Optimization Problems and Approximation

We are unable to solve NP-complete problems efficiently, i.e., there is no known way to solve them in polynomial time. Most of them are decision versions of optimization problems... with a set of feasible solutions for each instance with an associated quality measure

Why not looking for an approximate solution? Is there a difference in complexity?

Example Knapsack revisited

All set \(T \subseteq S \) with \(\sum_{i \in T} w(i) \leq W \) are feasible solutions.

The quality of the solution \(T \) wrt. the instance \(i \) is \(\sum_{i \in T} v(i) \)

Example Problem: MaxkSat

MaxSat is NP-complete (thus MaxkSat is NP-hard):

Max3Sat(D) is a special case
But also Max2Sat(D) is NP-complete...

Optimization Problems and Approximation

Definition of Optimization Problems

\[OPTPROB = \{ I, \text{sol,m,type} \} \]

\(I \) the instance set
\(\text{sol}(i) \) the set of feasible solutions for instance \(i \)
\(m(i,s) \) the measure of solution \(s \) wrt. instance \(i \)

\[\text{opt}(i) = \text{type} \ m(i,s) \]

Optimization Problems and Approximation

Example Problem: MaxkSat

MaxSat is NP-complete

Max3Sat(D) is a special case
But also Max2Sat(D) is NP-complete....

Example Problem: MaxkSat

MaxSat is NP-complete

Max3Sat(D) is a special case
But also Max2Sat(D) is NP-complete....

Optimization Problems and Approximation

The Class NPO

NPO is the class of optimization problems whose decision versions are in NP.

\[OPTPROB = \{ I, \text{sol,m,type} \} \]

\(\exists \) polynomial \(p : \forall i \in I, \exists \text{sol}(i) : |s| \leq p(|I|) \)

deciding \(s \in \text{sol}(i) \) is in \(P \)

computing \(m(s,i) \) is in \(FP \)
Example Problem: MaxkSat
NP-hardness

But also Max2Sat(D) is NP-complete....

... a local replacement reduction from 3SAT:

\((x \lor y \lor z)\) is replaced by
\((x \lor y \lor z)(x \lor y \lor z)\)

\((x \lor y \lor z)(y \lor w)(z \lor w)\)

Each 3-literal clause is replaced by a 10 clauses.

If the original clause was satisfied, then 7 in the replacement can be satisfied.

Set \(K = 7m\) where \(m\) is the number of clauses in the original.

Optimization Problems and Approximation Performance Ratio

Approximation algorithms deliver solutions of guaranteed quality – they are not heuristics.

But how to measure the quality of a solution?

Let \(O = (I, \text{sol}, m, \text{type})\) be an optimization problem. Given \(i \in I\) and a \(s \in \text{sol}(i)\) we define

\[R(i, s) = \frac{\text{opt}(i)}{\text{m}(i, s)} \frac{\text{m}(i, s)}{\text{opt}(i)}\]

as the performance ratio.

\(s \in \text{sol}(i)\) is an \(r-\)approximate solution if \(R(i, s) \leq r\).
Optimization Problems and Approximation Performance Ratio

Let \(O \) be an optimization problem given \(i \in I \) and a \(s \in \text{sol}(i) \) we define

\[
R(i, s) = \max \left(\frac{\text{opt}(i)}{\text{m}(i, s)}, \frac{\text{m}(i, s)}{\text{opt}(i)} \right)
\]

as the performance ratio. \(s \in \text{sol}(i) \) is a \(r \)-approximate solution if \(R(i, s) \leq r \).

\(R(i, s) = 1 \) implies that \(s \) is optimal.

\(R(i, s) \geq 1 \) in general, the closer to 1, the better.

Example Problem MaxkSat

MaxkSat \(\iff \) \(I, \text{sol}, m, \text{max} \) >

\(I = \text{CNF - Formulas} \) with at most \(k \) literals per clause

\(\text{sol}(\phi) = \) set of assignments to the vars. of \(\phi \)

\(m(\phi, A) = \) the number of clauses which are satisfied by \(A \)

\[
R(\phi, A) = \frac{\text{opt}(\phi)}{m(\phi, A)} \quad \text{if we have an } A \text{ with } R(\phi, A) \leq \frac{3}{2}
\]

no \(A \) can satisfy more than \(\frac{3}{2} m(\phi, A) \) clauses.

