
Solving Existentially Quantified Horn Clauses

Corneliu Popeea

- joint work with Tewodros Beyene and
Andrey Rybalchenko -

Universal properties ... success story

• Temporal verification of universal properties of
various kind of programs

– Slam, Blast, Astrée, SatAbs, Terminator,
Clousot, CPAChecker, AProVE, UFO

• Infer auxiliary assertions

• Reason about infinite-state, complex data domains

Universal properties ... a recipe

exists inv such that
init(v) ! inv(v)
inv(v) Æ next(v,v’) ! inv(v’)
inv(v) ! safe(v)

 (init(v), next(v,v’)) |= AG safe(v)

exists inv and segm such that
init(v) ! inv(v)
inv(v) Æ :dst(v) Æ next(v,v’) ! inv(v’)
inv(v) Æ :dst(v) Æ next(v,v’) ! segm(v,v’)
wf(segm)

(init(v), next(v,v’)) |= AF dst(v)

• First ingredient: proof rules

• Second ingredient: inference of auxiliary assertions
via HSF algorithm [Grebenschikov, Lopes, P, R – PLDI’12]

What about existential properties?

• One example

exists inv such that
init(v) ! inv(v)
inv(v) ! 9v’: next(v,v’) Æ inv(v’)
inv(v) ! safe(v)

 (init(v), next(v,v’)) |= EG safe(v)

Our GOAL
solve “existentially quantified Horn clauses”

Overview

• Solving algorithm E-HSF

• Evaluation: verification for CTL properties of
programs

• Other applications / Future directions

SOLVING ALGORITHM

Obligations for EG

• Implicit in proof rule notation
– conjunction between clauses

– clauses are universally quantified

exists inv such that
(8v: init(v) ! inv(v))
Æ (8v: inv(v) ! 9v’: next(v,v’) Æ inv(v’))
Æ (8v: inv(v) ! safe(v))

 (init(v), next(v,v’)) |= EG safe(v)

89 Horn clauses

89 Horn clauses

 Á(v) 2 P (background predicates, e.g., QF_LRA)
 q(v) 2 Q (queries)

 body ::= q(v) | Á(v) | body Æ body
 head ::= q(v) | Á(v) | wf(q)
 cl ::= 8v,w: body(v,w) ! 9x: head(w,x)
 cls ::= cl Æ cls | cl

Abbreviations: 89H-clauses

 8H-clauses

Steps of E-HSF algorithm

• Skolemization for 89H-clauses

• Start with “true” as witness candidate

– Solve 8H-clauses (e.g., use HSF)

– In case there is a solution for 8H-clauses, return “sat”

– Otherwise

• Replace the candidate witness by a template constraint

• Look for an instantiation of template parameters
(solve recursion-free 8H-clauses)

• In case there is no solution for 8H-clauses, return “unsat”

• Repeat with the 8H-solution as a new witness

Solution for 89H-clauses

No solution for 89H-clauses

Example

exists inv(v) and segm(v,v’) such that

 init(v) ! inv(v)

 inv(v) Æ :(x¸0) ! 9v’: next(v,v’) Æ inv(v’) Æ segm(v,v’)

 wf(segm)

EF (x¸0)

Example

• Witness for existential quantifier
 wit(v,v’) = (x’=x+1 Æ y’=1)

• Solutions for other assertions

 inv(v) = (y ¸ 1)
 segm(v,v’) = (x · -1 Æ x’ ¸ x+1)

Program satisfies CTL specification

E-HSF EVALUATION

E-HSF implementation

• Built in SICStus Prolog

• Input: transition system + CTL property

– generate 89H-clauses from a given CTL property

– use HSF for solving 8H-clauses over linear
arithmetic domain, i.e., QF_LRA

– use Z3 / Barcelogic for solving non-linear
constraints

Experiments

• CTL benchmarks [Cook, Koskinen – PLDI’13]

• For each case we attempt two proofs:

• P ² Á

• P ²:Á

Proofs for all correct programs except 2 cases

Windows
fragment 1

Windows
fragment 2

Windows
fragment 3

Windows
fragment 5

PostgreSQL
pgarch

Windows
fragment 4

Software
updates

In practice (a.k.a. T/O to 0.5s)

• Templates can be used to constrain the search space for witnesses
– for CTL verification, automatic templates can be derived

– E-HSF uses “mark-and-resolve nondeterminism” methodology
[Cook, Koskinen – PLDI’13]

