
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

}w��������
��
������������� !"#$%&'()+,-./012345<yA|
Modal Transition Systems:

Extensions and Analysis

PH.D. THESIS

Jan Křetı́nský

Brno, 2014

Declaration

Hereby I declare, that this thesis is my original authorial work, which I have
worked out by my own. All sources, references and literature used or excerpted
during elaboration of this work are properly cited and listed in complete reference
to the due source.

Advisor: prof. RNDr. Antonı́n Kučera, Ph.D.

iii

Acknowledgement

I would like to thank my advisor Antonı́n Kučera and my consultant Tomáš
Brázdil for introducing me to research, their guidance and care, and teaching
me “more is always more”, be it knowledge, the deadline thrill, or the number
of PhD theses. I thank to all co-authors of papers that gave rise to this thesis, in
order of appearance in my scientific life: Jiřı́ Srba, who was the decisive factor
for coming to Aalborg and taught me to do reasearch with joy, rigour and no
stress; Kim Guldstrand Larsen, who introduced me to MTS and taught me that
research enthusiasm can prevail even if all hope is repeatedly lost; Nikola Beneš,
with whom I shamelessly practiced co-induction whenever we felt too lazy to do
the base step, discussed all topics of life, universe and everything, and made fun
of the same, and simply had a good time; Javier Esparza, who taught me more
than I can list; Ivana Černá, who offered me the first paid work for the univer-
sity; Mikael Harkjær Møller, who showed me you can get a good beer even in
Denmark; Axel Legay, who never gives up; Uli Fahrenberg, who can appreciate
the beuaty of math even in its technicalities; Benoı̂t Delahaye, who fights for in-
dependence; Salomon Sickert, who always implements and analyzes everything
already right before being asked; and all other colleagues all over Europe, partic-
ularly to Jan Krčál for feedback on the thesis, all the lot we experienced together,
and keeping my clear conscience when it comes to travel allowance. Last, but not
least, I want to thank to my parents and Zuzanka for their love, support, and not
complaining how many theses I have to write.

v

Abstract

In this thesis, we deal with the specification formalism of modal transition sys-
tems (MTS). We introduce several extensions thereof and discuss their relation-
ships and modelling capabilities. Apart from extending the modalities of MTS,
we consider timed and priced extensions as well as systems with infinite state
space. We also compare the behavioural framework of MTS and its extensions to
logical frameworks.

The main focus of the thesis lies on algorithms for verification and analysis of
the introduced MTS extensions. We cover refinement checking, model checking,
standard logical and structural operations as used in specification theories as well
as synthesis of implementations satisfying given logical formulae or optimality
with respect to a given price scheme. Beside theoretical aspects such as establish-
ing complexity of investigated problems, we also deal with practical issues such
as heuristics and tool support.

Shrnutı́

Tato dizertačnı́ práce studuje specifikačnı́ formalizmus zvaný modálnı́ přechodo-
vé systémy (MTS). Zavádı́me několik rozšı́řenı́ MTS a rozebı́ráme jejich vzájemné
vztahy a modelovacı́ sı́lu. Zaprvé rozšiřujeme modality MTS, zadruhé uvažujeme
rozšı́řenı́ s prvky času a ceny a zatřetı́ zavádı́me různé třı́dy MTS s nekonečně
mnoha stavy. Rovněž tato rozšı́řenı́ MTS srovnáváme jako formalizmy automa-
tové s formalizmy logickými.

Těžiště práce se nacházı́ v oblasti algoritmické analýzy a verifikace uvedených
systémů. Zajı́má nás předevšı́m kontrola zjemňovánı́, ověřovánı́ modelu, obvyklé
logické a strukturálnı́ operace použı́vané v kontextu specifikačnı́ch teoriı́, auto-
matická tvorba implementacı́ splňujı́cı́ch danou logickou formuli či optimalitu
vzhledem k danému cenovému schématu. Věnujeme se jak teroretickým otázkám,
zejména složitosti zkoumaných problémů, tak i praktickým aspektům, zejména
heuristikám a softwarovému nástroji pro podporu práce s MTS.

vii

Contents

1 Introduction . 1
1.1 History of modal transition systems 3
1.2 Contribution of the thesis . 5
1.3 Publication summary . 5

1.3.1 Other co-authored papers . 6
1.3.2 Summary . 8

1.4 Outline of the thesis . 8
2 Preliminaries . 9

2.1 Modal transition systems . 9
2.2 Logics . 10
2.3 Specification theories . 12

3 Extensions of modalities . 15
3.1 State of the art . 15
3.2 New results . 18

3.2.1 Expressive power . 22
4 Extensions of transition systems . 25

4.1 State of the art . 25
4.2 New results . 27

4.2.1 Modal transition systems with durations 27
4.2.2 Modal process rewrite systems 29

5 Analysis . 33
5.1 State of the art . 33

5.1.1 Refinements . 33
5.1.2 Operations . 35
5.1.3 Model checking . 37
5.1.4 Tools . 38

5.2 New results . 38
5.2.1 Refinements . 38
5.2.2 Operations . 44
5.2.3 Model checking . 47

5.2.4 Tool
−→=⇒99K
MoTraS . 51

6 Summary of the results and future work 53
6.1 Summary of the papers . 55

Bibliography . 57

ix

Appendix 75
A Process algebra for modal transition systemses 77
B Modal transition systems: Composition and LTL model checking 89
C Parametric modal transition systems . 107
D Dual-priced modal transition systems with time durations 125
E Modal process rewrite systems . 143
F On refinements of Boolean and parametric modal transition systems . . 161
G Hennessy-Milner logic with greatest fixed points as a complete behavioural

specification theory . 181
H MoTraS: A tool for modal transition systems and their extensions 199
I From LTL to deterministic automata: A Safraless compositional approach 207
Note on copyrights . 227

x

List of Figures

1.1 An example of a component-based step-wise design scheme 2
1.2 An MTS specification and its implementation 3
1.3 Correspondences between the logical and the behavioural

world 5

2.1 i ≤m s 10
2.2 An LTS with a state valuation 12
2.3 i ≤m s1 ‖ s2, but i cannot be written as i1 ‖ i2 for any

i1 ≤m s1, i2 ≤m s2 13

3.1 A mixed transition system 15
3.2 An example of a potentially deadlocking MTS 16
3.3 Two implementations i1, i2 of s of Fig. 3.2 16
3.4 A disjunctive modal transition system 17
3.5 Specifications and implementations of a traffic light controller 19
3.6 The syntactic hierarchy of MTS extensions 20
3.7 Example of modal refinement 21
3.8 Example of a νHML formula and an equivalent DMTS 22
3.9 The semantic hierarchy of MTS extensions not considering empty

specifications 24

4.1 PRS hierarchy 27
4.2 Example of a modal transition system with time durations 28
4.3 A modal Petri net given by rules

Resource‖ Permit
produce
99K Money ‖ Trash and Trash

clean−→ Permit with
may transitions drawn as empty boxes and must transitions as full
boxes 31

5.1 s ≤t t, but s 6≤m t 33
5.2 No deadlock-free implementation of s satisfies GXatt 38
5.3 Graph of experimental results of Table 5.6 for systems with

alphabets of size 10 and 2 41
5.4 MTS processes s1, s2, their greatest lower bound (s1, s2), and their

two maximal MTS lower bounds M1, M2 44
5.5 MTS processes s1 and s2, and their MTS and BMTS least upper

bounds (s1, s2) 45
5.6 Two non-deterministic MTS and their quotient 46
5.7 Example of a dual price scheme 49

xi

xii

List of Tables

5.1 Refinement complexities for various cases of
(non)determinism 34

5.2 Closure properties of previously known classes of modal
systems 35

5.3 Complexity of the common implementation problems 37
5.4 Complexity of modal refinement checking of parameter-free

systems. The refining system is displayed in the first column, the
refined system in the first row. 39

5.5 Complexity of modal refinement checking with parameters 39
5.6 Experimental results: systems over alphabet of size 2 with

branching degree 2 in the upper part, and systems over alphabet
of size 10 with branching degree 10 in the lower part 40

5.7 Experimental results: systems over alphabet of size 2 with
branching degree 5; systems with random structure in the upper
part, and systems with “organic” structure in the lower part 41

5.8 Complexity of the thorough refinement and the relationship to the
modal refinement 43

5.9 Decidability of modal refinement on mPRS 44
5.10 Newly established closure properties (marked in red) 46
5.11 Complexities of generalized LTL model checking (ω denoting

finite runs are ignored, df deadlock-free implementations are
ignored,∞ no restriction) 47

5.12 Functionality of the available tools 52

xiii

Chapter 1

Introduction

Year by year, software systems tend to be larger, more complex and reusing more
code. Under these conditions, it is virtually impossible to create error-free systems
despite extensive testing. In contrast, formal methods can be used not only for
bug finding but also for verifying the absence of errors and even for development
of correct-by-design software. The major advantage of the formal frameworks are
guarantees given with mathematical certainty.

The key idea of formal methods and, in particular, formal verification is to first
specify a property the system should satisfy and then to verify that this is in-
deed the case. The specification language should be equipped with mathemati-
cally precise meaning so that the verification can give reliable results and be done
automatically. An alternative to verification is refinement of the original specifi-
cation into an implementation, which is guaranteed to satisfy the specification,
for the refinement is designed to preserve the properties of interest. The refine-
ment can be done in one step, where the implementation is synthesized from the
specification, or in more steps in a process of stepwise refinement. The latter is
particularly useful when some details of the requirements are not known at the
beginning of the design process, or synthesis of the whole system is unfeasible,
or in the component-based design where other systems can be reused as parts of
the new system.

The difference between verifying and refining systems is reflected in two fun-
damentally different approaches to specifying properties of systems. Firstly, the
logical approach makes use of specifications given as formulae of temporal or
modal logics. Secondly, the behavioural approach requires specifications to be
given in the same formalism as implementations. The former relies on efficient
model checking algorithms in order to verify systems. The latter exploits various
equivalence and refinement checking methods. In this thesis, we combine the two
approaches.

Example 1.1 Consider the scenario of developing a piece of software illustrated
in Fig. 1.1. We start with a viewpoint V1 on the system, e.g. the client’s view on the
service functionality. This gets iteratively refined into a more concrete description
Vm. Further, assume there is also another viewpoint W1, e.g. a description of the
service from the server point of view, which is refined in a similar fashion result-
ing in Wn. After these viewpoints are precise enough (although still very under-

1

1. INTRODUCTION

specified), we merge them into one, say S, using an operation of conjunction. The
complete description is now modelled by S, which is to be implemented. Sup-
pose we have components C and D at our disposal, which perform subroutines
needed in S. We put C and D together into a component T using an operation
of parallel composition. What remains to be designed is a component X that we
can compose with T in parallel so that the result conforms to the specification S.
The most general such X is called the quotient of S by T . Once we have X we
can further refine the underspecified behaviour in any desired way resulting in
a specification Y . The final step is to automatically synthesize an implementation
Z that, for instance, satisfies additional temporal logic constraints ϕ and/or is the
cheapest implementation with respect to specified costs C.

V1 W1

Vm Wn∧

C ‖ D ‖ X ← S/T

T

S

Y

Z

ϕ,C

Figure 1.1: An example of a component-based step-wise design scheme

2

1. INTRODUCTION

A good specification theory should allow for all the operations mentioned in
the example and efficient algorithms to compute them. Moreover, it should be ex-
pressive enough to allow for convenient modelling. The behavioural formalism
of modal transition systems (MTS) [LT88] provides a convenient basis for such
a theory and has already attracted a lot of attention. Unfortunately, it does not
satisfy either of the stipulations completely. In this thesis, we design extensions
of MTS that meet all these demands and provide efficient algorithms for their
analysis such as the mentioned operations, refinements, verification and synthe-
sis. Moreover, we provide a link between the MTS extensions and logics, thus
building a bridge between the behavioural and the logical world, allowing us to
combine them, enjoying the best of both worlds.

1.1 History of modal transition systems

Modal transition systems (MTS) were introduced by Larsen and Thomsen [LT88]
a quarter of a century ago. The goal was to obtain an operational, yet expressive
specification formalism meeting the demands discussed above. Their main ad-
vantage is that they are a simple extension of labelled transition systems, which
have proved appropriate for behavioural description of systems as well as their
compositions.

MTS consist of a set of states and two transition relations. The must transitions
prescribe what behaviour has to be present in every refinement of the system; the
may transitions describe the behaviour that is allowed, but need not be realized in
the refinements. This allows us to underspecify non-critical behaviour in the early
stages of design, focusing on the main properties, verifying them and sorting out
the details of the yet unimplemented non-critical behaviour later.

Example 1.2 An MTS specification of a coffee machine is diplayed in Fig. 1.2 on
the left. May transitions are depicted using dashed arrows, must transitions using
solid arrows. In the left state, the machine can either start to clean or accept a coin.
It may not always be possible to take the coin action, but if we do so the machine
must offer coffee and possibly supplement the choice with tea. An implementation
of this specification is displayed on the right. Here the clean is scheduled regularly
after every two beverages. In addition, tea can always be chosen instead of coffee.

coin
clean

coffee

tea

coin coffee

tea

coin coffee

tea

clean

Figure 1.2: An MTS specification and its implementation

3

1. INTRODUCTION

The formalism of MTS has many applications, most importantly in compo-
sitional reasoning and design as recognized in the ARTIST Network of Excel-
lence [ART] and several other related European projects. It has proven to be use-
ful in practice. Industrial applications are as old as [Bru97] where MTS have
found use for an air-traffic system at Heathrow airport. Besides, MTS are ad-
vocated as an appropriate base for interface theories in [AHL+08a, RBB+09b,
RBB+09a, RBB+11] and for product line theories in [LNW07a, Nym08]. Further,
MTS-based software engineering methodology for design via merging partial de-
scriptions of behaviour has been established in [UC04, BCU06, UBC07] and using
residuation in [Rac07, Rac08, Ben08]. The MTS specification formalism is sup-
ported by several tools, e.g. [BLS95, DFFU07, BML11]. Furthermore, MTS are used
for program analysis using abstraction [GHJ01, DGG97, Nam03, DN04, dAGJ04,
NNN08, CGLT09, GNRT10].

Over the years, many extensions of MTS have been proposed. While MTS can
only specify whether or not a particular transition is required, some extensions
equip MTS with more general abilities to describe what combinations of transi-
tions are possible. Disjunctive MTS (DMTS) [LX90] can specify that at least one
of a given set of transitions is present. One-selecting MTS [FS08] specify that ex-
actly one of them is present. Acceptance automata [Rac07] can even express any
Boolean combination of transitions, but only for deterministic systems. In all the
mentioned cases, every must transition is also automatically a may transition,
modelling that whatever is required is also allowed. Sometimes this assumption
is dropped and the two transition relations are given independently, giving rise
to mixed transition systems (MixTS) [DGG97].

These formalisms have also been studied under other names in different con-
texts. To some extent equivalent variations of MTS have been adapted for model-
checking: Kripke Modal Transition Systems (KMTS) [HJS01], Partial Kripke Struc-
tures [BG00], and 3-valued Kripke structures [CDEG03]. In the same manner
MixTS correspond to Belnap transition systems [GWC06a]. Further, DMTS cor-
respond to Generalized KMTS [SG04] or Abstract transition systems [dAGJ04].
While the variants of MTS and MixTS have been used in practical symbolic model-
checkers (e.g. [CDEG03, GC06, GWC06b]), the “hypermust” transitions in DMTS
are hard to encode efficiently into BDDs. A comparison of usability of these sys-
tems for symbolic model checking can be found in [WGC09]. Acceptance au-
tomata were also studied as acceptance trees [Hen85].

The relationship of MTS to logic was studied in [BL92, FP07]. It is established
that MTS are equivalent to a fragment of Hennessy-Milner logic (HML) [HM80]
where the formulae are “consistent and prime”. This raises further questions on
the relationship of the form “What corresponds to the notion X of one world in
the other world?” For instance, we would like implementations of an MTS to be
exactly models of the corresponding formula. Further, one would like to capture
refinement by implication similarly to the refinement calculus for HML with re-

4

1. INTRODUCTION

cursion of [Hol89]. Moreover, we would like both formalisms to be closed under
the desired operations and describe the operations in one world using some no-
tions of the other world, see Fig. 1.3. Finally, it would be elegant if both formalisms
were defined naturally and not only as subclasses of other formalisms defined ad
hoc in an artificial manner.

logic MTS
model ∼ implementation

entailment |= ∼ refinement ≤
conjunction ∧ ∼ ?
disjunction ∨ ∼ ?