Approximation Algorithm

Example Problem: MaxkSat

approxMaxSat(\(\phi \))

1. for \(i = 1 \) to \(n \)
2. \(\text{val} := E(m(\phi, A \cup \{x_i = \text{true}\})) \rangle E(m(\phi, A \cup \{x_i = \text{false}\})) \rangle \)
3. \(A := A \cup \{ x_i = \text{val} \}; \phi := \phi \setminus x_i = \text{val} \)
4. return \(A \)

\[
E(\phi()) = \sum_{x \in \phi} 1 - 2^{-|x|} \geq \sum_{x \in \phi} 1 - 2^{-1} = \frac{1}{2} | \phi |
\]

Thus, this algorithm is a 2-approximate algorithm or better.

Approximation Algorithm

Example Problem: VertexCover

approxVertexCover(V, E)

1. \(C := \emptyset \)
2. while \(E \neq \emptyset \) do
3. \(\text{pick a } a, v \in E \) with \(a < v \)
4. \(C := C \cup \{ a, v \} \)
5. \(\text{remove } (a, v) \text{ from } V, E \)
6. return \(C \)

C is indeed a valid cover.

Every cover must cover all the edges picked in line 3.

Thus every cover must contain at least \(| C | \geq 2 \) vertexes.

\[
R(G, C) = \frac{\text{m}(G, C)}{\text{opt}(G)} \leq 2
\]

Approximation Classes

APX

We have two approximation problems, which can be solved within a constant performance ratio within polynomial time.

So it’s time to define a corresponding class: APX.

\(O \) be an \(NP \)-problem.

\(O \in APX \) if there exists an \(r \)-approximation algorithm for \(O \)

which run in polynomial time for some constant \(r \geq 1 \).
Approximation Classes

Example Problem: TSP (I)

We will show that $TSP \in APX \Leftrightarrow P = NP$.

We use another NP-complete problem to reduce from: $HAMILTONIANCYCLE$

$HAMILTONIANCYCLE$: Given a graph $G = (V, E)$, is there a cycle, which visits any node exactly once?

We construct a distance matrix M as follows (for $r \geq 1$):

$$M(u,v) = \begin{cases} 1; & u,v \in E \\ \lfloor r \cdot |V| \rfloor; & \text{otherwise} \end{cases}$$

Approximation Classes

Example Problem: TSP (II)

We construct a distance matrix M as follows (for $r \geq 1$):

$$M(u,v) = \begin{cases} 1; & u,v \in E \\ \lfloor r \cdot |V| \rfloor; & \text{otherwise} \end{cases}$$

If G is a positive instance, then $\text{opt}(M) = |V| \\
Otherwise $\text{opt}(M) \geq \lceil r \cdot |V| \rceil - 1$.

Now assume that there is an r-approximate algorithm for TSP.

Approximation Classes

Example Problem: TSP (III)

If G is a positive instance, then $\text{opt}(M) = |V| \\
Otherwise $\text{opt}(M) \geq \lceil r \cdot |V| \rceil - 1$.

Now assume that there is an r-approximate algorithm approx for TSP and let $s = \text{approx}(M)$.

If $G \in HAMILTONIANCYCLE$, we find

$$r \geq \frac{m(M,s)}{\text{opt}(M)} - \frac{m(M,s)}{|V|} \quad \text{and so} \quad |V| \cdot r \geq m(M,s).$$

But otherwise we have

$$m(M,s) \geq \text{opt}(M) \geq \lceil r \cdot |V| \rceil - 1 > \lfloor r \cdot |V| \rfloor.$$

Approximation Classes

Example Problem: TSP (IV)

So we could prove that $TSP \in APX$ (assuming $P \neq NP$) by giving a reduction from an NP-hard problem, which established a gap between positive and negative instances.

The gap was large enough to distinguish whether we reduced from a positive or a negative instance.

Wanted: A generic reduction from NP-hard problems, to approximation problems which produces gaps.

Approximation Classes

Relationships

$$APX \subseteq NP$$

$$TSP \in APX \Leftrightarrow P = NP$$

$$APX \subseteq NP \Leftrightarrow P \neq NP$$

Max3Sat and VertexCover are in APX.

Approximation Classes

Approximation Schemes

An algorithm which can be parametrized with the performance ratio to achieve is called approximation scheme.

