Problems and Exercises
“Model Checking”, SS06
Part 5

Prof. Helmut Veith
Dipl.-Inf. Johannes Kinder
Dipl.-Ing. Robert Stepanek

SPIN

Use SPIN to solve the following exercises. SPIN can be obtained from http://spinroot.com

1. **Unreliable Channel.** Model an unreliable channel, i.e., a channel which might loose packets. Use this channel to transmit packets from a sender to a receiver process. Use SPIN to simulate the system.

2. **Unreliable Channel: Proof.** Prove that the channel is unreliable, i.e., that not every packet that is sent will arrive at the receiver.

3. **Mutual Exclusion.** Consider the following algorithm, published (Comm. of the ACM, Vol. 9, No. 1, p. 45) in pseudo-Algol:

   ```alg
   1 Boolean array b(0;1) integer k, i, j,
   2 comment process i, with i either 0 or 1 and j = 1-i;
   3 C0: b(i) := false;
   4 C1: if k != i then begin
   5    C2: if not (b(j) then go to C2;
   6     else k := i; go to C1 end;
   7     else critical section;
   8     b(i) := true;
   9    remainder of program;
  10    go to C0;
  11 end
   ```

 Model it in Promela and prove or disprove its correctness!
4. *Dining Philosophers.* Model the Dining Philosophers Problem in Promela with 5 philosophers. Prove that they could starve. Modify the model such that each philosopher will eventually eat. Prove this property.

5. *Token Ring.* A token ring consists of \(m \) independent processors which are arranged in a cycle, where each processor is connected to its left and right neighbors. The processes of the token ring use a token (represented by a message in channel) to synchronize each other. After each processing step, the token is passed on to one of its neighbors.

- Implement the token ring for \(m = 4 \), where the token is passed to one of the neighbors nondeterministically. Simulate the token ring in the interactive environment.
- Use SPIN to check whether it is guaranteed that at most one processor gets access to the critical section at the same time.
- Use SPIN to check whether a deadlock can occur.
- Use SPIN to check whether at least one process enters the critical section infinitely often, i.e., whether progress is achieved.
- Repeat the above steps for a model where the token is passed deterministically to the left.
- *Optional:* Find the maximal \(m \) for which you can verify the model on your machine.

6. *Token Ring: Fairness.* Use the two models from the last exercise. Use SPIN to produce a never claim which states that each process gets access to the critical section infinitely often, i.e., whether each process is able to make progress. Check this condition.