? ∼ parallel composition ‖
? ∼ quotient /

Figure 1.3: Correspondences between the logical and the behavioural world

1.2 Contribution of the thesis

Here we only give a very brief and high-level account on the contribution of the
thesis. For a technical summary, we refer the reader to Chapter 6.

We introduce several extensions of MTS. Firstly, we extend the mechanism to
specify which transitions are present and which not (Paper A and C) and examine
their expressive power (Paper A and F). We identify a robust class of disjunctive
MTS with more initial states. We provide a translation between this class (and sev-
eral equally expressive classes) and the Hennessy-Milner logic with greatest fixed
points (also denoted νHML or the ν-calculus). This enables us to use mixtures of
behavioural and logical specifications (Paper G).

Secondly, we extend the underlying graph structures of MTS. We consider sys-
tems with time durations of actions and pricing of actions, where we combine
one-shot investment price for the hardware and cost for running it per each time
unit it is active. This is useful for modelling embedded systems, where safety
comes along with economical requirements (Paper D). Further, we consider infi-
nite state systems generated by finite rules to model infinite memory or commu-
nication between dynamically created threads (Paper E).

Furthermore, on the computational side, we provide algorithms for refinements
(Paper B, C, E, and F), operations (Paper B and G), model checking (Paper B and
I), and computing the cheapest implementation (Paper D). Finally, we also pro-
vide a tool support for most of the discussed functionality (Paper H).

1.3 Publication summary

In Appendix, we present the following papers:

5

1. INTRODUCTION

A Nikola Beneš and Jan Křetı́nský. Process algebra for modal transition sys-
temses. MEMICS, 2010. [BK10]

B Nikola Beneš, Ivana Černá, and Jan Křetı́nský. Modal transition systems:
Composition and LTL model checking. ATVA, 2011. [BČK11]

C Nikola Beneš, Jan Křetı́nský, Kim G. Larsen, Mikael H. Moller, and Jiri
Srba. Parametric modal transition systems. ATVA, 2011. [BKL+11]

D Nikola Beneš, Jan Křetı́nský, Kim Guldstrand Larsen, Mikael H. Moller,
and Jiri Srba. Dual-priced modal transition systems with time durations.
LPAR, 2012. [BKL+12]

E Nikola Beneš and Jan Křetı́nský. Modal process rewrite systems. ICTAC,
2012. [BK12]

F Jan Křetı́nský and Salomon Sickert. On refinements of Boolean and para-
metric modal transition systems. ICTAC, 2013. [KS13b]

G Nikola Beneš, Benoı̂t Delahaye, Uli Fahrenberg, Jan Křetı́nský, and Axel
Legay. Hennessy-Milner logic with greatest fixed points as a complete be-
havioural specification theory. CONCUR, 2013. [BDF+13]

H Jan Křetı́nský and Salomon Sickert. MoTraS: A tool for modal transition
systems and their extensions. ATVA, 2013. [KS13a] (tool paper)

I Javier Esparza and Jan Křetı́nský. From LTL to Deterministic Automata:
A Safraless Compositional Approach. CAV, 2014. [EK14]

1.3.1 Other co-authored papers

For the sake of completeness, apart from the presented papers, we also list other
co-authored papers, which are, however, not a part of this thesis.

More papers on modal transition systems

• Nikola Beneš, Jan Křetı́nský, Kim G. Larsen, and Jiri Srba. Checking Thor-
ough Refinement on Modal Transition Systems Is EXPTIME-Complete. IC-
TAC, 2009. [BKLS09a]

• Nikola Beneš, Jan Křetı́nský, Kim Guldstrand Larsen, and Jiri Srba. On
determinism in modal transition systems. Theoretical Computer Science,
2009. [BKLS09b]

• Nikola Beneš, Jan Křetı́nský, Kim G. Larsen, and Jiri Srba. EXPTIME-comp-
leteness of thorough refinement on modal transition systems. Information
and Computation, 2012. [BKLS12] Extended journal version of [BKLS09a]

6

1. INTRODUCTION

• Holger Hermanns, Jan Krčál, and Jan Křetı́nský. Compositional verifica-
tion and optimisation of interactive Markov chains. CONCUR, 2013. [HKK13]

Papers on temporal logics

• Tomáš Brázdil, Vojtěch Forejt, Jan Křetı́nský, and Antonı́n Kučera. The sat-
isfiability problem for probabilistic CTL. LICS, 2008. [BFKK08]

• Jan Křetı́nský and Javier Esparza. Deterministic automata for the (F,G)-
fragment of LTL. CAV, 2012. [KE12]

• Andreas Gaiser, Jan Křetı́nský, and Javier Esparza. Rabinizer: Small deter-
ministic automata for LTL(F,G). ATVA, 2012. [GKE12] (tool paper)

• Krishnendu Chatterjee, Andreas Gaiser, and Jan Křetı́nský. Automata with
generalized Rabin pairs for probabilistic model checking and LTL synthe-
sis. CAV, 2013. [CGK13]

• Jan Křetı́nský and Ruslán Ledesma Garza. Rabinizer 2: Small deterministic
automata for LTL\GU. ATVA, 2013. [KLG13] (tool paper)

Papers on stochastic continuous-time systems

• Tomáš Brázdil, Vojtěch Forejt, Jan Krčál, Jan Křetı́nský, and Antonı́n Kučera.
Continuous-time stochastic games with time-bounded reachability. FSTTCS,
2009. [BFK+09].

• Tomáš Brázdil, Jan Krčál, Jan Křetı́nský, Antonı́n Kučera, and Vojtěch Řehák.
Stochastic real-time games with qualitative timed automata objectives. CON-
CUR, 2010. [BKK+10]

• Tomáš Brázdil, Jan Krčál, Jan Křetı́nský, Antonı́n Kučera, and Vojtěch Řehák.
Measuring performance of continuous-time stochastic processes using timed
automata. HSCC, 2011. [BKK+11]

• Tomáš Brázdil, Jan Krčál, Jan Křetı́nský, and Vojtěch Řehák. Fixed-delay
events in generalized semi-Markov processes revisited. CONCUR, 2011.
[BKKŘ11]

• Tomáš Brázdil, Holger Hermanns, Jan Krčál, Jan Křetı́nský, and Vojtěch
Řehák. Verification of open interactive Markov chains. FSTTCS, 2012. [BHK+12]

• Tomáš Brázdil, Luboš Korenčiak, Jan Krčál, Jan Křetı́nský, and Vojtěch
Řehák. On time-average limits in deterministic and stochastic Petri nets.
ICPE, 2013. [BKK+13] (poster paper)

7

1. INTRODUCTION

• Tomáš Brázdil, Vojtěch Forejt, Jan Krčál, Jan Křetı́nský, and Antonı́n Kučera.
Continuous-time stochastic games with time-bounded reachability. Infor-
mation and Computation, 2013. [BFK+13] Extended journal version of
[BFK+09]

1.3.2 Summary

The author has published 3 journal papers (2×Information and Computation,
Theoretical Computer Science), 17 conference regular papers (2×ATVA, 3×CAV,
4×CONCUR, 2×FSTTCS, HSCC, 3×ICTAC, LICS, LPAR), 3 conference tool pa-
pers (3×ATVA), 1 workshop paper (MEMICS) and 1 conference poster paper
(ICPE), altogether 25 papers. The current number of citations according to Google
Scholar is 238 including self-citations with the h-index 9, and 140 without self-
citations with the h-index 6.

1.4 Outline of the thesis

Chapter 2 introduces modal transition systems formally, recalls several logics
used later in the thesis, and explains the stipulations on good specification for-
malisms. Chapter 3 discusses previous and new extensions of MTS with respect
to specifying the combinations of present transitions. Chapter 4 discusses pre-
vious and new extensions of MTS with respect to the underlying graph struc-
ture of the MTS. In Chapter 5, results on refinements, operations, implementation
synthesis, and the tool are presented and related to previously known results.
Chapter 6 summarizes the contribution of the thesis and new results of the re-
spective papers and gives an account of ongoing and possible future work. In
Appendix, we present preprints of Papers A–I [BK10, BČK11, BKL+11, BKL+12,
BK12, KS13b, BDF+13, KS13a, EK14] without appendices. We also include per-
missions to publish the preprints of the papers within this thesis as they were
sent to the publisher.

The reader is assumed to have some familiarity with labelled transition sys-
tems, logic, and complexity to the extent of standard basic courses.

8

Chapter 2

Preliminaries

Properties of systems can be specified and verified using two fundamentally dif-
ferent approaches. Firstly, the behavioural approach exploits various equivalence
or preorder relations and methods to check them, provided the specifications are
given in the same formalism as implementations. Secondly, the logical approach
uses formulae of temporal or modal logics as specifications and relies on model
checking algorithms. In this chapter, we introduce a behavioural framework of
modal transition systems as well as several logics. Later in the thesis, we relate
and combine them.

2.1 Modal transition systems

The original modal transition systems were introduced in [LT88] as follows:

Definition 2.1 (Modal transition system) A modal transition system (MTS) over
an action alphabet Σ is a triple (P, 99K,−→), where P is a set of processes and
−→ ⊆ 99K ⊆ P × Σ× P are must and may transition relations, respectively.

Observe that P is not required to be finite. We often use letters s, t, . . . to denote
processes of MTS. Whenever it is clear from the context, we refer to processes
without explicitly mentioning their underlying MTS.

The most fundamental notion of the theory of modal transition systems is the
modal refinement. Intuitively, a process s refines a process t if the specification s
concretizes the one of t (or in other words, t is more abstract than s). Technically,
this is ensured by (1) only allowing in s what is already allowed in t and (2)
requiring in s what is already required in t.

Definition 2.2 (Modal refinement) Let (P1, 99K1,−→1), (P2, 99K2,−→2) be MTS
over the same action alphabet and s ∈ P1, t ∈ P2 be processes. We say that s
modally refines t, written s ≤m t, if there is a refinement relation R ⊆ P1 × P2

satisfying (s, t) ∈ R and for every (p, q) ∈ R and every a ∈ Σ:

1. if p
a

99K1 p
′ then there is a transition q

a
99K2 q

′ s.t. (p′, q′) ∈ R, and

2. if q a−→2 q
′ then there is a transition p a−→1 p

′ s.t. (p′, q′) ∈ R.

9

2. PRELIMINARIES

Example 2.3 In the course of the refinement process, must transitions are pre-
served, may transitions can turn into must transitions or disappear, and no new
transitions are added. Note that refinement is a more complex notion than that of
subgraph. Indeed, the same transition can be refined in different ways in different
places as illustrated in Fig. 2.1. Note that whenever there is a must transition in an
MTS, we do not depict its underlying may transitions. Here i ≤m s is witnessed
by the relation {(i, s), (j1, t), (j2, t), (k1, s), (k2, s), (`, t)}.

i j1

j2

k1

k2

`

a

a

b

b

b

a

b s t

a

b

Figure 2.1: i ≤m s

Whenever s ≤m t, we call s a refinement of t and t an abstraction of s. We often
consider MTS with a designed initial state; in such a case we say that an MTS
refines another one if this is true of their initial states.

One may refine MTS in a stepwise manner until 99K = −→ is obtained and no
further refinement is possible. MTS with 99K = −→ are called implementations
and can be considered as the standard labelled transition systems (LTS). Given
a process s we denote by JsK = {i | i is an implementation and i ≤m s} the set of
all implementations of s.(∗) In the previous example, j1 is not an implementation,
while j2 is considered an implementation since all reachable transitions satisfy
the requirement. Further notice that k2 ∈ JsK.

Note that on implementations the refinement coincides with the strong bisim-
ilarity, and on modal transition systems without any must transitions it corre-
sponds to the simulation preorder. Further, the refinement has a respective game
characterization [BKLS09b] similar to (bi)simulation games, which is often useful
in proofs.

2.2 Logics

In this thesis we use three logics defined below.

Propositional logic First, we recall the standard propositional logic. A Boolean
formula over a set X of atomic propositions is given by the following syntax

ϕ ::= tt | ff | x | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ

where x ranges over X . The set of all Boolean formulae over X is denoted by

(∗). We introduced this notation in [BKLS09b], but since then it has become the standard.

10

2. PRELIMINARIES

B(X). For a truth assignment ν ⊆ X , the satisfaction relation is given as follows:

ν |= tt

ν 6|= ff

ν |= p ⇐⇒ p ∈ ν
ν |= ϕ ∧ ψ ⇐⇒ ν |= ϕ and ν |= ψ

ν |= ϕ ∨ ψ ⇐⇒ ν |= ϕ or ν |= ψ

ν |= ¬ϕ ⇐⇒ ν 6|= ϕ

We also use the standard derived operators like exclusive-or ϕ⊕ ψ = (ϕ ∧ ¬ψ) ∨
(¬ϕ∧ψ), implicationϕ⇒ ψ = ¬ϕ∨ψ and equivalenceϕ⇔ ψ = (¬ϕ∨ψ)∧(ϕ∨¬ψ).

A set of implementations can be specified not only by a behavioural specifica-
tion such as an MTS, but also by a formula of a logic. In this thesis, we focus on
two logics and their fragments: µ-calculus [Koz83] and LTL [Pnu77].

µ-calculus Let Ap be a set of atomic propositions, Var a set of variables, and Σ

an action alphabet. The branching time logic µ-calculus is given by the following
syntax:

ϕ ::= tt | ff | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ | µX.ϕ | νX.ϕ

where p ranges over Ap, X over Var , and a over Σ. We call µ the least fixpoint
and ν the greatest fixpoint. Given an implementation (P,−→) and a valuation
ν : P → 2Ap over its state space, the semantics is defined as follows:

JttKν = P

JffKν = ∅
JpKν = {s ∈ P | p ∈ ν(s)}
J¬pKν = {s ∈ P | p /∈ ν(s)}
Jϕ ∧ ψKν = JϕKν ∩ JψKν
Jϕ ∨ ψKν = JϕKν ∪ JψKν
J[a]ϕKν = {s ∈ P | ∀s a−→ t : t ∈ JϕKν}
J〈a〉ϕKν = {s ∈ P | ∃s a−→ t : t ∈ JϕKν}
JµX.ϕKν =

⋂
{Q ⊆ P | JϕKν[X 7→Q] ⊆ T}

JνX.ϕKν =
⋃
{Q ⊆ P | JϕKν[X 7→Q] ⊇ T}

Linear temporal logic Finally, the linear temporal logic (LTL) is given by the fol-
lowing syntax:

ϕ ::= tt | ff | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Xaϕ | Fϕ | Gϕ | ϕUϕ

where p ranges over Ap and a over Σ. For a word w = ν0a0ν1a1 · · · ∈ (2Ap × Σ)N,
wi denotes the suffix νiaiνi+1ai+1 · · · . The semantics of a formula on w is defined

11

2. PRELIMINARIES

inductively as follows:(†)

w |= tt

w 6|= ff

w |= p ⇐⇒ p ∈ ν0

w |= ¬p ⇐⇒ p /∈ ν0

w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ

w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ

w |= Xϕ ⇐⇒ w1 |= ϕ

w |= Xaϕ ⇐⇒ a0 = a and w1 |= ϕ

w |= Fϕ ⇐⇒ ∃ k ∈ N : wk |= ϕ

w |= Gϕ ⇐⇒ ∀ k ∈ N : wk |= ϕ

w |= ϕUψ ⇐⇒ ∃ k ∈ N : wk |= ψ and
∀ 0 ≤ j < k : wj |= ϕ

Notice that the sematics is a mixture of state-based and action-based properties.
In the context of MTS, [Ben12] elaborates on the differences of the two.

Given an implementation (P,−→) and a valuation ν : P → 2Ap over its state
space, any run (maximal path in the directed graph of the LTS) induces a word
over 2Ap. An LTS then satisfies a formula if all runs from its initial state satisfy the
formula.

Example 2.4 Consider the LTS and its state valuation depicted in Fig. 2.2. While
it satisfies Gp and νX.p ∧ [a]X , it does not satisfy Fq and µX.q ∨ [a]X due to the
run looping in s.

s t

a

a a

ν(s) = {p}
ν(t) = {p, q}

Figure 2.2: An LTS with a state valuation

2.3 Specification theories

In order to support component based development, many specification theories
have been designed. One usually requires existence and effective computability
of several operations subject to various axioms. In the following, let s and t be
processes, arguments of the operations.

Some operations are structural stemming from the nature of behavioural de-
scriptions, such as the operations of parallel composition and quotient. The par-
allel composition ‖ should satisfy

(†). For a straightforward extension to possibly finite words, see Paper B.