Let O be an optimization problem. Then an algorithm A is an approximation scheme for O if for all $i \in I$, $r > 1$ and $s = A(i,r)$

$$s \in \text{sol}(i) \text{ and } R(i,s) \leq r.$$

Max3Sat and VertexCover are in APX.

4
Approximation Schemes
The classes PTAS and FPTAS

\[O \in \text{PTAS} \text{ if there is an approximation scheme } A \text{ such that } A(i,n) \text{ runs in } \text{DTIME}(\text{poly}(n)) \text{ for all } i \leq n \text{ and } n > 1. \]

\[O \in \text{PTAS} \text{ if there is an approximation scheme } A \text{ such that } A(i,r) \text{ runs in } \text{DTIME}(\text{poly}(r)) \text{ for all } i \leq n \text{ and any fixed } r > 1. \]

Example Problem: KNAPSACK
A Pseudo-Polynomial Algorithm

Let \(W(i, v) \) be the minimum weight attainable by selecting among the first \(i \) items such that their total value is exactly \(v \).

\[W(0,0) = 0 \]
\[W(0,v) = v \leq 0 \]
\[W(i+1, v) = \min[W(i,v), W(i, v - v(i+1)) + w(i+1)] \]

By building the table of the \(W(i, v) \) for \(0 \leq i \leq n \) and \(0 \leq v \leq V = \sum_{i=1}^{n} v(i) \) we can solve \(\text{KNAPSACK} \).

This algorithm runs in \(\text{DTIME}(\text{poly}(n, V)) \). (pseudo - poly.)

Example Problem: KNAPSACK
An FPTAS (I)

This algorithm runs in \(\text{DTIME}(\text{poly}(n, V)) \). (pseudo - poly.)

Assume \(\epsilon > 0 \) fixed.

Let \(l = \left\lceil \log \max_{i} v(i) \right\rceil \).

Choose \(k \) with \(\frac{n}{2^k} < \epsilon \).

Set \(L = l - k \log n \).

Define \(\nu(i) = \left\lfloor \frac{v(i)}{2^k} \right\rfloor \).

Solving \(I' \) optimally yields an \(1 + \epsilon \) approximate solution for \(I \).

Example Problem: KNAPSACK
An FPTAS (II)

This algorithm runs in \(\text{DTIME}(\text{poly}(n, V)) \). (pseudo - poly.)

Assume \(\epsilon > 0 \) fixed.

Let \(l = \left\lceil \log \max_{i} v(i) \right\rceil \).

Choose \(k \) with \(\frac{n}{2^k} < \epsilon \).

Set \(L = l - k \log n \).

Define \(\nu(i) = \left\lfloor \frac{v(i)}{2^k} \right\rfloor \).

Solving \(I' \) optimally yields an \(1 + \epsilon \) approximate solution for \(I \).

Example Problem: KNAPSACK
An FPTAS (III)

This algorithm runs in \(\text{DTIME}(\text{poly}(n, V)) \). (pseudo - poly.)

Assume \(\epsilon > 0 \) fixed.

Let \(l = \left\lceil \log \max_{i} v(i) \right\rceil \).

Choose \(k \) with \(\frac{n}{2^k} < \epsilon \).

Set \(L = l - k \log n \).

Define \(\nu(i) = \left\lfloor \frac{v(i)}{2^k} \right\rfloor \).

Solving \(I' \) optimally yields an \(1 + \epsilon \) approximate solution for \(I \) within \(\text{DTIME}(\text{poly}(l, 1/\epsilon)) \). \(\text{KNAPSACK} \in \text{PTAS} \).
Approximation Schemes

Polynomially Bound Problems

Let O be a problem in NPO. If there is polynomial p such that
$\forall i \in I, x \in \text{sol}(i), m(i, x) \leq p(|i|)$
then O is polynomially bound, i.e.,
$O \in \text{NPO} - PB$.

If there is an $NP - hard$ problem in $\text{NPO} - PB$
which admits an FPTAS, then $P = NP$.

Polynomially Bound Problems

Permit no FPTAS (I)

If there is an $NP - hard$ problem in $\text{NPO} - PB$
which admits an FPTAS, then $P = NP$.

Let O be a maximization problem in $\text{NPO} - PB$.
Set $r(i) = 1 + \frac{1}{p(|i|)}$ where p is the poly. - bound.