• No skolemization/witnesses required for some 89H-clauses
 inv(v) Æ :dst(v) ! 9v’: next(v,v’) use projection

• Use template structure for expensive 8H-clauses
 inv(v) Æ :dst(v) Æ wit(v,v’) ! next(v,v’) Æ inv(v,v’) reduces to

 inv(v) Æ :dst(v) Æ wit(v,v’) ! inv(v,v’)

• Split queries over variables with finite-domains, e.g., pc

Related work

• Compositional proof system for CTL*
[Kesten, Pnueli, TCS’05]

• Inference of auxiliary assertions for CTL properties of
programs [Cook, Koskinen – PLDI’13]
– monotonic choice of witnesses, give up on wrong choices
– E-HSF “backtracks” from wrong choices

• Solving Horn clauses

– mu-Z [Hoder, Bjørner, de Moura – CAV’11]
– HSF [Grebenschikov, Lopes, P, R – PLDI’12]

Conclusion

• Algorithm to solve 89 Horn clauses

• Many applications

– CTL properties

– synthesis of programs from temporal
specifications

– solving games on infinite graphs with
parity conditions

Applying for jobs

• Solving recursion-free clauses over QF_LRA [POPL’11]

• Solving recursion-free clauses over QF_UFLRA [APLAS’11]

• Solving recursion-free clauses with WF [TACAS’12]

• Proof rules for multi-threaded programs [CAV’11]

• Solving recursive 8H-clauses [PLDI’12]

• Solving recursive 89H-clauses [CAV’13]

• Verification competitions [SV-COMP’12]
 [SV-COMP’13]

www.model.in.tum.de/~popeea

EXTRA MATERIAL

Steps of rec.-free solving algorithm

• Resolution

– remove clausal structure

• Farkas’ lemma

– introduce weights for linear inequalities

• Call SMT-solve

• Obtain solution for rec.-free clauses

– use weights and SMT solution

Farkas’ lemma

:(9v: Av · b) Æ 8v: Av · b ! 0v · -1

iff

9¸: ¸ ¸ 0 Æ ¸A = 0 Æ ¸b · -1

For rec.-free clauses with WF
 9t: (9v: Av · b Æ 8v: Av · b ! tv · d)
iff
 9t: (9¸: ¸ ¸ 0 Æ ¸A = t Æ ¸b · d)

Constants:

• A – matrix

• b, 0 – vectors

• d - number

Unknowns:

• ¸,t - vectors

EXAMPLE WITH CTL PROPERTY

The behavior of software is often
nondeterministic
• Interesting properties may not hold on all

execution paths

– but a property may still hold only on some path

• “For each reachable state, is that the case that on
some path eventually wakend is 1?”

• (init, next) ² Á reduces to 89H-clauses

Á = AG (EF wakend)

Example PostgreSQL
/*

* Main loop for archiver

 */

int wakend, last_copy_time = 0, curtime, got_SIGHUP;

#define PGC_SIGHUP 1

#define PGARCH_AUTOWAKE_INTERVAL 1000

void ProcessConfigFile(int a) { /* process the file */ }

void pgarch_ArchiverCopyLoop() { /* loop of the archiver */ }

int XLogArchivingActive() { return nondet(); }

int PostmasterIsAlive() { return nondet(); }

int time(int a) { return nondet(); }

int pgarch_MainLoop(void) {

 wakend = true;

 /*

 * There shouldn't be anything for the archiver to do except to

 * wait for a signal, ... however, the archiver exists to

 * protect our data, so she wakes up occasionally to allow

 * herself to be proactive. In particular this avoids getting

 * stuck if a signal arrives just before we sleep.

 */

 while(1)
 {
 /* Check for config update */
 if (got_SIGHUP)
 {
 got_SIGHUP = false;
 ProcessConfigFile(PGC_SIGHUP);
 if (!XLogArchivingActive())
 break; /* user wants us to shut down */
 }
 /* Do what we're here for */
 if (wakend)
 {
 wakend = false;
 pgarch_ArchiverCopyLoop();
 last_copy_time = time(NULL);
 }
 if (!wakend)
 {
 curtime = time(NULL);
 if ((curtime - last_copy_time) >= PGARCH_AUTOWAKE_INTERVAL)
 wakend = true;
 }
 if (!PostmasterIsAlive()) { break; }
 }

}

Á = AG (AF wakend)
Are there any sources of

nondeterminism in this model?

ALGORITHM

E-HSF

Solution for 89H clauses

No solution for 89H clauses