12

2. PRELIMINARIES

(parallel) for any processes x and y, x ‖ y ≤m s ‖ t iff x ≤m s and y ≤m t.

The quotient is an adjoint to parallel composition, hence the quotient s/t of s
by t must satisfy

(quotient) for any process x, x ≤m s/t if and only if t ‖ x ≤m s.

Given a specification s of the whole system and t of its component, the quotient
s/t is thus a compact description of all systems that can be put in parallel with t
to get a system complying with s.

Other operations are inherited from the logical view, such as Boolean opera-
tions. A conjunction of two systems is the most general refinement of the two
systems. As the greatest lower bound with respect to ≤m it must satisfy

(conjunction) for any process x, x ≤m s ∧ t if and only if x ≤m s and x ≤m t.

A bit weaker notion is that of consistency relation: systems are consistent if they
have a common implementation, i.e. if the conjunction has a non-empty set of
implementations. Dually, one can define disjunction by requiring

(disjunction) for any process x, s ∨ t ≤m x if and only if s ≤m x and t ≤m x.

The remaining Boolean operation is that of complement :

(complement) for any process x, x ≤m s̄ if and only if x 6≤m s.

For the related notion of difference, see e.g. [SCU11].

It is usually not possible to satisfy all axioms in this strong form. For instance,
the “only-if” part of (parallel) is difficult to achieve in MTS [HL89, BKLS09b], see
Fig. 2.3.

s1

a

b

c
s2

a

b

c
s1 ‖ s2

a

b

c
i

a

b

ca

Figure 2.3: i ≤m s1 ‖ s2, but i cannot be written as i1 ‖ i2 for any i1 ≤m s1, i2 ≤m s2

The “complete specification theories” of [BDH+12] only require the “if” form
of (parallel), called independent implementability. Further, existence of quotients
and conjunctions is required if they have non-empty set of implementations. Here
we presented a simpler version, which is equivalent for MTS enriched by a spec-
ification with no implementations.

13

Chapter 3

Extensions of modalities

Since the modelling capabilities of basic MTS are quite limited, many extensions
have appeared in the literature. In this chapter, we focus on extensions of may
and must transition relations.

3.1 State of the art

Standard MTS have two transition relations −→, 99K ⊆ P × Σ × P satisfying,
moreover,−→ ⊆ 99K, which is called the syntactic consistency requirement. If this
requirement is not imposed we obtain mixed transition systems as introduced in
[DGG97].

Definition 3.1 (Mixed transition system) A mixed transition system (MixTS) over
an action alphabet Σ is a triple (P, 99K,−→), where P is a set of processes and
−→, 99K ⊆ P × Σ× P are must and may transition relations, respectively.

This extension allows us not only to have inconsistent specifications, but also
an enforced non-deterministic choice as the following example shows.

Example 3.2 Since must transitions are not necessarily also may transitions in
MixTS, we depict may transitions explicitly for mixed systems even if there is
a corresponding must transition. The specification of Fig. 3.1 requires an a tran-
sition followed by either only b’s or only c’s. Indeed, the must transition under a
enforces a transition, but does not automatically allow it; only the two may tran-
sitions under a are allowed.

a

a

a

b, c

b

c

Figure 3.1: A mixed transition system

15

3. EXTENSIONS OF MODALITIES

Nevertheless, even this feature is often insufficient to specify which combina-
tions of transitions can be implemented.

Example 3.3 Figure 3.2 depicts an MTS that specifies the following. A request

from a client may arrive. Then we can process it directly on the server or make
a query to a database where we are guaranteed an answer. In both cases we send
a response.

client

s

server database

request query

processing

response answer

Figure 3.2: An example of a potentially deadlocking MTS

An MTS can be refined in two ways: a may transition is either implemented
(and becomes a must transition) or omitted (and disappears as a transition). On
the left of Fig. 3.3 there is an implementation of the system, where the processing
branch is implemented and the database query branch is omitted. Similarly, there
is also an implementation omitting the process branch and implementing only
the query. However, there is also an undesirable implementation that does not
implement any option and deadlocks as seen on the right of Fig. 3.3.

i1

request

processing

response

i2

request

Figure 3.3: Two implementations i1, i2 of s of Fig. 3.2

To avoid deadlocking, we want to specify that either processing or query will
be implemented. This is possible in disjunctive modal transition systems [LX90].
They were actually introduced as natural means for solutions to process equa-
tions since they can express both conjunctions and disjunctions of properties.

Definition 3.4 (Disjunctive modal transition system) A disjunctive modal tran-
sition system (DMTS) over an action alphabet Σ is a triple (P, 99K,−→), where P
is a set of processes and 99K ⊆ P × Σ × P is the may and −→ ⊆ P × 2Σ×P the
must (or hyper-must) transition relation.

16

3. EXTENSIONS OF MODALITIES

Example 3.5 Now we can easily enforce a choice between arbitrary transitions,
not just with the same action as in Example 3.2. Instead of forcing a particular
transition, a must transition in DMTS specifies a whole set of transitions at least
one of which must be present. In our example, it is the set consisting of processing
and query transitions.

s

request query

processing

response answer

Figure 3.4: A disjunctive modal transition system

Note that DMTS are capable of forcing any positive Boolean combination of
transitions, simply by turning it into the conjunctive normal form.

If the choice is supposed to be exclusive, we can use one-selecting MTS (1MTS)
introduced in [FS08] with the property that exactly one transition from the set
must be present. In 1MTS and also in underspecified transition systems (UTS)
[FS05], both (hyper)must and (hyper)may transition relations are subsets of P ×
2Σ×P . For UTS, the syntactic consistency is required, i.e. the hyper-may is larger
than the hyper-must.

Finally, explicit listing of all allowed combinations of outgoing transitions is
used in acceptance automata [Rac08]. However, it is limited to deterministic sys-
tems.

Definition 3.6 (Acceptance automaton) An acceptance automaton (AA) over an
action alphabet Σ is a pair (P,PossibleTranSets), where P is a prefix-closed lan-
guage over Σ and PossibleTranSets : P → 22Σ \∅ satisfies that w.a ∈ P if and only
if a ∈ TranSet ∈ PossibleTranSets(w) for some TranSet .

Each of the formalisms presented so far in this section was an automata-based
behavioural formalism. These are often preferred as they are easier to read than,
for instance, formulae of modal logics. The alternative between logical and be-
havioural specifications is not only a question of preference. Automata-based
specifications [Lar89, BG99] have a focus on compositional and incremental de-
sign in which logical specifications are somewhat lacking, with the trade-off of
generally being less expressive than logics. Logical specification formalisms put
a powerful logical language at the disposal of the user, and the logical approach
to model checking [QS82, CE81] has seen a lot of success and tool implementa-
tions. As a result, one would like to establish connections between behavioural

17

3. EXTENSIONS OF MODALITIES

and logical formalisms to exploit advantages of both at once. The relationship of
MTS to logic was studied in [BL92, FP07]. It is established that MTS are equivalent
to a fragment of µ-calculus where formulae are (1) consistent, (2) “prime”, mean-
ing the disjunction is allowed only in very special cases, and (3) do not contain
the least fixpoint.

3.2 New results

We consider several extensions of MTS. First, we motivate and introduce the most
general one and then discuss the relationships of its special cases. Their differ-
ences with respect to efficiency are discussed in Chapter 5. The motivation for
DMTS was explained in Example 3.5. However, as the following example shows,
convenient modelling requires more features such as conditional or persistent
choices.

Example 3.7 Consider a simple specification of a traffic light controller for several
national variants for vehicles as well as for pedestrians in Fig. 3.5. At any moment
it is in one of the four states red , green , yellow or yellowRed . The requirements of
the specification are: if green is on then the traffic light may either change to red

or yellow , and if it turned yellow it must go to red afterward; if red is on then it
may either turn to green or yellowRed , and if it turns yellowRed (as it is the case in
some countries) it must go to green afterwards.

Figure 3.5a shows the respective MTS specification. In Figure 3.5c, Figure 3.5d
and Figure 3.5e there are three different implementations of the MTS specifi-
cation that are undesirable: the light is constantly green , the lights switch non-
deterministically or yellow is only displayed sometimes. While the first problem
can be avoided using DMTS (see Figure 3.5b), the latter two cannot. To elimi-
nate the second implementation, we introduce Boolean MTS, which can model
exclusive choice. For the third implementation to be removed, we need persistent
choice, which can be modelled in parametric MTS where a parameter describes
whether and when the yellow light is used making the choices permanent in the
whole implementation.

Now we define parametric MTS and instantiate other extended specification
formalisms as its subclasses.

Definition 3.8 (Parametric modal transition system) A parametric MTS (PMTS)
over an action alphabet Σ is a tuple (P, T,Par ,Φ) where

• P is a set of processes,

• T ⊆ P × Σ× P is a transition relation,

• Par is a finite set of parameters, and

18

3. EXTENSIONS OF MODALITIES

green

red

yellow

yellowRed

go

stop

readygo

ready sto
p

(a) MTS specification S1

go

stop

readygo

ready sto
p

(b) DMTS specification S2

(c) Implementation I1

go

stop

readygo

ready sto
p

(d) Implementation I2

sto
p go

re
ad
y

stop

go

(e) Implementation I3

go

stop

readygo

ready sto
p

Obligation function:
Φ(green) = (stop, red)⊕ (ready, yellow)
Φ(red) = (go, green)⊕ (ready, yellowRed)

(f) BMTS specification S3

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}
Obligation function:
Φ(green) = ((stop, red)⊕ (ready, yellow))

∧(reqYfromG ⇔ (ready, yellow))
Φ(red) = ((go, green)⊕ (ready, yellowRed))

∧(reqYfromR ⇔ (ready, yellowRed))

(g) PMTS specification S4

Figure 3.5: Specifications and implementations of a traffic light controller

• Φ : P → B((Σ × P) ∪ Par) is an obligation function over outgoing tran-
sitions and parameters.

A PMTS is positive if for every s ∈ P only parameters can be negated in Φ(s). If
the following syntactic consistency

∀s ∈ P : ∀(a, t) ∈ Φ(s) : (s, a, t) ∈ T (SC)

holds we call the PMTS pure, otherwise mixed. A PMTS (P, T,Par ,Φ) is called

• Boolean MTS (BMTS) if it is parameter-free, i.e. if Par = ∅,

• transition system with obligation (OTS) if it is parameter-free and posi-
tive.

19

3. EXTENSIONS OF MODALITIES

Intuitively, a set S of transitions from s is allowed if Φ(s) is true under the valua-
tion induced by S and the fixed parameters.

Note that

• DMTS is an OTS with Φ(s) in the conjunctive normal form for all s ∈ P ,

• MixTS is a DMTS with Φ(s) being a conjunction of positive literals (tran-
sitions) for all s ∈ P ,

• MTS is a pure MixTS,

• LTS is an MTS with Φ(s) =
∧
T (s) for all s ∈ P , where T (s) = {(a, t) |

(s, a, t) ∈ T} is the set of all outgoing transitions of s.

mixed PMTS

mixed BMTS

mixed OTS

mixed DMTS

MixTS

pure PMTS

pure BMTS

pure OTS

pure DMTS

MTS

LTS

Figure 3.6: The syntactic hierarchy of MTS extensions

In this chapter we show that mixed variants usually do not have more expres-
sive power than their pure counterparts. Apart from the already discussed extra
power of MixTS over MTS, pure DMTS cannot express empty specification (with
no implementations) while mixed DMTS can. Since this difference is not very im-
portant, we shall deal with pure systems only unless stated otherwise.

In order to define modal refinement, we first set the following notation. For
a PMTS M = (P, T,Par ,Φ), a valuation ν ⊆ Par of parameters induces a BMTS
Mν = (P, T, ∅,Φ′) where each occurrence of p ∈ ν in Φ is replaced by tt and of
p /∈ ν by ff , i.e. for each s ∈ P , Φ′(s) = Φ(s)[tt 7→ p for p ∈ ν,ff 7→ p for p /∈ ν].
Further, for s ∈ P , we denote by Tranν(s) = {E ⊆ T (s) | E |= Φ′(s)} the set

20

3. EXTENSIONS OF MODALITIES

of all admissible sets of transitions from s under the fixed truth values of the
parameters. Finally, we extend the notation to processes and let sν denote the
process of Mν corresponding to the process s of M .

We can now define the notion of modal refinement between PMTS as in Pa-
per F.

Definition 3.9 (Modal refinement of PMTS) Let (P1, T1,Par1,Φ1), (P2, T2,Par2,Φ2)

be PMTS over the same action alphabet and s ∈ P1, t ∈ P2 be processes. We say
that smodally refines t, written s ≤m t, if for every µ ⊆ Par1 there exists ν ⊆ Par2

such that (sµ, tν) is contained in a refinement relation R ⊆ P1 × P2 satisfying for
every (p, q) ∈ R:

∀M ∈ Tranµ(p) : ∃N ∈ Tranν(q) : ∀(a, p′) ∈M : ∃(a, q′) ∈ N : (p′, q′) ∈ R ∧
∀(a, q′) ∈ N : ∃(a, p′) ∈M : (p′, q′) ∈ R .

Intuitively, whatever parameters of the refining system we pick, the abstract
system can emulate the same behaviour for some choice of its parameters.

Example 3.10 Consider the rightmost PMTS in Fig. 3.7. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can be
refined by the system in the middle of the figure having only one parameter reqY .
This single parameter simply binds the two original parameters to the same value.
The PMTS in the middle can be further refined into the implementations where
either yellow is always used in both cases, or never at all.

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}

Obligation function:
Φ(green) = ((stop, red)⊕ (ready, yellow))
∧(reqYfromG ⇔ (ready, yellow))

Φ(red) = ((go, green)⊕ (ready, yellowRed))
∧(reqYfromR ⇔ (ready, yellowRed))

go

stop

readygo

ready sto
p

Parameters: {reqY }

Obligation function:
Φ(green) = ((stop, red)⊕ (ready, yellow))
∧(reqY ⇔ (ready, yellow))

Φ(red) = ((go, green)⊕ (ready, yellowRed))
∧(reqY ⇔ (ready, yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

Figure 3.7: Example of modal refinement

The definition given above slightly differs from the one of Paper C. However,
although this one is closer to the semantically defined notion of thorough refine-
ment, it still keeps the same complexity as the modal refinement defined in Pa-
per C. For the details, see Paper F.

21

3. EXTENSIONS OF MODALITIES

3.2.1 Expressive power

Here we survey the results on the expressive power of the subclasses of PMTS
achieved in Papers A, F and G. Firstly, in Paper G we define a de-parametrization
operator B that blows up a PMTS into an equivalent (potentially exponentially
larger) BMTS.

Proposition 3.11 Let s be a process of a PMTS. Then JsK = JB(s)K and s ≤m B(s).

Secondly, we define an operator de-negation that transforms a BMTS with the set
P of processes into a DMTS with the set {t ∈ Tran(s) | s ∈ P} of new processes.
This way we can transform (again at an exponential cost) a BMTS into an equiv-
alent DMTS with more, but still finitely many initial states. These are introduced
formally in Paper G.

Proposition 3.12 Let s be a process of a BMTS, JsK =
⋃
t∈Tran∅(s)JtK.

Thirdly, in Paper A we show how to transform a mixed DMTS with non-empty set
of implementations into a pure DMTS again at an exponential cost. The method
used is a variant of a powerset construction and is not limited to disjunctive MTS.
The only exceptions are the inconsistent specification, i.e. with no implementa-
tions. We disregard this minor technical difference here.

Finally, in Paper F we prove that DMTS with more initial states are equivalent to
ν-calculus (or Hennessy-Milner logic with greatest fixpoints, abbreviated νHML),
which is a fragment of µ-calculus without the least fixpoint. To this end, we use
a non-deterministic extension of alternating automata (NAA) as an intermediate
step.

Example 3.13 Consider the following property: “at all time points after execut-
ing request, no idle nor further requests but only work is allowed until grant is exe-
cuted”. The property can be written in e.g. CTL [CE81] as

AG(request⇒ AX(work AW grant))

Figure 3.8 shows an example of an equivalent νHML formula and a DMTS corre-
sponding to this property.

X = [grant, idle,work]X ∧ [request]Y

Y = (〈work〉Y ∨ 〈grant〉X) ∧ [idle, request]ff

request

grant,work, idle

workgrant

Figure 3.8: Example of a νHML formula and an equivalent DMTS

22

3. EXTENSIONS OF MODALITIES

Summing up the results, we obtain the following:

Theorem 3.14 For any set S of LTS, the following are equivalent:

1. There exists a finite PMTS process s with JsK = S.

2. There exists a finite BMTS process s with JsK = S .

3. There exists a finite set S of finite DMTS processes with
⋃
s∈SJsK = S.

4. There exists a µ-calculus formula ϕ without µ with JϕK = S.

Furthermore, the first three statements are equivalent even if we drop the finite-
ness constraints. In the fourth, we would have to allow infinite conjunctions and
disjunctions.