An $r(i)$-approximate solution x for i is optimal since,
$p(|i|) = r(i) \geq \frac{\text{opt}(i)}{m(i)}$ gives
$m(i) \geq \text{opt}(i) - \frac{\text{opt}(i)}{p(|i|) + 1} > \text{opt}(i) - 1$

If O would be in FPTAS then we can solve O optimally
in $\text{DTIME}(\text{poly}(|i|)) + 1 = \text{DTIME}(\text{poly}(|i|))$.

Polynomially Bound Problems

Permit no FPTAS (II)

Set $r(i) = 1 + \frac{1}{p(|i|)}$ where p is the poly. - bound.

An $r(i)$-approximate solution x for i is optimal since,
$p(|i|) + 1 = r(i) \geq \frac{\text{opt}(i)}{m(i)}$
$m(i, x) \geq \text{opt}(i) - \frac{\text{opt}(i)}{p(|i|) + 1} > \text{opt}(i) - 1$

Approximation Classes

Problems in PTAS-FPTAS

PLANAR INDEPENDENTSET is in $\text{NPO} - PB$ and is $NP - hard$.
PLANAR INDEPENDENTSET \in FPTAS $\Rightarrow P = NP$.

Unproven : PLANAR INDEPENDENTSET \in PTAS.

Approximation Classes

Relationships

$\text{FPTAS} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \text{NPO}$

TSP \in APX $\Leftrightarrow P = NP$
Max3Sat \in FPTAS $\Leftrightarrow P = NP$

Two questions: Are there problems in PTAS-FPTAS?
Are there problems in APX - PTAS?
(as usual, based on $P \neq NP$)
Hardness in Approximation

Wanted: A generic reduction from \(NP \) – hard problems, to approximation problems which produces gaps.

Remember the reduction to TSP...

Relies on the so-called PCP-Theorem – an alternative formulation of NP.

It allows to reduce \(NP \) – complete languages to approximation problems.

Hardness in Approximation

PCP-Theorem (I)

A language \(L \) is in \(\text{PCP}(r(n), q(n)) \) if there is a polynomial time \(\text{PCP}(r(n), q(n)) \)-Verifier \(V \) such that

\[
\begin{align*}
\forall x \in L. \ & \exists \Pi : P_q[V(x, \Pi, \overline{R}) = \text{accept}] = 1 \\
\forall x \notin L. & \forall \Pi : P_q[V(x, \Pi, \overline{R}) = \text{accept}] \leq 1/2 \\
\text{with } \overline{R} = O(r |x|), \text{ and } V \text{ reading } O(q(n)) \text{ bits non-adaptively from } \Pi.
\end{align*}
\]

Easy: \(NP \subseteq \text{PCP}(\log n, 1) \)

Hard: \(NP \not\subseteq \text{PCP}(\log n, 1) \)

Hardness in Approximation

PCP-Theorem (II)

A language \(L \) is in \(\text{PCP}(r(n), q(n)) \) if there is a polynomial time \(\text{PCP}(r(n), q(n)) \)-Verifier \(V \) such that

\[
\begin{align*}
\forall x \in L. \ & \exists \Pi : P_q[V(x, \Pi, \overline{R}) = \text{accept}] = 1 \\
\forall x \notin L. & \forall \Pi : P_q[V(x, \Pi, \overline{R}) = \text{accept}] \leq 1/2 \\
\text{with } \overline{R} = O(r |x|), \text{ and } V \text{ reading } O(q(n)) \text{ bits non-adaptively from } \Pi.
\end{align*}
\]

- \(\text{PCP - Theorem: } NP \subseteq \text{PCP}(\log n, 1) \)

Hardness in Approximation

Example Problem: Max3Sat (I)

Observe that the once the \(O(q(n)) \) bits have been read from the proof \(\Pi \), the decision of \(V \) is only depending on them.

Thus we can define a set of Boolean Expressions

\[
\phi(s, \overline{R} | \overline{\overline{P}}) \text{ where}
\begin{align*}
s \text{ is the input}, \\
\overline{R} \text{ is the random string of length } O(\log n), \\
\overline{\overline{P}} \text{ are the bits read in } \Pi, \\
\phi(s, \overline{R} | \overline{\overline{P}}) = 1 \iff V(s, \Pi, \overline{R}) = \text{accept}.
\end{align*}
\]
Example Problem: Max3Sat (II)

Hardness in Approximation

Each \(\phi(x, \overline{R}) \) can be expressed by \(d \) clauses, where \(d \) is constant (since \(|\overline{P}| \) is constant).

