$\text{DTIME}(\text{poly}(n, V^2))$$
$$= \text{DTIME}(\text{poly}(n, n2^{\log n}))$$
$$= \text{DTIME}(\text{poly}(n/\varepsilon))$$
Solving i' optimally yields an $1 + \varepsilon$ approximate solution for I
within $\text{DTIME}(\text{poly}(l/\varepsilon))$, KNAPSACK \in FPTAS.

Approximation Schemes
Polynomially Bound Problems
Let $O = \langle I, \text{sol, m, type} \rangle$ be a problem in NPO.
If there is no polynomial p such that
$$\forall t_i \in I \exists \text{sol}(i): m(t_i, x) \leq p(t_i)$$
then O is polynomially bound, i.e.,
$$O \in \text{NPO} - \text{PB}$$
If there is an NP-hard problem in NPO - PB which admits an FPTAS, then $P = NP$.

Polynomially Bound Problems
Permit no FPTAS (I)
If there is an NP-hard problem in NPO - PB which admits an FPTAS, then $P = NP$.
Let O be a maximization problem in NPO - PB.
Set $r(i) = 1 + \frac{1}{p(i)}$, where p is the poly.-bound.
An $r(i)$-approximate solution s for i is optimal since,
$$p(i) \cdot (r(i) + 1) = r(i) \geq \frac{\text{opt}(i)}{\text{m}(s)}$$
gives
$$\text{m}(s, x) \geq \text{opt}(i) \cdot \frac{p(i)}{p(i) + 1} = \frac{\text{opt}(i)}{\text{m}(s)} > \text{opt}(i) - 1$$

Polynomially Bound Problems
Permit no FPTAS (II)
Set $r(i) = 1 + \frac{1}{p(i)}$, where p is the poly.-bound.
An $r(i)$-approximate solution s for i is optimal since,
$$p(i) \cdot (r(i) + 1) = r(i) \geq \frac{\text{opt}(i)}{\text{m}(s)}$$
gives
$$\text{m}(s, x) \geq \text{opt}(i) \cdot \frac{p(i)}{p(i) + 1} = \frac{\text{opt}(i)}{\text{m}(s)} > \text{opt}(i) - 1$$
If O would be in FPTAS then we can solve O optimally
in $\text{DTIME}(\text{poly}(|I|, (r(i) - 1))) = \text{DTIME}(\text{poly}(i))$.

Approximation Classes

Relationships

- \(\text{FPTAS} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \text{NPO} \)

- \(\text{TSP} \in \text{APX} \iff P = \text{NP} \)
- \(\text{Max3Sat} \in \text{FPTAS} \iff P = \text{NP} \)

Two questions:
- Are there problems in \(\text{PTAS-FPTAS} \)?
- Are there problems in \(\text{APX-PTAS} \)? (as usual, based on \(P = \text{NP} \))

Problems in PTAS-FPTAS

- PLANAR INDEPENDENTSET is in NPO - PB and is NP-hard.
- PLANAR INDEPENDENTSET \(\in \text{FPTAS} \) \(\Rightarrow P = \text{NP} \).

Unproven: PLANAR INDEPENDENTSET \(\in \text{PTAS} \).

Hardness in Approximation

PCP-Theorem (I)

A language \(L \) is in \(\text{PCP}(r(n), q(n)) \)

- \(\forall x \in L \ \exists \Pi: \text{Pr}_{\tilde{V}}[V(x, \Pi, \tilde{R}) = \text{accept}] = 1 \)
- \(\forall x \notin L \ \forall \Pi: \text{Pr}_{\tilde{V}}[V(x, \Pi, \tilde{R}) = \text{accept}] \leq 1/2 \)

with \(\tilde{R} = O(1/\epsilon) \), and \(V \) reading \(O(q(n)) \) bits non-adaptively from \(\Pi \).

Easy: \(\text{NP} \nsubseteq \text{PCP}(\log n, 1) \)

Hard: \(\text{NP} \nsubseteq \text{PCP}(\log n, 1) \)

PCP-Verification

1. reads the input \(x \)
2. reads \(O(r(n)) \) random bits
3. computes proof positions to read
4. reads \(O(q(n)) \) proof bits
5. decides
Hardness in Approximation

PCP-Theorem (I)

A language L is in $\text{PCP}(r(n), q(n))$ if there is a polynomial time $\text{PCP}(r(n), q(n))$-Verifier V such that

\[
\forall x \in L \implies \exists \Pi: \Pr[V(x, \Pi, \overline{R}) = \text{accept}] = 1
\]

\[
\forall x \notin L \implies \forall \Pi: \Pr[V(x, \Pi, \overline{R}) = \text{accept}] \leq \frac{1}{2}
\]

with $|\overline{R}| = O(r(n))$, and V reading $O(q(n))$ bits non-adaptively from Π.

PCP-Theorem: $NP = PCP(\log n, 1)$

How to use?