Apart from the logical characterization, we can also describe processes using
a process algebra [Fok00]. Here we do it only for (mixed) OTS and not consider
parallel composition, for the latter see Paper A. Let X be a set of process names.
A term of process algebra for OTS is given by the following syntax:

P ::= nil | co-nil | a.P | X | P ∧ P | P ∨ P | P

where X ranges over X and every X ∈ X is assigned a defining equality of the
formX := P where P is a term. The semantics is given by the following structural
operational semantics rules:

a.P
a

99K P

P
a

99K P ′

X
a

99K P ′
X := P

P
a

99K P ′

P ∧Q a
99K P ′

P
a

99K P ′

P ∨Q a
99K P ′

and, since the processes represent sets of implemented systems (i.e. sets of sets of
behaviours), by an obligation function defined structurally as follows:

Ω(nil) = tt Ω(P ∧Q) = Ω(P) ∧Ω(Q)

Ω(co-nil) = ff Ω(P ∨Q) = Ω(P) ∨Ω(Q)

Ω(a.P) = (a, P) Ω(P) = Ω(P)

Ω(X) = Ω(P) for X := P

We now obtain the discussed subclasses of OTS as syntactic subclasses gener-
ated by the following syntax equations (modulo transformation to conjunctive
normal form):

mixed DMTS P ::= nil | a.P | X | P ∧ P | P ∨ P | P | co-nil

pure DMTS P ::= nil | a.P | X | P ∧ P | P ∨ P
MixTS P ::= nil | a.P | X | P ∧ P | P ∨ nil | P | co-nil

MTS P ::= nil | a.P | X | P ∧ P | P ∨ nil

LTS P ::= nil | a.P | X | P ∧ P

23

3. EXTENSIONS OF MODALITIES

The results on the relationships are summarized in Fig. 3.9, where Cm denotes
a class C where systems are considered with more initial states.

νHML = PMTS = BMTS = OTSm = DMTSm

DMTS

MixTS

MTS

LTS

Figure 3.9: The semantic hierarchy of MTS extensions not considering empty
specifications

24

Chapter 4

Extensions of transition systems

In the previous chapter, we extended the modalities of the systems. In this chap-
ter, we focus on extensions of systems the modalities operate on. We focus on (1)
systems that are executed in real time and (2) systems with infinite state space.

4.1 State of the art

Over the years, many extensions of MTS have been proposed. While many fo-
cus on what combinations of transitions are possible as discussed in Chapter 3,
some lifted MTS to quantitative settings [LL12] with clear applications in the em-
bedded systems design. This includes probabilistic specifications [JL91, CDL+10,
DKL+11] and various weighted specifications, where weights stand for various
quantitative aspects (e.g. time, power or memory), which are highly relevant in
the area of embedded systems. As far as the particular case of timed systems
is concerned, the quantity of time can be refined in various ways. In the early
work [CGL93, LSW95], the precise quantities are almost disregarded. More re-
cently [JLS12, BPR09, BLPR09, DLL+10], the possible times are usually specified
as time intervals, which can be narrowed down and thus made more specific.
A more general option is to permit changes to anything smaller with respect to
some abstract ordering; [BJL+12a] provides the following conservative extension
of MTS modal refinement along these lines:

Definition 4.1 (Modal refinement of MTS with structured labels) Let Σ be an al-
phabet with an ordering v. Let (P1, 99K1,−→1), (P2, 99K2,−→2) be MTS over Σ

and s ∈ P1, t ∈ P2 be processes. We say that s modally refines t, written s ≤m t,
if there is a relation R ⊆ P1 × P2 such that (s, t) ∈ R and for every (p, q) ∈ R and
every a ∈ Σ:

1. if p
a

99K1 p
′ then there is a transition q

ā
99K2 q

′ with a v ā and (p′, q′) ∈ R,
and

2. if q ā−→2 q
′ then there is a transition p a−→1 p

′ with a v ā and (p′, q′) ∈ R.

25

4. EXTENSIONS OF TRANSITION SYSTEMS

Example 4.2 Consider Σ = L × I where L is a finite set ordered by identity and
I is the set of intervals ordered by inclusion and Σ is ordered point-wise. A tran-
sition labelled by (`, [a, b]) can thus be implemented by a transition (`, c) for any
c ∈ [a, b].

Moreover, one can also consider probabilistic and timed extension of MTS at
once [HKKG13], more weights at once [BJL+12b], or MTS with timed-automata
clocks [BLPR12, FL12]. In all the quantitative settings, it is also natural to extend
the qualitative notion of refinement into a quantitative notion of distance of sys-
tems [BFJ+11, BFLT12].

Other extensions of MTS consider infinite state systems. Here only a few more
or less ad hoc extensions have been proposed, such as systems with asynchronous
communication based on FIFO [BHJ10] or Petri nets [EBHH10]. Other extensions
consider also data to some extent [BHB10, BHW10, BLL+14]. A systematic explo-
ration of infinite state MTS was missing.

A convenient unifying framework for (non-modal) infinite-state systems is pro-
vided by process rewrite systems (PRS) [May00]. They encompass many standard
models such as pushdown automata (PDA) or Petri nets (PN) as syntactic sub-
classes. A PRS consists of a finite set of rewriting rules, which model the compu-
tation. These rules may contain sequential and parallel composition. Formally, let
X be a set of process constants. We define the set of process expressions E by the
following abstract syntax:

E ::= nil | X | E ‖ E | E;E

whereX ranges overX . The process expressions are considered modulo the usual
structural congruence, i.e. the smallest congruence such that the operator ; is as-
sociative, ‖ is associative and commutative and nil is a unit for both ; and ‖.

Definition 4.3 (Process rewrite system) A process rewrite system (PRS) is a fi-
nite relation ∆ ⊆ (E \ {nil}) × Σ × E , elements of which are called rewrite rules.
A PRS ∆ induces a labelled transition system LTS(∆) = (E ,−→) where −→ is
the least relation satisfying the following rules:

(E, a,E′) ∈ ∆

E
a−→ E′

E
a−→ E′

E;F
a−→ E′;F

E
a−→ E′

E ‖ F a−→ E′ ‖ F

We consider four distinguished classes of process expressions. Class S stands
for expressions with no ‖ (purely sequential expressions) and class P stands for
expressions with no ; (purely parallel expressions). Further, we use G for the
whole E (general expressions) and 1 for X (one process constant and no opera-
tors). Now restricting the left and right sides of rules of PRS to these classes yields

26

4. EXTENSIONS OF TRANSITION SYSTEMS

subclasses of PRS as depicted in Figure 4.1; for the standard shortcuts used, see
Paper E. Note that the hierarchy is strict with respect to the bisimulation equiva-
lence.

PRS
(G, G)

PAD
(S, G)

PAN
(P, G)

PDA
(S, S)

PN
(P, P)

PA
(1, G)

BPA
(1, S)

BPP
(1, P)

FSM
(1, 1)

Figure 4.1: PRS hierarchy

Example 4.4 A transition t of a Petri net with input places p, q and output places
r, s can be described by the rule p ‖ q t−→ r ‖ s. A transition of a pushdown
automaton in a state s with a top stack symbol X reading a letter a resulting in
changing the state to q and pushing Y onto the stack can be written as sX a−→ qY .

4.2 New results

4.2.1 Modal transition systems with durations

We present a timed extension of BMTS (the corresponding extension of PMTS
would be straightforward). The time durations of transitions are modelled as con-
trollable or uncontrollable intervals. Controllable intervals can be further refined
into narrower intervals, whereas uncontrollable are considered under the control
of an unpredictable environment and cannot be further narrowed down.

Definition 4.5 (MTSD) A modal transition system with durations (MTSD) is a tu-
ple S = (P, T,Φ, D) where (P, T, ∅,Φ) is a BMTS and D : T → I is a duration
interval function, where I = {〈m,n〉, [m,n] | m,n ∈ N0,m ≤ n}.

27

4. EXTENSIONS OF TRANSITION SYSTEMS

Moreover, we require that there are no Zeno cycles, i.e. there is no sequence
s1a1s2a2 · · · sn where (si, ai, si+1) ∈ T and sn = s1 such that for all i, the interval
D((si, ai, si+1)) is of the form either 〈0,m〉 or [0,m] for some m.

Example 4.6 Consider the specification S of Figure 4.2 describing the work of
a shuttle bus driver. He drives a bus between a hotel and the airport. First, the
driver has to wait for the passengers at the hotel. This can take one to five min-
utes. Then the driver has to drive the bus to the airport (this takes six to ten min-
utes) where he has to do a small cleanup, then wait for passengers before he can
drive the bus back to the hotel. When he returns he can do either a small cleanup,
big cleanup or skip cleanup of the bus before he starts over again. Note that next
time the choice in t may differ.

There are two types of durations on the transitions. First, there are controllable
intervals, written in angle brackets. The meaning of e.g. 〈1, 5〉 is that in the imple-
mentation we can instruct the driver to wait for a fixed number of minutes in the
range. Second, there are uncontrollable intervals, written in square brackets. The
interval [6, 10] on the drive transition means that in the implementation we cannot
fix any particular time and the time can vary, say, depending on the traffic and it
is chosen non-deterministically by the environment.

s

t

Φ(t) = (big cleanup, s) ∨ (skip cleanup, s) ∨ (small cleanup, s)

wait

〈1, 5〉
drive

[6, 10]

sm
all

clean
u
p

〈4
,6〉

wait

〈1, 5〉
drive

[6, 10]

sm
al
l
cl
ea
n
u
p

〈4
,6
〉

b
ig

cl
ea
n
u
p

〈2
0
,3

0
〉

sk
ip

cl
ea
n
u
p

[0
,0

]

Figure 4.2: Example of a modal transition system with time durations

We now define a notion of modal refinement. In order to do that, we first need
to define refinement of intervals as a binary relation ≤ ⊆ I× I such that

• 〈m′, n′〉 v 〈m,n〉whenever m′ ≥ m and n′ ≤ n, and

• [m′, n′] v 〈m,n〉whenever m′ ≥ m and n′ ≤ n.

28

4. EXTENSIONS OF TRANSITION SYSTEMS

Thus controllable intervals can be refined by narrowing them, at most until they
become singleton intervals, or until they are changed to uncontrollable intervals.
The modal refinement is now a combination of BMTS refinement with refinement
on structured labels over Σ × I ordered by = × v. The latter compound is thus
a special case of [BJL+12a] (published after Paper D).

Definition 4.7 (Modal refinement of MTSD) Let (P1, T1,Φ1, D1), (P2, T2,Φ2, D2)

be MTSD and s1 ∈ S1, s2 ∈ S2 be processes. We say that s1 modally refines s2,
written s1 ≤m s2, if there is a relation R ⊆ P1 × P2 containing (s1, s2) such that
for every (s, t) ∈ R the following holds:

∀M ∈ Tran(s) : ∃N ∈ Tran(t) :

∀(a, s′) ∈M : ∃(a, t′) ∈ N : D1(s, a, s′) v D2(t, a, t′) ∧ (s′, t′) ∈ R, and

∀(a, t′) ∈ N : ∃(a, s′) ∈M : D1(s, a, s′) v D2(t, a, t′) ∧ (s′, t′) ∈ R .

In Chapter 5, we further equip the model with a dual price scheme, i.e. two
kinds of quantitative costs: each action has its own running cost per time unit,
and actions may require several hardware components of different costs. We then
discuss the problem of finding an implementation with the cheapest long-run
average running costs per time unit (so that we pay the driver the least possible
amount of money) given a fixed budget for the investment into the hardware
components.

4.2.2 Modal process rewrite systems

In this section, we introduce modalities into a general framework for infinite-
state systems, namely process rewrite systems. In Chapter 5, we study modal
extensions of well-established classes of infinite-state systems and the complexity
of their analysis.

One can naturally lift PRS to the modal world by having two sets of rules: may
and must rules. The finite set of rules then generates a generally infinite MTS.

Definition 4.8 (Modal process rewrite system) A modal process rewrite system
(mPRS) is a tuple ∆ = (∆may,∆must) where ∆must ⊆ ∆may are two PRS.

The mPRS ∆ induces an MTS

MTS(∆) = (E , 99K,−→)

defined by LTS(∆may) = (E , 99K) and LTS(∆may) = (E ,−→).

In other words the MTS is induced by the mPRS structurally as follows:

(E, a,E′) ∈ ∆may

E
a

99K E′
E

a
99K E′

E;F
a

99K E′;F

E
a

99K E′

E ‖ F a
99K E′ ‖ F

29

4. EXTENSIONS OF TRANSITION SYSTEMS

(E, a,E′) ∈ ∆must

E
a−→ E′

E
a−→ E′

E;F
a−→ E′;F

E
a−→ E′

E ‖ F a−→ E′ ‖ F

Each subclass C of PRS has a corresponding modal extension mC containing all
mPRS (∆may,∆must) with both ∆may and ∆must in C. For instance, mFSM corre-
spond to the standard finite MTS and mPN are modal Petri nets as introduced
in [EBHH10].

Definition 4.9 (Modal refinement) Given mPRS ∆1 ∈ mC1,∆2 ∈ mC2 and pro-
cess terms δ1, δ2, we say δ1 refines δ2, written δ1 ≤m δ2, if δ1 ≤m δ2 as processes of
MTS(∆1) and MTS(∆2), respectively.

What is the use of mPRS? Firstly, potentially infinite-state systems such as Petri
nets are very popular for modelling whenever communication and/or synchro-
nization between processes occurs. This is true even in cases where they are actu-
ally bounded and thus with a finite state space.

Example 4.10 Consider the following may rule (we use dashed arrows to denote
may rules) generating a small Petri net.

resource
produce
99K money ‖ trash

If this is the only rule with trash on the right side a safety property is guaranteed
for all implementations of this system, namely that trash can only arise if there
is at least one resource. On the other hand, it is not guaranteed that money can
indeed be produced in such a situation. This is very useful as during the design
process new requirements can arise, such as necessity of adding more participants
to perform this transition. For instance,

resource‖ permit
produce
99K money ‖ trash

expresses an auxiliary condition required to produce trash, namely that permit is
available. Replacing the old rule with the new one is equivalent to adding an in-
put place permit to the modal Petri net, see Figure 4.3 in red. In the modal tran-
sition system view, the new system refines the old one. Indeed, the new system
is only more specific about the allowed behaviour than the old one and does not
permit any previously forbidden behaviour.

One can further refine the system into the one given by

resource ‖ permit ‖ bribe
produce−→ money ‖ trash

where additional condition is imposed and now the money-producing transition
has to be available (denoted by an unbroken arrow) whenever the left hand side
condition is satisfied.

30

4. EXTENSIONS OF TRANSITION SYSTEMS

•P

•R ••••••

c

p

M

T

Figure 4.3: A modal Petri net given by rules Resource‖ Permit
produce
99K Money ‖ Trash

and Trash
clean−→ Permit with may transitions drawn as empty boxes and must tran-

sitions as full boxes

Further, infinitely many states are useful to capture unbounded memory. For
instance, consider a specification where the total amount of permits is not ex-
plicitly limited. In an implementation, the number of permits might need to be
remembered in the state of the system.

Example 4.11 Consider a basic process algebra (BPA) given by rules X
(−→ XX

and X
)−→ ε for correctly parenthesized expressions with X

a
99K X for all other

symbols a, i.e. with no restriction on the syntax of expressions. One can easily
refine this system into a PDA that accepts correct arithmetic expressions by re-
membering in a control state whether the last symbol read was an operand or an
operator.

31

Chapter 5

Analysis

In this chapter, we give algorithms for and establish complexities of the most
important problems on MTS and their extensions.

5.1 State of the art

5.1.1 Refinements

Modal refinement is a syntactically defined notion extending both bisimulation
and simulation. Similarly to bisimulation having a semantic counterpart in trace
equivalence, here the semantic counterpart of modal refinement is the thorough
refinement. As opposed to the syntactic definition using local notions, the seman-
tic definition relates (by inclusion) the sets of implementations of the specifica-
tions. The definition is universal for all extensions of MTS as it only depends on
the notion of implementation and not on syntax of the particular extension.

Definition 5.1 (Thorough refinement) Given processes s and t, we say that s thor-
oughly refines t, written s ≤t t, if JsK ⊆ JtK.