Let \(\phi \) be the conjunction of the expressions \(\phi(x, \overline{R}) \) for all \(\overline{R} \) (\(\overline{R} \leftarrow \epsilon \log n \)).

\[x \in L \Rightarrow \exists \overline{P}: P_{\phi}[v(x, \Pi, \overline{R})] = \text{accept} \leq 1 \]

\[\Rightarrow \forall \phi(x, \overline{R}) \text{ can be satisfied simultaneously} \]

\[\Rightarrow \phi \text{ satisfiable.} \]

Example Problem: Max3Sat (III)

Hardness in Approximation

Each \(\phi(x, \overline{R}) \) can be expressed by \(d \) clauses, where \(d \) is constant (since \(|\overline{P}| \) is constant).

Let \(\phi \) be the conjunction of the expressions \(\phi(x, \overline{R}) \) for all \(\overline{R} \) (\(\overline{R} \leftarrow \epsilon \log n \)).

\[x \notin L \Rightarrow \forall \overline{P}: P_{\phi}[v(x, \Pi, \overline{R})] = \text{accept} \leq 1/2 \]

\[\Rightarrow \forall \phi(x, \overline{R}) \text{ unsatisfied.} \]

\[\Rightarrow \exists \phi(x, \overline{R}) \text{ unsatisfied.} \]

Example Problem: Max3Sat (IV)

Hardness in Approximation

Each \(\phi(x, \overline{R}) \) can be expressed by \(d \) clauses, where \(d \) is constant (since \(|\overline{P}| \) is constant).

Let \(\phi \) be the conjunction of the expressions \(\phi(x, \overline{R}) \) for all \(\overline{R} \) (\(\overline{R} \leftarrow \epsilon \log n \)).

\[x \in L \Rightarrow \exists \overline{P}: P_{\phi}[v(x, \Pi, \overline{R})] = \text{accept} \leq 1 \]

\[\Rightarrow \forall \phi(x, \overline{R}) \text{ can be satisfied simultaneously} \]

\[\Rightarrow \phi \text{ satisfiable.} \]

Remark: Decoding of PCP-Proofs

Given a proof \(\Pi \) with \(P_{\phi}[v(x, \overline{R})] = \text{accept} \leq 1/2 \)

\[\Rightarrow \exists \phi(x, \overline{R}) \text{ unsatisfied.} \]

\[\Rightarrow \exists \phi(x, \overline{R}) \text{ unsatisfied.} \]

Approximation Classes Relationships

\[\text{PP} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \text{NPO} \]

\[\text{TSP} \in \text{APX} \Leftrightarrow P = \text{NP} \]

\[\text{Max3Sat} \in \text{PTAS} \Leftrightarrow P = \text{NP} \]

\[\text{PLANAR INDEPSET} \in \text{PTAS} \]

\[\Rightarrow P = \text{NP} \]
Approximation Classes
More Classes

Let O be an NPO problem. $O \in F \subseteq APX$ iff there exists an f–approximation algorithm for O which run in polynomial time for some function $f \in F$.

$\text{FPTAS} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \log \text{– APX} \subseteq \text{poly} \text{– APX} \subseteq \text{exp} \text{– APX} \subseteq \text{NPO}$

Approximation Classes
More Example Problems

$\text{PLANAR INDEPENDENT SET} \quad \text{SET COVER} \quad \text{TSP}$

$\text{FPTAS} \subseteq \text{PTAS} \subseteq \log \text{– APX} \subseteq \text{poly} \text{– APX} \subseteq \text{exp} \text{– APX} \subseteq \text{NPO}$

$\text{KNAP SACK} \quad \text{MAX SAT} \quad \text{COLORING} \quad \text{MAX ONES SAT}$

Approximation Classes
More Relationships

$\text{FPTAS} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \log \text{– APX} \subseteq \text{poly} \text{– APX} \subseteq \text{exp} \text{– APX} \subseteq \text{NPO}$

$\text{FPTAS} \subseteq \text{PTAS} \subseteq \text{APX} \subseteq \log \text{– APX} \subseteq \text{poly} \text{– APX} \subseteq \text{exp} \text{– APX} \subseteq \text{NPO}$

iff

$P \neq \text{NP}$