Reduce the verification process to an approximation problem such that the gap of the PCP-Verifier translates into a gap in the measure of the optimal solution(s).

Example Problem: Max3Sat (I)

Observe that once the $O(q(n))$ bits have been read from the proof Π, the decision of V is only depending on them.

Thus we can define a set of Boolean Expressions $\phi(x, \overline{R}[\overline{p}])$ where x is the input, \overline{R} is the random string of length $O(\log n)$, \overline{p} are the bits read in Π, $\phi(x, \overline{R}[\overline{p}]) = 1 \iff V(x, \Pi, \overline{R}) = \text{accept}$.

Example Problem: Max3Sat (II)

Each $\phi(x, \overline{R}[\overline{p}])$ can be expressed by d clauses, where d is constant (since $|\overline{R}|$ is constant).

Let ϕ be the conjunction of the expressions $\phi(x, \overline{R}[\overline{p}])$ for all $\overline{R} (|\overline{R}| = c \log n)$.

\[
x \in L \implies \exists \Pi: \Pr[V(x, \Pi, \overline{R}) = \text{accept}] = 1
\]

\[
\implies \forall \phi, \overline{R} \text{can be satisfied simultaneously}
\]

\[
\implies \phi \text{ satisfiable.}
\]

Example Problem: Max3Sat (III)

Each $\phi(x, \overline{R}[\overline{p}])$ can be expressed by d clauses, where d is constant (since $|\overline{R}|$ is constant).

Let ϕ be the conjunction of the expressions $\phi(x, \overline{R}[\overline{p}])$ for all $\overline{R} (|\overline{R}| = c \log n)$.

\[
x \in L \implies \forall \Pi: \Pr[V(x, \Pi, \overline{R}) = \text{accept}] \leq \frac{1}{2}
\]

\[
\implies \text{each assignment must leave } \frac{1}{2}
\]

\[
\text{of the expressions } \phi(x, \overline{R}) \text{ unsatisfied.}
\]

\[
\implies \text{opt}(\phi) = 1
\]

\[
\text{opt}(\phi) \leq f = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}
\]

\[
x \in L \implies \text{opt}(\phi) = f = |\phi|
\]

\[
x \notin L \implies \text{opt}(\phi) \leq f = |\phi|
\]

\[
\text{for all } A.
\]

\[
r-\text{approximating Max3Sat is } NP-hard \text{ (constant } r > 1). \quad \blacksquare
\]

Example Problem: Max3Sat (IV)

Each $\phi(x, \overline{R}[\overline{p}])$ can be expressed by d clauses, where d is constant (since $|\overline{R}|$ is constant).

Let ϕ be the conjunction of the expressions $\phi(x, \overline{R}[\overline{p}])$ for all $\overline{R} (|\overline{R}| = c \log n)$.

\[
x \in L \implies \forall \Pi: \Pr[V(x, \Pi, \overline{R}) = \text{accept}] = 1
\]

\[
x \notin L \implies \forall \Pi: \Pr[V(x, \Pi, \overline{R}) = \text{accept}] \leq \frac{1}{2}
\]

\[
x \in L \implies \text{opt}(\phi) = f = |\phi|
\]

\[
x \notin L \implies \text{opt}(\phi) \leq f = |\phi|
\]

\[
\text{for all } A.
\]

\[
r-\text{approximating Max3Sat is } NP-hard \text{ (constant } r > 1). \quad \blacksquare
\]
Hardness in Approximation

Remark: Decoding of PCP-Proofs

\[\forall x \in L \exists \Pi : P_{\mathbb{E}}^{\Pi}(x, \Pi, \overline{\Pi}) = \text{accept} = 1 \]
\[\forall x \notin L \forall \Pi : P_{\mathbb{E}}^{\Pi}(x, \Pi, \overline{\Pi}) = \text{accept} \leq 1/2 \]

Given a proof \(\Pi \) with \(P_{\mathbb{E}}^{\Pi}(x, \Pi, \overline{\Pi}) = \text{accept} > 1/2 \), a proof \(\Pi' \) with \(P_{\mathbb{E}}^{\Pi'}(x, \Pi', \overline{\Pi'}) = \text{accept} \) can be reconstructed efficiently (in FP).

\(\Pi \) is basically encoded for error-correction --- thus it possible to find the corresponding "usually encoded" proof efficiently.

Approximation Classes

Relationships

\[\text{FPTAS} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \text{NPO} \]

\[\text{FPTAS} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \text{NPO} \iff P \neq \text{NP} \]

Approximation Classes

More Classes

Let \(O \) be an NPO problem.
\(O \in \text{F} \iff \text{APX} \) iff there exists an \(r \)-approximation algorithm for \(O \) which run in polynomial time for some function \(f \in \text{F} \).

\[\text{FPTAS} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \text{log} - \text{APX} \subseteq \text{poly} - \text{APX} \subseteq \text{exp} - \text{APX} \subseteq \text{NPO} \]