Note that the two refinements are in general different as we illustrate in the
following example:

Example 5.2 Consider processes s and t of Figure 5.1. On the one hand, the sets of
implementations of s and t are the same, namely those that can perform either no
action or one a or two a’s or combine the latter two options. On the other hand,
s does not modally refine t. Indeed, whenever s ≤m t then either s′ ≤m t1 or
s′ ≤m t2. However, neither is true, as s′ allows a transition while t1 does not, and
s′ does not require any transition while t2 does.

s s′

a a

t

t1

t2

a

a
a

Figure 5.1: s ≤t t, but s 6≤m t

33

5. ANALYSIS

Although the two refinements differ, modal refinement is a sound under-appro-
ximation of the thorough refinement. Indeed, whenever we have i ≤m s and
s ≤m t, by transitivity of the modal refinement we obtain i ≤m t.

Proposition 5.3 Let s, t be processes. If s ≤m t then s ≤t t.

Moreover, in [BKLS09b] we show the other direction holds whenever the re-
fined system is deterministic. A process is deterministic if, for each process s of
its underlying MTS and for each a ∈ Σ, there is at most one s′ such that s

a
99K s′.

Proposition 5.4 Let s, t be processes and t deterministic. If s ≤t t then s ≤m t.

In Table 5.1 we give an overview of the results related to deciding modal and
thorough refinements for different combinations of processes on the left- and
right-hand side (here D stands for deterministic processes and N for non-deterministic
processes). Note that the co-inductive refinement relations are easy to compute
using a fixed-point computation, although other methods are also possible, e.g.
logical programming [AKRU11] or QBF solving described later.

Table 5.1: Refinement complexities for various cases of (non)determinism

modal refinement thorough refinement
D,D NL-complete [BKLS09b] NL-complete [BKLS09b]
N,D NL-complete [BKLS09b] NL-complete [BKLS09b]

D,N
∈ P [KS90, PT87] ∈ EXP [AHL+08b]
P-hard [BKLS09b] EXP-hard [BKLS12]

N,N
∈ P [KS90, PT87] ∈ EXP [AHL+08b, BKLS09a]
P-hard [BGS92] EXP-hard [BKLS09a]

Since the thorough refinement is EXP-hard, it is much harder than the modal
refinement. Therefore, we also investigate how the thorough refinement can be
approximated by the modal refinement. While under-approximation is easy, as
modal refinement implies thorough refinement, over-approximation is more dif-
ficult. Here one can use our method of the deterministic hull for MTS [BKLS09b].
The deterministic hull operatorD is a generalization of the powerset construction
on finite automata and it is the smallest (w.r.t. modal refinement) deterministic
system refined by the original system.

Proposition 5.5 Let s be an arbitrary MTS process. Then D(s) is a deterministic
MTS process such that s ≤m D(s) and, for every deterministic MTS process t, if
s ≤t t then D(s) ≤m t.

Corollary 5.6 For any processes s, t, if s 6≤m D(t) then s 6≤t t.

34

5. ANALYSIS

There are also other notions of refinements of systems close to MTS, such as
alternating refinements [AHKV98, AFdFE+11], branching refinement [FBU09] or
refinement preserving the termination possibility [CR12].

5.1.2 Operations

We are interested in classes of modal systems being closed under certain opera-
tions introduced in Chapter 2. Whenever they are closed we want to know how
to compute the result and how hard it is.

Firstly, we address the closure properties of previously investigated classes of
systems, see Table 5.2. While the automata based formalisms automatically allow
to compose systems structurally, logical operations are either difficult to compute
or cannot be expressed in the formalism at all. Therefore, most of the focus has
been directed to the very simple deterministic case, where some operations can
be defined using local syntactic rules.

Table 5.2: Closure properties of previously known classes of modal systems

∧ ∨ ¬ ‖ /

deterministic MTS X × × X X
MTS ? × × X ×
MixTS X × × X ?

DMTS ? × × X ?

The parallel composition can often be lifted to the modal setting simply by
applying the same rules for both may and must transition functions. This holds
for a wide class of operators as described in our [BKLS09b]. Here we consider
a simple case of synchronous message passing with the synchronization alphabet
Σ′ ⊆ Σ, i.e. full synchronization on Σ′ and interleaving on Σ \ Σ′:

s
a

99K s′ t
a

99K t′

s ‖ t a
99K s′ ‖ t′

∀a ∈ Σ′
s

a
99K s′

s ‖ t a
99K s′ ‖ t

∀a ∈ Σ \ Σ′
t

a
99K t′

s ‖ t a
99K s ‖ t′

∀a ∈ Σ \ Σ′

s
a−→ s′ t

a−→ t′

s ‖ t a−→ s′ ‖ t′
∀a ∈ Σ′

s
a−→ s′

s ‖ t a−→ s′ ‖ t
∀a ∈ Σ \ Σ′

t
a−→ t′

s ‖ t a−→ s ‖ t′
∀a ∈ Σ \ Σ′

The quotient is more complex. For deterministic MTS, we can define it syntac-

35

5. ANALYSIS

tically as in [Rac07, Rac08]:

s
a

99K s′ t
a

99K t′

s ∧ t a
99K s′ ∧ t′

t 6 a99K t′

s ∧ t a
99K univ

s
a−→ s′ t

a−→ t′

s ∧ t a−→ s′ ∧ t′
s

a−→ s′ t 6 a−→ t′

s ∧ t ∈ univ
a

99K univ

where states in are inconsistent and must be pruned. Pruning t ∈ means t
must be removed and whenever there is s a−→ t we also recursively prune s. For
non-deterministic MTS, the problem was open. Further related questions such as
decomposition of a system into several components put in parallel have also been
investigated [SUBK12], but again only for deterministic systems.

The situation is similar with conjunction. For deterministic MTS, we can again
define it syntactically:

s
a

99K s′ t
a

99K t′

s ∧ t a
99K s′ ∧ t′

s
a−→ s′ t

a
99K t′

s ∧ t a−→ s′ ∧ t′
s

a
99K s′ t

a−→ t′

s ∧ t a−→ s′ ∧ t′

s
a−→ s′ t 6 a99K t′

s ∧ t ∈
s 6 a99K s′ t

a−→ t′

s ∧ t ∈

using the same pruning procedure. For non-deterministic systems, there were
several attempts. Unfortunately, the resulting MTS is not minimal (with respect
to modal refinement) [UC04], or not finite even when claimed to be finite [FU08]:
their “clone” operation may not terminate even in cases when it is supposed to,
for example, for processes s1, s2 of Fig. 5.4 where the self-loops are redirected back
to the initial states.

We are also interested in questions closely related to the discussed conjunction.
The common implementation decision problem (CI) contains tuples of systems,
such that there is an implementation refining each system of the tuple. For tu-
ples of size two this is equivalent to non-emptiness of the conjunction, for one
system (for instance a MixTS) this is equivalent to semantic consistency (or non-
emptiness) [LNW07b], i.e. existence of implementation. Note that despite the lack
of results on conjunction of non-deterministic systems the complexity is known
here. The complexity improves when the input processes are deterministic (CID

problem). Finally, rather surprisingly, the problem whether there is a determinis-
tic common implementation (dCI) is hard. We display the known results in Table
5.3 for several cases depending on whether the number of input processes is fixed
or a part of the input. The results again indicate that several problems become
more tractable if the given specifications are deterministic .

While MTS are not closed under complement (not even deterministic ones),
there have been attempts at characterizing symmetric difference [SCU11].

36

5. ANALYSIS

Table 5.3: Complexity of the common implementation problems

single MTS single MixTS fixed # of systems arbitrary # of systems
CI trivial EXP-c. [AHL+09] P-c. [BGS92, HH08] EXP-c. [AHL+09]
CID trivial trivial NL-c.[BKLS09b] PSPACE-c.[BKLS09b]
dCI EXP-c.[BKLS09b] EXP-c.[BKLS09b] EXP-c.[BKLS09b] EXP-c.[BKLS09b]

5.1.3 Model checking

Given a valuation ν : P → 2Ap assigning to each process a set of atomic proposi-
tions valid in the process, one can check whether an MTS satisfies an LTL formula
ϕ over Ap. Since an MTS stands for a class of implementations, the question of
satisfaction can be posed in two flavours:

(|=∀-problem) Do all implementations satisfy ϕ?

(|=∃-problem) Is there an implementation satisfying ϕ?

In [GP09] the generalized model checking of LTL over partial Kripke structures
(PKS) is shown to be 2-EXP-hard. Further, [GJ03] describes a reduction from gen-
eralized model checking of µ-calculus over PKS to µ-calculus over MTS [Hut02,
Hut99, GHJ01]. However, the hardness for LTL does not follow since the encod-
ing of an LTL formula into µ-calculus includes an exponential blow-up. There is
thus no straightforward way to use the result of [GJ03] to provide a polynomial
reduction.

On the one hand, answering the |=∀-problem is easy. Indeed, it is sufficient
to perform standard model checking on the “greatest” implementation, i.e. such
where all mays are turned into musts and thus all possible runs are present. On
the other hand, the |=∃-problem is much harder and trickier. Since LTL is usu-
ally interpreted over infinite words, all formulae are satisfied whenever there is
an implementation without infinite runs, i.e. without a lasso of must transitions.
There are several ways to avoid this vacuous satisfaction. Firstly, we can define
LTL also on finite words, which we consider later in this chapter. Secondly, we
can consider only implementations without deadlocks, which we also discuss.
The deadlock-free approach has been studied in [UBC09] and the proposed so-
lution was implemented in the tool MTSA [DFCU08]. Their approach attempts
to find a deadlock-free implementation of a given MTS that satisfies a given for-
mula. However, the solution given in [UBC09] is incorrect. In particular, existence
of a deadlock-free implementation satisfying a given formula is claimed even in
some cases where no such implementation exists.

Example 5.7 The flaw can be seen on a simple counterexample given in Fig. 5.2.
Clearly, S has no deadlock-free implementation with action a only, i.e. satisfying

37

5. ANALYSIS

GXatt. Yet the method of [UBC09] as well as the tool [DFCU08] claim that such
an implementation exists.

s a

a

b

Figure 5.2: No deadlock-free implementation of s satisfies GXatt

While the solution attempt of [UBC09] yields a PSPACE algorithm, the problem
is actually 2-EXP-complete.

Generalized model checking of MTS with respect to computation tree logic
(CTL) is also investigated [AHL+08a, GAW13] as well as a variant of safety [DDM10].

5.1.4 Tools

Although the tool support is quite extensive, e.g. [BLS95, DFFU07, BML11, BČK11],
it is so far limited to basic MTS and, moreover, partially limited to deterministic
systems. The currently available tools are MTSA (Modal transition system ana-
lyzer) [DFFU07] and MIO (MIO Workbench) [BML11]. While MTSA is a tool for
MTS, MIO is a tool for modal I/O automata (MIOA) [LNW07a, RBB+11], which
combine MTS and interface automata based on I/O automata. Although MIOA
have three types of may and must transitions (input, output, and internal), if we
restrict to say only input transitions, the refinement works the same as for MTS,
and some other operations, too. Further, there are also tools for loosely related
formalisms of I/O automata (with no modalities) such as ECDAR (Environment
for Compositional Design and Analysis of Real Time Systems) [DLL+10], which
supports their timed extension. The comparison of the functionality of the tools
is depicted in Table 5.12.

5.2 New results

5.2.1 Refinements

In Chapter 3, we show several new extensions of MTS, see Fig. 3.6. We also show
that most of them have the same expressive power. However, the transformations
are exponential and thus the extensions differ in succinctness. Therefore, the re-
spective refinement problems are expected to be harder for the more succinct ex-
tensions, which is indeed the case. We focus both on theoretical and practical
complexity of the refinement problems.

38

5. ANALYSIS

Modal refinement

We first show the complexities of modal refinement for systems without param-
eters depending on the form of the obligation function. We consider formulae of
the general form (BMTS), positive formulae (OTS), conjunctive (DMTS) and dis-
junctive normal form, conjunctions of literals (MTS) and implementations (LTS),
see Table 5.4. Observe that in most cases the refinement can be decided in polyno-
mial time or using a SAT solver. The notable exception is the case when a general
BMTS is refined.

Table 5.4: Complexity of modal refinement checking of parameter-free systems.
The refining system is displayed in the first column, the refined system in the first
row.

Boolean Positive pCNF pDNF MTS

Boolean Πp
2–c. coNP–c.

∈ coNP
coNP–c.

∈ coNP
P-hard P-hard

Positive Πp
2–c. coNP–c. P–c. coNP–c. P–c.

pCNF Πp
2–c. coNP–c. P–c. coNP–c. P–c.

pDNF Πp
2–c. P–c. P–c. P–c. P–c.

MTS Πp
2–c. P–c. P–c. P–c. P–c.

LTS NP–c. P–c. P–c. P–c. P–c.

For systems with parameters, the complexity is significantly higher, see Table 5.5.

Table 5.5: Complexity of modal refinement checking with parameters

Boolean positive pCNF pDNF

Boolean Πp
4–c. Πp

3–c.
∈ Πp

3 Πp
3–c.

Πp
2-hard

positive Πp
4–c. Πp

3–c. Πp
2–c. Πp

3–c.
pCNF Πp

4–c. Πp
3–c. Πp

2–c. Πp
3–c.

pDNF Πp
4–c. Πp

2–c. Πp
2–c. Πp

2–c.
MTS Σp

3–c. NP–c. NP–c. NP–c.
LTS NP–c. NP–c. NP–c. NP–c.

Since all the complexities are included in PSPACE, the huge success of SAT
(Boolean satisfiability) solvers and also QBF (true quantified Boolean formulae)
solvers inspired us to reduce these refinement problems to problems solvable by a
QBF solver. By the complexity results it is possible to reduce the modal refinement
over PMTS to a Πp

4 query and over BMTS to a Πp
2 query. However, for practical

purposes it is better to use Σp
3 query for the latter case.

Proposition 5.8 Given BMTS processes s, t, we can construct in polynomial time

39

5. ANALYSIS

a formula Ψs,t with no quantifiers such that

s ≤m t if and only if ∃R ∀T1 ∃T2 Ψs,t

Proposition 5.9 Given PMTS processes s, t, we can construct in polynomial time
a formula Ψs,t with no quantifiers such that

s ≤m t if and only if ∀Par1 ∃Par2 ∃R ∀T1 ∃T2 Ψs,t

We have also performed experiments showing that this solution scales well in
the size of the system as well as in the number of parameters, while a direct naive
solution is infeasible, given the exponential complexity. We have implemented the
reduction and linked it to the QBF solver Quantor. In order to evaluate whether
our solution scales, we generate random systems of various sizes (as displayed in
tables below in columns). We consider MTS, DMTS, BMTS and PMTS with dif-
ferent numbers of parameters (displayed in parenthesis). The entries in the tables
are average running times in seconds. For the details, see Paper F and [KS13c].
In Table 5.6 we work with random systems, the refining system is identical to the
abstract system except for a stronger obligation. The interesting part of the results
is also depicted in Fig. 5.3.

Table 5.6: Experimental results: systems over alphabet of size 2 with branching
degree 2 in the upper part, and systems over alphabet of size 10 with branching
degree 10 in the lower part

25 50 75 100 125 150 175 200
MTS 0.03 0.15 0.29 0.86 0.87 0.96 1.88 2.48
DMTS 0.04 0.22 0.39 0.91 1.13 1.34 2.61 3.19
BMTS 0.03 0.15 0.30 0.62 0.83 0.87 1.61 2.17
PMTS(1) 0.03 0.20 0.37 0.84 0.97 1.23 2.44 3.15
PMTS(5) 0.04 0.22 0.42 0.91 1.26 1.59 2.83 3.66
MTS 0.18 0.84 2.12 3.88 5.63 7.64 10.30 14.18
DMTS 0.44 2.23 5.31 8.59 10.13 14.14 13.96 66.92
BMTS 0.21 1.08 2.65 4.58 6.70 9.63 12.44 17.06
PMTS(1) 0.26 1.12 2.74 4.57 7.58 10.31 11.26 16.41
PMTS(5) 0.25 1.17 2.94 6.36 7.80 10.01 11.90 36.51

In Table 5.7, we first consider the systems as above, i.e. with edges generated
randomly so that they create a tree and with some additional “noise” edges thus
making the branching degree constant. Second, we consider systems where we
have different “clusters”, each of which is interconnected with many edges. Each

40

5. ANALYSIS

of these clusters has a couple of “interface” states, which are used to connect to
other clusters. We use this class of systems to model system descriptions with
more “organic” structure.

Table 5.7: Experimental results: systems over alphabet of size 2 with branching
degree 5; systems with random structure in the upper part, and systems with
“organic” structure in the lower part

25 50 75 100 125 150 175 200
BMTS 0.32 1.57 3.46 7.18 10.24 15.18 20.6 27.05
PMTS(1) 0.34 1.57 3.21 8.25 12.46 19.88 24.53 31.01
PMTS(5) 0.33 1.65 4.48 8.21 13.14 21.5 20.55 25.82
BMTS 0.01 0.03 0.18 0.22 0.3 0.48 0.73 1.02
PMTS(1) 0.01 0.07 0.14 0.22 0.43 0.43 0.72 0.83
PMTS(5) 0.01 0.05 0.1 0.17 0.31 0.43 0.88 1.39

On the one hand, observe that the number of parameters does not play any
major role in the running time, see the graph in Fig. 5.3. The running times on
PMTS with 5 parameters are very close to BMTS, i.e. PMTS with zero param-
eters, as can be seen in the graph. Therefore, the greatest theoretical complex-
ity threat—the number of parameters allowing in general only for searching all
exponentially many combinations—is in practice eliminated by the use of QBF
solvers. On the other hand, observe that the running time is more affected by the
level of non-determinism. However, the level of non-determinism is often quite
low [BKLS09b], hence this dependency does not pose a serious problem in prac-
tice. Further, even this most difficult setting with a high level of non-determinism
allows for fast analysis if systems with a natural organic structure are considered,
cf. upper and lower part of Table 5.7.

Figure 5.3: Graph of experimental results of Table 5.6 for systems with alphabets
of size 10 and 2

41

5. ANALYSIS

Thorough refinement

Furthermore, we extend the decision algorithm for thorough refinement check-
ing over MTS [BKLS12, BKLS12] to the setting of DMTS (Paper B) and of BMTS
and PMTS (Paper F). We show how PMTS can be translated to BMTS and BMTS
can then be transformed to DMTS. As we also show we can decide the problem
on DMTS in EXP, this shows decidability for BMTS and PMTS, but each of the
translations is inevitably exponential. However, we show better upper bounds
than doubly and triply exponential. To this end, we give also a direct algorithm
for showing the problem is in NEXP for BMTS and 2-EXP for PMTS. The results
are summarized in Table 5.8.

Since the thorough refinement is very hard, we also extend the method to
approximate the thorough refinement by the modal refinement. Firstly, under-
approximation is easy, as modal refinement implies thorough refinement.

Proposition 5.10 Let s and t be PMTS processes. If s ≤m t then s ≤t t.

For over-approximation, modal refinement can be used on deterministic BMTS,
as both refinements coincide there, but not on PMTS.

Proposition 5.11 Let s be a PMTS process and t a deterministic BMTS process. If
s ≤t t then s ≤m t.

Proposition 5.12 There is a PMTS process s and a deterministic PMTS process t
such that s ≤t t but s 6≤m t.

For the general case, we extend our method of the deterministic hull for MTS
[BKLS09b] to both BMTS and PMTS. Since for BMTS modal and thorough re-
finements coincide if the refined system is deterministic, we obtain a method to
over-approximate using the deterministic hull. Finally, in the case with PMTS,
we need to over-approximate the behaviour dependent on the parameters using
parameter-free hull P , because the coincidence of the refinements on determinis-
tic systems fails for PMTS.

Proposition 5.13 Let s be a PMTS process. Then D(s) is a deterministic PMTS
process such that s ≤m D(s).

Proposition 5.14 Let s be a PMTS state. Then

• for every deterministic PMTS state t, if s ≤m t then D(s) ≤m t;

• for every deterministic BMTS state t, if s ≤t t then D(s) ≤m t.

Proposition 5.15 Let s and t be PMTS states. If s ≤t t then s ≤m P(D(t)).

42

5. ANALYSIS

Table 5.8: Complexity of the thorough refinement and the relationship to the
modal refinement

MTS DMTS BMTS PMTS
≤t ∈ EXP EXP NEXP 2-EXP

for t deterministic ≤m = ≤t ≤m = ≤t ≤m = ≤t ≤m 6= ≤t

Modal refinement of infinite state systems

We now turn our attention to the problems whether modal refinement holds be-
tween systems of given classes mC1 and mC2. We denote each such problem by
mC1 ≤m mC2 and consider classes of mMPRS as introduced in Chapter 4.

Unfortunately, simulation—and thus also refinement—is undecidable already
on BPP [Hüt94] and BPA [GH94]. When considering the case where one of the two
classes is FSM, the undecidability holds for PA [KM99]. Thus we are left with the
problems mFSM≤mmPDA, mPDA≤mmFSM and mFSM≤mmPN, mPN≤mmFSM.

On the one hand, we show the former two problems to be decidable using non-
modal methods for simulation of [KM02b]. On the other hand, the non-modal
methods for simulation of [JM95] cannot be extended to the latter two problems.
We show that (surprisingly) they are both undecidable and, moreover, even for
mBPP. The results are summarized in Table 5.9.

Moreover, for the decidable case, we obtain the precise complexity using [KM02a].

Proposition 5.16 The problem mPDA≤mmFSM is EXP-complete in both ways,
even if the mFSM is of a fixed size.

The problem mBPA≤mmFSM is EXP-complete in both ways, but if the mFSM
is of a fixed size, it is P-complete.

Furthermore, the problem is decidable even for infinite MTS on both sides if we
restrict to visibly PDA (vPDA) [AM04] and its subclass of visibly BPA (vBPA). The
complexity can then be proved using complexity bounds for µ-calculus model
checking, as in [Srb06].

Proposition 5.17 The problem mvPDA≤mmvPDA is EXP-complete.
The problem mvBPA≤mmvBPA is P-complete.

Finally, in the spirit of [AHKV98], we also consider a symmetric version of
refinement resulting into a bisimulation notion over MTS.

Definition 5.18 A birefinement relation is a symmetric refinement relation. Given
processes s, t, we say that s birefines t, written s ∼m t, if there exists a birefine-
ment relation containing (s, t).

43

5. ANALYSIS

Table 5.9: Decidability of modal refinement on mPRS

decidable mFSM Qm mPDA, mvPDA Qm mvPDA, mFSM ∼m mPRS

undecidable mFSM Qm mBPP, mBPA Qm mBPA

Using [KŘS05] we obtain decidability of birefinement between a finite MTS and
(surprisingly) arbitrary mPRS.

5.2.2 Operations

We first show that MTS are not closed under conjunction.

Example 5.19 In Fig. 5.4 one can see two MTS with two incomparable maximal
MTS solutions for conjunction. However, there is a unique greatest DMTS solu-
tion. This gives another justification for using DMTS instead of MTS.

s1 s2 (s1, s2)

aa

b, c

a a

b c b c

M1 M2

a a a a

b c b c

Figure 5.4: MTS processes s1, s2, their greatest lower bound (s1, s2), and their two
maximal MTS lower bounds M1, M2

Nevertheless, we show that DMTS with one or more initial states, and thus also
BMTS and PMTS are closed under conjunction. The result of the construction is
based on the synchronous product. Thus it is a system over tuples of processes
where the length of the tuple is the number of input systems. This means that
the conjunction (and thus also a common implementation) can be constructed in
polynomial time, if n is fixed; and in exponential, if n is a part of the input. This
also yields the respective complexity bounds for the problem of deciding whether
the input systems have a common implementation in these two settings. Further,
if the MTS processes are deterministic, then the greatest lower bound is—as our
algorithm computes it—also a deterministic MTS. Moreover, the conjunction is
also the greatest lower bound with respect to the thorough refinement.

Theorem 5.20 Let s1, s2, s3 be BMTS or DMTSm processes. Then Js1 ∧ s2K =

Js1K ∩ Js2K. Further, s1 ≤m s2 ∧ s3 if and only if s1 ≤m s2 and s1 ≤m s3.

44

5. ANALYSIS

The conjunction construction was later extended to systems with different al-
phabets by [BDCU13].

For disjunction, it is easy to obtain similar results for DMTS with more initial
states or BMTS or PMTS.

Theorem 5.21 Let s1, s2, s3 be BMTS or DMTSm processes. Then Js1 ∨ s2K =

Js1K ∪ Js2K. Further, s1 ∨ s2 ≤m s3 iff s1 ≤m s3 and s2 ≤m s3.

However, for MTS (deterministic or not) and DMTS with a single initial state
this is not possible.

Example 5.22 Consider the MTS specifications in Fig. 5.5. While the disjunction
can be described simply as a BMTS with obligation Ω(s2) = ((a, •) ∧ (b, •)) ∨
(¬(a, •) ∧ ¬(b, •)), no DMTS can express this.

s1 s2 s1 ∨ s2

a b a b

Figure 5.5: MTS processes s1 and s2, and their MTS and BMTS least upper bounds
(s1, s2)

Proposition 5.23 With operations ∧ and ∨, the sets of BMTS (or DMTSm) pro-
cesses form bounded distributive lattices up to (≤m ∩ ≥m)-equivalence.

We also define parallel composition for DMTS and other classes, see Paper
G and [BČK10]. Unfortunately, they inherit the incompleteness with respect to
modal refinement from MTS, see [HL89, BKLS09b]. Therefore, we can only satisfy
one direction in the axiom (parallel), the so-called independent implementability:

Theorem 5.24 For all BMTS processes s1, s2, s3, s4, if s1 ≤m s3 and s2 ≤m s4 then
s1 ‖ s2 ≤m s3 ‖ s4.

The quotient (of non-deterministic systems) is considerably more complex and
the question was open for a long time. We give a construction for BMTS and an
exponentially smaller one for MTS.

Theorem 5.25 For all BMTS processes s, t and x, x ‖ t ≤m s iff x ≤m s/t.

We briefly sketch the construction for MTS. Let (S, 99KS ,−→S), (T, 99KT ,−→T)

be non-deterministic MTS and s, t their processes, respectively. We define the quo-
tient S/T = (Q, 99KQ,−→Q) using Q = P(S×T) with the initial state q = {(s, t)}.

45

5. ANALYSIS

For q = {s1/t1, . . . , sn/tn} ∈ Q and a ∈ Σ, we define the may transitions.
We first compute which actions may be present: γ(q) =

⋂
i

(
α(si) ∪ (Σ \ α(ti))

)
where α(x) = {a ∈ Σ | ∃y,M : (a, y) ∈ M ∈ Tran(x)} is the set of all available
actions in x. Now, for every a ∈ γ(q) and for each i ∈ {1, . . . , n}, denote by
Maya(ti) = {ti,1, . . . , ti,mi} all the may a-successors of ti, and define all possible
transitions from q, where each successor in T is matched with a successor in S:

Maya(q) =
{
{si,j/ti,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}} |

∀i ∈ {1, . . . , n} : ∀j ∈ {1, . . . ,mi} : si,j ∈Maya(si)
}
.

For the (disjunctive) must-transitions, we let, for every si
a−→ s′,

q −→ {(a,M) ∈ {a} ×Maya(q) | ∃t′ : s′/t′ ∈M, ti
a−→ t′}.

be the matching preserving si
a−→ s′ in the composition of T and the quotient.

Theorem 5.26 For all MTS processes s, t and x, x ‖ t ≤m s iff x ≤m s/t.

Example 5.27 We illustrate the construction on an example in Fig. 5.6. For details,
see Paper G.

s0
s1a

s2a

•b

t0
t1a

t2a

•b

•
c s0/t0

{s1/t1, s2/t2}
a

{s2/t1, s2/t2}
a

>

b

a

a
b, c

a, b, c

Figure 5.6: Two non-deterministic MTS and their quotient

Proposition 5.28 With operations ∧, ∨, ‖ and /, the set of BMTS forms a commu-
tative residuated lattice up to (≤m ∩ ≥m)-equivalence.

We sum up the results in the following theorem and Table 5.10.

Table 5.10: Newly established closure properties (marked in red)

∧ ∨ ‖ /

deterministic MTS X × X X
MTS × × X ×
DMTS X × X X
DMTSm/BMTS/PMTS X X X X

46

5. ANALYSIS

5.2.3 Model checking

LTL model checking and realizability

Recall that the |=∀-problem for DMTS can be solved by standard model checking
where we consider the LTS that is the “greatest” implementation of the DMTS,
i.e. the one with all mays replaced by musts. Thus all possible runs are present in
the implementation. The solution works for infinite runs, as well as deadlock-free
systems and general systems. Similarly for |=∃-problem, we can take the mini-
mal implementation of the MTS if deadlocks are allowed and finite runs ignored.
However, if this is not the case this solution does not work for the |=∃-problem.
Indeed, there are no minimal implementations; non-trivial decisions have to be
made which transitions to implement.

Example 5.29 An MTS with only one may a-successor and one may b-successor
cannot avoid deadlock in a unique way. Moreover, even if deadlocks are allowed,
not implementing any choice may result in not satisfying Xtt.

The solution is to assign the task of decision making to a “player” and another
player then chooses which of the implemented transitions is taken. Decisions of
the players determine a run. The objective of the game is to satisfy the formula on
the run. The first player can always succeed irrespective of what the other player
does if and only if there is an implementation satisfying the formula. These LTL
games are in general 2-EXP-complete[PR89]. The consequences are summarized
in Table 5.11.

Table 5.11: Complexities of generalized LTL model checking (ω denoting finite
runs are ignored, df deadlock-free implementations are ignored,∞ no restriction)

|=∀ |=∃
MTS |=ω PSPACE-complete PSPACE-complete
MTS |=df PSPACE-complete 2-EXP-complete
MTS |=∞ PSPACE-complete 2-EXP-complete

DMTS PSPACE-complete 2-EXP-complete

The best known time complexity bounds with respect to the size of system |S|
and the size of LTL formula |ϕ| are the following. In all PSPACE-complete cases
the time complexity isO(|S|·2|ϕ|); in all 2-EXP-complete cases the time complexity
is |S|2O(|ϕ|) · 22O(|ϕ| log|ϕ|)

. The latter upper bound is achieved by translating the
LTL formula into a deterministic Rabin automaton of size 22O(|ϕ| log|ϕ|)

with 2O(|ϕ|)

accepting pairs, thus changing the LTL game into a Rabin game. State of the art
algorithm for solving Rabin games can be found e.g. in [PP06].

The high complexity poses a serious problem also in practice. Whenever the
Rabin automaton is too large, the game cannot be solved in reasonable time.

47

5. ANALYSIS

The automata are usually large because there is a two-stage translation. First, we
turn an LTL formula into a non-deterministic Büchi automaton; secondly, we de-
terminize it using Safra’s construction [Saf88] or its modifications [MS95, Pit06,
Sch09]. Since Safra’s determinization works not only for automata obtained from
LTL but for all automata, it is too general and the blow-up is usually large. There-
fore, we propose a direct translation from LTL to deterministic Rabin automata,
which works much better in practice [KE12]. Moreover, we can use generalized
Rabin automata instead, which can be used as well and are even smaller for
complex formulae [CGK13]. As opposed to our previous work [KE12, GKE12,
KLG13, Kře13], in Paper I we provide a translation for the whole LTL and actu-
ally even a more expressive logic of µ-calculus (interpreted over linear structures)
with “well-nested” fix-points.

LTL model checking can also help us with the problem of incompleteness of
the parallel composition. We have seen there are processes s1, s2 such that their
composition s1 ‖ s2 has an implementation i that does not arise as a composition
i1 ‖ i2 of any two implementations i1 ≤m s1, i2 ≤m s2. Completeness can be
achieved only under some restrictive conditions [BKLS09b]. Here we show that
composition is sound and complete with respect to every logic of linear time, i.e. it
preserves and reflects all linear time properties. The completeness of composition
with respect to linear time logics holds for all discussed cases: both for MTS and
DMTS, both for infinite and all runs, and both universally and existentially. We
do not define linear properties formally here, see e.g. [BK08]. As a special case,
one may consider LTL formulae.

Proposition 5.30 Let s1 and s2 be DMTS processes, ϕ a linear time property, and
? ∈ {ω,∞}. Then s1 ‖ s2 |=?

∀ ϕ if and only if i1 ‖ i2 |=? ϕ for all implementations
i1 ≤m s1 and i2 ≤m s2.

Proposition 5.31 Let s1 and s2 be DMTS processes, ϕ a linear time property, and
? ∈ {ω,∞}. Then s1 ‖ s2 |=?

∃ ϕ if and only if i1 ‖ i2 |=? ϕ for some implementa-
tions i1 ≤m s1 and i2 ≤m s2.

Thus ‖ is “LTL complete”, i.e. preserves and reflects all LTL properties. There-
fore, the only spurious implementations are sums of legal implementations.

The same approach of reduction to an LTL game has later been used [DBPU12]
to solve a very similar problem of deciding whether all/some implementation
can be pruned to satisfy a given LTL formula.

48

5. ANALYSIS

Cheapest implementation

Now let us consider the problem of finding an implementation of MTSD, so that
we spend the least possible amount of money (e.g. the pay to the driver) per
time unit while conforming to the specification and the hardware budget. We
first formally define the price scheme.

Definition 5.32 (Dual-Price Scheme) A dual-price scheme over an alphabet Σ is
a tuple P = (r,H,Ψ, h) where

• r : Σ→ Z is a running cost function of actions per time unit,

• H is a finite set of available hardware,

• Ψ : Σ→ B(H) is a hardware requirement function, and

• h : H → N0 is a hardware investment cost function.

Example 5.33 Consider Example 4.6 of the bus driver. Each action is assigned
a running cost per time unit, e.g. drive costs 10 each time unit it is being per-
formed. In addition, in order to perform an action, some hardware may be needed,
e.g. vacuum cleaner for the big cleanup costing 100. This investment cost is paid
only once. The price scheme is illustrated in Fig. 5.7. Notice that hardware require-
ments are specified as a Boolean combination of hardware components. This al-
lows for much more variability than a possible alternative of a simple investment
cost Σ→ N0.

a ∈ Σ r(a)

wait 8
drive 10
small cleanup 6
big cleanup 7
skip cleanup 0

H = {vacuum cleaner, sponge}

Ψ(a) =


vacuum cleaner if a = big cleanup

sponge ∨ vacuum cleaner if a = small cleanup

tt otherwise

η ∈ H h(η)

vacuum cleaner 100
sponge 5

Figure 5.7: Example of a dual price scheme

A set G ⊆ H of hardware is sufficient for an MTSD implementation i0, written
G |= i0, if G |= a for every action a reachable from i0. The investment cost of i0 is
then defined as

ic(i0) = min
G|=i0

∑
g∈G

h(g) .

49

5. ANALYSIS

Further, a run from i0 is an infinite sequence i0a0t0i1a1t1 · · · with (ik, ak, ik+1) ∈ T
and tk ∈ D(ik, ak, ik+1). Hence, in such a run, a concrete time duration in each
uncontrollable interval is selected. We denote the set of all runs from i0 by R(i0).
The running cost of an implementation i0 is the worst-case long-run average

rc(i0) = sup
i0a0t0i1a1t1···∈R(s0)

lim sup
n→∞

∑n
k=0 r(ak) · tk∑n

k=0 tk
.

Our cheapest-implementation problem is now defined as follows: given an
MTSD specification process s together with a dual-price scheme over the same
alphabet, and given an upper-bound max ic for the investment cost, find an im-
plementation i of s such that ic(i) ≤ max ic and for every implementation i′ of s
with ic(i′) ≤ max ic, we have rc(i) ≤ rc(i′).

Further, we introduce the respective decision problem, the implementation prob-
lem, as follows: given an MTSD specification process s together with a dual-price
scheme over the same alphabet, and given an upper-bound max ic for the invest-
ment cost and an upper bound max rc on the running cost, decide whether there
is an implementation i of s such that both ic(i) ≤ max ic and rc(i) ≤ max rc.

Example 5.34 Consider the dual-price scheme from the previous example and
a specification process s of Example 4.6. On the one hand, for maximum invest-
ment cost at least 100, the optimal running cost of the implementation of s is
(1 · 8 + 10 · 10 + 6 · 6 + 1 · 8 + 10 · 10 + 30 · 7)/(1 + 10 + 6 + 1 + 10 + 30) ≈ 7.97

where we instruct the driver to do the big cleanup and to wait as short as possible.
On the other hand, if the maximum investment cost is 99 or less the optimal im-
plementation has running cost (5 · 8 + 10 · 10 + 6 · 5)/(5 + 10 + 6) ≈ 8.10 where
we instruct the driver to do the small cleanup and to wait as long as possible. For
details, see Paper D.

In general, the problem is quite hard.

Theorem 5.35 The implementation problem is NP-complete.

We can obtain a more efficient algorithm for the implementation problem if we
restrict the hardware requirement and obligation functions.

Theorem 5.36 The implementation problem with positive obligation function and
a constant number of hardware components is polynomially equivalent to mean-
payoff games and thus it is in NP ∩ coNP and solvable in pseudo-polynomial
time.

50

5. ANALYSIS

5.2.4 Tool
−→=⇒99K
MoTraS

In Paper H, we provide a tool
−→=⇒99K
MoTraS for design and analysis of MTS and its

extensions. It comes not only with a graphical user interface, but as opposed to
other mentioned tools also with a command line interface, which allows for batch
processing. The Netbeans-based GUI offers all the standard components such as
a canvas for drawing systems, windows for editing their properties, algorithms
menu, possibility to view more systems at once etc. Both the GUI and the indepen-
dent algorithms package, which contains all data-structures, algorithms and the
CLI, are written in Java. In order to make the tool easily extensible, we introduced
a file format xmts, which facilitates textual representation of different extensions
of modal transition systems. The description of the format can be found on the
web page of the tool [MTS].

As to the available algorithms, MoTraS supports all operations required for
complete specification theories [BDH+12] and more. This includes modal refine-
ment checking, parallel composition (for quotient see below), conjunction (or
merge) and the related consistency checking and maximal implementation gen-
eration, deterministic hull and generalized LTL model checking. This function-
ality comes for MTS as well as more general DMTS and in all cases also non-
deterministic systems are supported; in particular, the algorithm for conjunction
is now considerably more complex.

In contrast, MTSA supports only modal refinement, parallel composition and
consistency using the cloning operation, which may not terminate. It also offers
a model checking procedure, which is, unfortunately, fundamentally flawed, see
Section 5.1.3. This was shown in Paper B from where we adopt the corrected im-
plementation. MIO offers modal refinement, the MIOA parallel composition, and
conjunction for deterministic systems. On the top, it also offers quotient for deter-
ministic systems. Note that both MTSA and MIO can only handle modal systems,
not their disjunctive extension. MoTraS supports DMTS, which have more ex-
pressive power. In contrast to (non-deterministic) MTS, DMTS are rich enough
to express solutions to process equations [LX90] (hence a specification of a miss-
ing component in a system can be computed) and are closed under all operations,
particularly conjunction (which is necessary for merging viewpoints on a system).

Further, on the top of this functionality for MTS and DMTS, we also provide an
implementation of our new method for modal refinement checking of BMTS and
PMTS. While modal refinement on MTS and DMTS can be decided in polynomial
time, on BMTS and PMTS it is higher in the polynomial hierarchy, namely Π2 and
Π4, respectively. The new method, however, reduces the refinement problem to
a problem directly and efficiently solvable by a QBF solver. The experimental
results of Section 5.2.1 show that this solution scales well in the size of the system
as well as in the number of parameters, while a direct naive solution is infeasible.

Moreover, we also implement the deterministic hull and the parameter-free

51

5. ANALYSIS

hull for BMTS and PMTS, which enables us to both over- and under-approximate
the very hard thorough refinement using the fast modal refinement, now even for
the most general class of PMTS.

Table 5.12 summarizes the functionality: Xindicates a MoTraS implementation;
for the other tools, the name indicates an implementation; “det.” denotes a func-
tionality limited to deterministic systems.

Table 5.12: Functionality of the available tools

Operation MTS DMTS BMTS PMTS
Parallel composition MTSA MIO(MIAO) X X
Consistency MTSA(of 2 systems) MIO(det.) X X
Conjunction MIO(det.) X X
Quotient (det.) MIO X ×
Generalized LTL MTSA(incorrect) X X
Det./Par. hull X X X X
Refinement MTSA MIO X X X X

Furthermore, as a result of a Bachelor’s thesis [Man13], MoTraS has been ex-
tended with MTSD and solving the cheapest implementation problem recently.
−→=⇒99K
MoTraS is open source and the sources as well as examples, user’s guide etc.

are accessible at http://www.model.in.tum.de/˜kretinsk/motras.html

52

http://www.model.in.tum.de/~kretinsk/motras.html

Chapter 6

Summary of the results and future work

The thesis contributes to the area of specification and verification of component-
based software using modal transition systems. Firstly, in order to extend mod-
elling abilities of the MTS formalism we have extended MTS with the following
features:

• the obligation function to express practically useful more involved modal-
ities (combined, exclusive, persistent or conditional choices) obtaining OTS,
BMTS and PMTS;

• time durations and a price scheme to model running cost and hardware
investment cost of an implementation;

• an infinite state space generated by finitely many rules for sequential and
parallel compositions to model systems with unbounded memory, syn-
chronization or dynamic threads/process creation.

We have compared the resulting formalisms and established relationships among
them. This has led to identifying a robust class of DMTS with more initial states.
Moreover, we have shown its equivalence to the modal ν-calculus. This unifies the
behavioural and logical approach to specification and verification and enables us
to mix the two.

Secondly, in order to make the extensions applicable, we have developed algo-
rithms and provided complexities for the following problems:

• operations required for complete specification theories, most interestingly
lowering the complexity of conjunction form exponential to polynomial
and the first solution to the quotient of non-deterministic MTS;

• modal and thorough refinements over the extensions necessary for step-
wise design process;

• the cheapest implementation using mean-payoff games, useful in the em-
bedded design;

• LTL generalized model checking using LTL games and deterministic ω-
automata.

53

6. SUMMARY OF THE RESULTS AND FUTURE WORK

Thirdly, apart from theoretical contributions, we have also focused on practical
efficiency of the proposed solutions:

• computing modal refinements with higher complexity using QBF solvers;

• approximating thorough refinement with yet higher complexity using the
modal refinement and hulls;

• decreasing the size of the LTL games used for model checking MTS using
a new translation of LTL to deterministic ω-automata.

Each of the proposed methods leads to speed-ups in orders of magnitude com-
pared to standard methods.

Finally, we have provided a tool called
−→=⇒99K
MoTraS supporting most of the dis-

cussed functionality also for non-deterministic systems.

As for future work, one may consider the following directions. Firstly, there are
several purely theoretical questions left open, such as logical characterization of
refinements or a complete syntactic criterion for consistent mixed transition sys-
tems. Further, although the complexity of many problems has been established,
there are still several complexity gaps left open, for instance, some cases of the
refinements, the quotient construction (we conjecture the exponential blow-up is
in general unavoidable), or conditions on decidability of refinement over infinite
systems with parallelism, e.g. determinism as in [BKLS09b, EBHH10].

Secondly, one may further extend the MTS with additional features, e.g. input,
output and internal actions as it is usual in interface theories [dAH01, CdAHS03]
similarly to [RBB+09a, BMSH10, BHW10, BHB10, LV12], or include even more
time features, such as clocks in priced timed automata [BLR04, BBL08] similarly to
[BLPR12, FL12]. One may also extend the model checking algorithm to more com-
plex settings such as the cheapest implementation with an additional requirement
that the partial sums stay within given bounds as done in [BFL+08], or cheap-
est implementation satisfying a temporal property as suggested in [CdAHS03,
CD10], model checking metric temporal logic (LTL with time durations) [Koy90],
model checking infinite-state MTS similarly to PDA in [Wal96], or cheapest im-
plementation of mPDA using methods like [CV12].

Thirdly, on the practical side,
−→=⇒99K
MoTraS only offers a limited support for BMTS

and PMTS and the non-deterministic quotient is not implemented at all. Refine-
ment algorithms are implemented using fixed-point iteration and waiting-queue
skeleton classes, which allows for an easy introduction of multi-threading to all
algorithms with conjectured speed up factor close to the number of cores used.
Moreover, one could use a combined modal refinement checker, which uses the
standard modal refinement checker to prune the initial relation before the QBF-
based checker is called. Further, model checking could be speeded up by inte-

54

6. SUMMARY OF THE RESULTS AND FUTURE WORK

grating Rabinizer 3, which we currently develop. Finally, the cheapest implemen-
tation problem has been implemented in a Bachelor’s thesis [Man13] under the
author’s supervision and is readily incorporated in an unreleased version of the
tool.

6.1 Summary of the papers

In Appendix, we present the following papers:

A Process algebra for modal transition systemses. (MEMICS 2010)

We introduce the obligation function, OTS and a process algebra and ex-
amine the expressivity of the previously studied subclasses of OTS.

B Modal transition systems: Composition and LTL model checking. (ATVA
2011)

We provide a polynomial algorithm for conjunction and solve LTL gener-
alized model checking over (D)MTS using LTL games.

C Parametric modal transition systems. (ATVA 2011)

We introduce BMTS and PMTS and study the complexity of the modal
refinement problems.

D Dual-priced modal transition systems with time durations. (LPAR 2012)

We introduce MTSD and price schemes and solve the cheapest implemen-
tation problem using mean-payoff games.

E Modal process rewrite systems. (ICTAC 2012)

We introduce mPRS and study decidability and complexity of the induced
modal refinement problems.

F On refinements of Boolean and parametric modal transition systems. (IC-
TAC 2013)

We study the complexity of thorough refinement on BMTS and PMTS, pro-
vide its approximation using modal refinement, which we further reduce
to QBF solving. We also show BMTS to be as expressive as PMTS.

G Hennessy-Milner logic with greatest fixed points as a complete behavioural
specification theory. (CONCUR 2013)

We show DMTS with more initial states, BMTS, and ν-calculus to be equiv-
alent, establish them as complete specification theories and provide the
first non-deterministic quotient construction.

55

6. SUMMARY OF THE RESULTS AND FUTURE WORK

H MoTraS: A tool for modal transition systems and their extensions. (ATVA
2013)

This tool paper presents
−→=⇒99K
MoTraS and compares it to the existing tools for

MTS.

I From LTL to deterministic automata: A Safraless compositional approach.
(CAV 2014)

We provide an efficient translation of LTL into generalized Rabin automata
yielding a basis for faster model checking MTS.

In Appendix, each paper is summarized and the author’s contribution is listed.
The percentage indicating the author’s contribution has been approved by the
respective co-authors.

56

Bibliography

[AFdFE+11] Luca Aceto, Ignacio Fábregas, David de Frutos-Escrig, Anna
Ingólfsdóttir, and Miguel Palomino. Relating modal refinements,
covariant-contravariant simulations and partial bisimulations. In
Farhad Arbab and Marjan Sirjani, editors, FSEN, volume 7141 of
Lecture Notes in Computer Science, pages 268–283. Springer, 2011.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. Alternating refinement relations. In Davide Sangiorgi and
Robert de Simone, editors, CONCUR, volume 1466 of Lecture Notes
in Computer Science, pages 163–178. Springer, 1998.

[AHL+08a] Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and
Andrzej Wasowski. 20 years of modal and mixed specifications.
Bulletin of the EATCS, 95:94–129, 2008.

[AHL+08b] Adam Antonik, Michael Huth, Kim Guldstrand Larsen, Ulrik Ny-
man, and Andrzej Wasowski. Complexity of decision problems for
mixed and modal specifications. In Roberto M. Amadio, editor, FoS-
SaCS, volume 4962 of Lecture Notes in Computer Science, pages
112–126. Springer, 2008.

[AHL+09] Adam Antonik, Michael Huth, Kim Guldstrand Larsen, Ulrik Ny-
man, and Andrzej Wasowski. Exptime-complete decision problems
for modal and mixed specifications. Electr. Notes Theor. Comput.
Sci., 242(1):19–33, 2009.

[AKRU11] Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastián Uchi-
tel. An inductive approach for modal transition system refinement.
In John P. Gallagher and Michael Gelfond, editors, ICLP (Techni-
cal Communications), volume 11 of LIPIcs, pages 106–116. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In
László Babai, editor, STOC, pages 202–211. ACM, 2004.

[ART] ARTIST European Network of Excellence on Embedded Systems
Design. http://www.artist-embedded.org/.

57

http://www.artist-embedded.org/

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[BBL08] Patricia Bouyer, Ed Brinksma, and Kim Guldstrand Larsen. Opti-
mal infinite scheduling for multi-priced timed automata. Formal
Methods in System Design, 32(1):3–23, 2008.

[BČK10] Nikola Beneš, Ivana Černá, and Jan Křetı́nský. Disjunctive modal
transition systems and generalized LTL model checking. Technical
report FIMU-RS-2010-12, Faculty of Informatics, Masaryk Univer-
sity, Brno, 2010.

[BČK11] Nikola Beneš, Ivana Černá, and Jan Křetı́nský. Modal transition sys-
tems: Composition and LTL model checking. In Bultan and Hsiung
[BH11], pages 228–242.

[BCU06] Greg Brunet, Marsha Chechik, and Sebastián Uchitel. Properties of
behavioural model merging. In Misra et al. [MNS06], pages 98–114.

[BDCU13] Shoham Ben-David, Marsha Chechik, and Sebastián Uchitel. Merg-
ing partial behaviour models with different vocabularies. In
D’Argenio and Melgratti [DM13], pages 91–105.

[BDF+13] Nikola Beneš, Benoı̂t Delahaye, Uli Fahrenberg, Jan Křetı́nský, and
Axel Legay. Hennessy-Milner logic with greatest fixed points as a
complete behavioural specification theory. In D’Argenio and Mel-
gratti [DM13], pages 76–90.

[BDH+12] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guld-
strand Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski.
Moving from specifications to contracts in component-based de-
sign. In Juan de Lara and Andrea Zisman, editors, FASE, volume
7212 of Lecture Notes in Computer Science, pages 43–58. Springer,
2012.

[Ben08] Albert Benveniste. Multiple viewpoint contracts and residuation. In
2nd International Workshop on Foundations of Interface Technolo-
gies (FIT), 2008.

[Ben12] Nikola Beneš. Disjunctive Modal Transition Systems. PhD thesis,
Masaryk University, 2012.

[BFJ+11] Sebastian S. Bauer, Uli Fahrenberg, Line Juhl, Kim G. Larsen, Axel
Legay, and Claus R. Thrane. Quantitative refinement for weighted
modal transition systems. In Filip Murlak and Piotr Sankowski, ed-
itors, MFCS, volume 6907 of Lecture Notes in Computer Science,
pages 60–71. Springer, 2011.

[BFK+09] Tomáš Brázdil, Vojtěch Forejt, Jan Krčál, Jan Křetı́nský, and Antonı́n
Kučera. Continuous-time stochastic games with time-bounded

58

6. SUMMARY OF THE RESULTS AND FUTURE WORK

reachability. In Ravi Kannan and K. Narayan Kumar, editors,
FSTTCS, volume 4 of LIPIcs, pages 61–72. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2009.

[BFK+13] Tomáš Brázdil, Vojtech Forejt, Jan Krčál, Jan Křetı́nský, and Antonı́n
Kucera. Continuous-time stochastic games with time-bounded
reachability. Inf. Comput., 224:46–70, 2013.

[BFKK08] Tomáš Brázdil, Vojtěch Forejt, Jan Křetı́nský, and Antonı́n Kučera.
The satisfiability problem for probabilistic CTL. In LICS, pages 391–
402. IEEE Computer Society, 2008.

[BFL+08] Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nico-
las Markey, and Jirı́ Srba. Infinite runs in weighted timed automata
with energy constraints. In Franck Cassez and Claude Jard, edi-
tors, FORMATS, volume 5215 of Lecture Notes in Computer Sci-
ence, pages 33–47. Springer, 2008.

[BFLT12] Sebastian S. Bauer, Uli Fahrenberg, Axel Legay, and Claus R.
Thrane. General quantitative specification theories with modalities.
In Edward A. Hirsch, Juhani Karhumäki, Arto Lepistö, and Michail
Prilutskii, editors, CSR, volume 7353 of Lecture Notes in Computer
Science, pages 18–30. Springer, 2012.

[BG99] Glenn Bruns and Patrice Godefroid. Model checking partial state
spaces with 3-valued temporal logics. In Nicolas Halbwachs and
Doron Peled, editors, CAV, volume 1633 of Lecture Notes in Com-
puter Science, pages 274–287. Springer, 1999.

[BG00] Glenn Bruns and Patrice Godefroid. Generalized model checking:
Reasoning about partial state spaces. In Catuscia Palamidessi, edi-
tor, CONCUR, volume 1877 of Lecture Notes in Computer Science,
pages 168–182. Springer, 2000.

[BGS92] José L. Balcázar, Joaquim Gabarró, and Miklos Santha. Deciding
bisimilarity is p-complete. Formal Asp. Comput., 4(6A):638–648,
1992.

[BH11] Tevfik Bultan and Pao-Ann Hsiung, editors. Automated Technology
for Verification and Analysis, 9th International Symposium, ATVA
2011, Taipei, Taiwan, October 11-14, 2011. Proceedings, volume 6996
of Lecture Notes in Computer Science. Springer, 2011.

[BHB10] Sebastian S. Bauer, Rolf Hennicker, and Michel Bidoit. A modal
interface theory with data constraints. In Jim Davies, Leila Silva,
and Adenilso da Silva Simão, editors, SBMF, volume 6527 of Lec-
ture Notes in Computer Science, pages 80–95. Springer, 2010.

59

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[BHJ10] Sebastian S. Bauer, Rolf Hennicker, and Stephan Janisch. Interface
theories for (a)synchronously communicating modal I/O-transition
systems. In Axel Legay and Benoı̂t Caillaud, editors, FIT, volume 46
of EPTCS, pages 1–8, 2010.

[BHK+12] Tomáš Brázdil, Holger Hermanns, Jan Krčál, Jan Křetı́nský, and Vo-
jtech Řehák. Verification of open interactive Markov chains. In
Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrish-
nan, editors, FSTTCS, volume 18 of LIPIcs, pages 474–485. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[BHW10] Sebastian S. Bauer, Rolf Hennicker, and Martin Wirsing. Build-
ing a modal interface theory for concurrency and data. In Till
Mossakowski and Hans-Jörg Kreowski, editors, WADT, volume
7137 of Lecture Notes in Computer Science, pages 1–12. Springer,
2010.

[BJL+12a] Sebastian S. Bauer, Line Juhl, Kim G. Larsen, Axel Legay, and Jirı́
Srba. Extending modal transition systems with structured labels.
Mathematical Structures in Computer Science, 22(4):581–617, 2012.

[BJL+12b] Sebastian S. Bauer, Line Juhl, Kim G. Larsen, Jirı́ Srba, and Axel
Legay. A logic for accumulated-weight reasoning on multiweighted
modal automata. In Tiziana Margaria, Zongyan Qiu, and Hongli
Yang, editors, TASE, pages 77–84. IEEE, 2012.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. MIT Press, 2008.

[BK10] Nikola Beneš and Jan Křetı́nský. Process algebra for modal transi-
tion systemses. In Ludek Matyska, Michal Kozubek, Tomas Vojnar,
Pavel Zemcik, and David Antos, editors, MEMICS, volume 16 of
OASICS, pages 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, Germany, 2010.

[BK12] Nikola Beneš and Jan Křetı́nský. Modal process rewrite systems. In
Roychoudhury and D’Souza [RD12], pages 120–135.

[BKK+10] Tomáš Brázdil, Jan Krčál, Jan Křetı́nský, Antonı́n Kučera, and
Vojtěch řehák. Stochastic real-time games with qualitative timed
automata objectives. In Paul Gastin and François Laroussinie, edi-
tors, CONCUR, volume 6269 of Lecture Notes in Computer Science,
pages 207–221. Springer, 2010.

[BKK+11] Tomáš Brázdil, Jan Krčál, Jan Křetı́nský, Antonı́n Kučera, and
Vojtěch řehák. Measuring performance of continuous-time stochas-

60

6. SUMMARY OF THE RESULTS AND FUTURE WORK

tic processes using timed automata. In Marco Caccamo, Emilio Fraz-
zoli, and Radu Grosu, editors, HSCC, pages 33–42. ACM, 2011.

[BKK+13] Tomáš Brázdil, Lubos Korenciak, Jan Krčál, Jan Křetı́nský, and Vo-
jtech Řehák. On time-average limits in deterministic and stochastic
Petri nets. In Seetharami Seelam, Petr Tuma, Giuliano Casale, Tony
Field, and José Nelson Amaral, editors, ICPE, pages 421–422. ACM,
2013.

[BKKŘ11] Tomáš Brázdil, Jan Krčál, Jan Křetı́nský, and Vojtech Řehák. Fixed-
delay events in generalized semi-Markov processes revisited. In
Joost-Pieter Katoen and Barbara König, editors, CONCUR, vol-
ume 6901 of Lecture Notes in Computer Science, pages 140–155.
Springer, 2011.

[BKL+11] Nikola Beneš, Jan Křetı́nský, Kim G. Larsen, Mikael H. Moller, and
Jiri Srba. Parametric modal transition systems. In Bultan and Hsi-
ung [BH11], pages 275–289.

[BKL+12] Nikola Beneš, Jan Křetı́nský, Kim Guldstrand Larsen, Mikael H.
Moller, and Jiri Srba. Dual-priced modal transition systems with
time durations. In Nikolaj Bjørner and Andrei Voronkov, editors,
LPAR, volume 7180 of Lecture Notes in Computer Science, pages
122–137. Springer, 2012.

[BKLS09a] Nikola Beneš, Jan Křetı́nský, Kim Guldstrand Larsen, and Jiri
Srba. Checking thorough refinement on modal transition systems
is EXPTIME-complete. In Leucker and Morgan [LM09], pages 112–
126.

[BKLS09b] Nikola Beneš, Jan Křetı́nský, Kim Guldstrand Larsen, and Jiri Srba.
On determinism in modal transition systems. Theor. Comput. Sci.,
410(41):4026–4043, 2009.

[BKLS12] Nikola Beneš, Jan Křetı́nský, Kim G. Larsen, and Jiri Srba. Exptime-
completeness of thorough refinement on modal transition systems.
Inf. Comput., 218:54–68, 2012.

[BL92] Gérard Boudol and Kim Guldstrand Larsen. Graphical versus logi-
cal specifications. Theor. Comput. Sci., 106(1):3–20, 1992.

[BLL+14] Sebastian S. Bauer, Kim G. Larsen, Axel Legay, Ulrik Nyman, and
Andrzej Wasowski. A modal specification theory for components
with data. Sci. Comput. Program., 83:106–128, 2014.

[BLPR09] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste
Raclet. A compositional approach on modal specifications for timed

61

6. SUMMARY OF THE RESULTS AND FUTURE WORK

systems. In Karin Breitman and Ana Cavalcanti, editors, ICFEM,
volume 5885 of Lecture Notes in Computer Science, pages 679–697.
Springer, 2009.

[BLPR12] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste
Raclet. Modal event-clock specifications for timed component-
based design. Sci. Comput. Program., 77(12):1212–1234, 2012.

[BLR04] Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Ras-
mussen. Priced timed automata: Algorithms and applications.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, FMCO, volume 3657 of Lecture Notes
in Computer Science, pages 162–182. Springer, 2004.

[BLS95] Anders Børjesson, Kim Guldstrand Larsen, and Arne Skou. Gen-
erality in design and compositional verification using tav. Formal
Methods in System Design, 6(3):239–258, 1995.

[BML11] Sebastian S. Bauer, Philip Mayer, and Axel Legay. MIO workbench:
A tool for compositional design with modal input/output inter-
faces. In Bultan and Hsiung [BH11], pages 418–421.

[BMSH10] Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hen-
nicker. On weak modal compatibility, refinement, and the MIO
workbench. In Javier Esparza and Rupak Majumdar, editors,
TACAS, volume 6015 of Lecture Notes in Computer Science, pages
175–189. Springer, 2010.

[BPR09] Nathalie Bertrand, Sophie Pinchinat, and Jean-Baptiste Raclet.
Refinement and consistency of timed modal specifications. In
Adrian Horia Dediu, Armand-Mihai Ionescu, and Carlos Martı́n-
Vide, editors, LATA, volume 5457 of Lecture Notes in Computer
Science, pages 152–163. Springer, 2009.

[Bru97] Glenn Bruns. An industrial application of modal process logic. Sci.
Comput. Program., 29(1-2):3–22, 1997.

[CD10] Krishnendu Chatterjee and Laurent Doyen. Energy parity games.
In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm
Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP (2), vol-
ume 6199 of Lecture Notes in Computer Science, pages 599–610.
Springer, 2010.

[CdAHS03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and
Mariëlle Stoelinga. Resource interfaces. In Rajeev Alur and Insup
Lee, editors, EMSOFT, volume 2855 of Lecture Notes in Computer
Science, pages 117–133. Springer, 2003.

62

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[CDEG03] Marsha Chechik, Benet Devereux, Steve M. Easterbrook, and Arie
Gurfinkel. Multi-valued symbolic model-checking. ACM Trans.
Softw. Eng. Methodol., 12(4):371–408, 2003.

[CDL+10] Benoı̂t Caillaud, Benoı̂t Delahaye, Kim G. Larsen, Axel Legay,
Mikkel L. Pedersen, and Andrzej Wasowski. Compositional design
methodology with constraint Markov chains. In QEST, pages 123–
132. IEEE Computer Society, 2010.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons using branching-time temporal logic.
In Dexter Kozen, editor, Logic of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer, 1981.

[CGK13] Krishnendu Chatterjee, Andreas Gaiser, and Jan Křetı́nský. Au-
tomata with generalized Rabin pairs for probabilistic model check-
ing and LTL synthesis. In Natasha Sharygina and Helmut Veith,
editors, CAV, volume 8044 of Lecture Notes in Computer Science,
pages 559–575. Springer, 2013.

[CGL93] Karlis Cerans, Jens Chr. Godskesen, and Kim Guldstrand Larsen.
Timed modal specification - theory and tools. In Costas Courcou-
betis, editor, CAV, volume 697 of Lecture Notes in Computer Sci-
ence, pages 253–267. Springer, 1993.

[CGLT09] Alarico Campetelli, Alexander Gruler, Martin Leucker, and Daniel
Thoma. Don’t Know for multi-valued systems. In Zhiming Liu and
Anders P. Ravn, editors, ATVA, volume 5799 of Lecture Notes in
Computer Science, pages 289–305. Springer, 2009.

[CR12] Benoı̂t Caillaud and Jean-Baptiste Raclet. Ensuring reachability by
design. In Roychoudhury and D’Souza [RD12], pages 213–227.

[CV12] Krishnendu Chatterjee and Yaron Velner. Mean-payoff pushdown
games. In LICS, pages 195–204. IEEE, 2012.

[dAGJ04] Luca de Alfaro, Patrice Godefroid, and Radha Jagadeesan. Three-
valued abstractions of games: Uncertainty, but with precision. In
LICS04 [LIC04], pages 170–179.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
ESEC / SIGSOFT FSE, pages 109–120. ACM, 2001.

[DBPU12] Nicolás D’Ippolito, Vı́ctor A. Braberman, Nir Piterman, and Se-
bastián Uchitel. The modal transition system control problem. In
Giannakopoulou and Méry [GM12], pages 155–170.

63

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[DDM10] Philippe Darondeau, Jérémy Dubreil, and Hervé Marchand. Su-
pervisory control for modal specifications of services. In WODES,
pages 428–435, 2010.

[DFCU08] Nicolás D’Ippolito, Dario Fischbein, Marsha Chechik, and Sebastián
Uchitel. MTSA: The modal transition system analyser. In ASE,
pages 475–476. IEEE, 2008.

[DFFU07] Nicolás D’Ippolito, Dario Fischbein, Howard Foster, and Sebastián
Uchitel. MTSA: Eclipse support for modal transition systems con-
struction, analysis and elaboration. In Li-Te Cheng, Alessandro
Orso, and Martin P. Robillard, editors, ETX, pages 6–10. ACM, 2007.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract inter-
pretation of reactive systems. ACM Trans. Program. Lang. Syst.,
19(2):253–291, 1997.

[DKL+11] Benoı̂t Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay,
Mikkel L. Pedersen, Falak Sher, and Andrzej Wasowski. Abstract
probabilistic automata. In Ranjit Jhala and David A. Schmidt, edi-
tors, VMCAI, volume 6538 of Lecture Notes in Computer Science,
pages 324–339. Springer, 2011.

[DLL+10] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Ny-
man, and Andrzej Wasowski. Ecdar: An environment for composi-
tional design and analysis of real time systems. In Ahmed Bouajjani
and Wei-Ngan Chin, editors, ATVA, volume 6252 of Lecture Notes
in Computer Science, pages 365–370. Springer, 2010.

[DM13] Pedro R. D’Argenio and Hernán C. Melgratti, editors. CONCUR
2013 - Concurrency Theory - 24th International Conference, CON-
CUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceed-
ings, volume 8052 of Lecture Notes in Computer Science. Springer,
2013.

[DN04] Dennis Dams and Kedar S. Namjoshi. The existence of finite ab-
stractions for branching time model checking. In LICS04 [LIC04],
pages 335–344.

[EBHH10] Dorsaf Elhog-Benzina, Serge Haddad, and Rolf Hennicker. Process
refinement and asynchronous composition with modalities. In Su-
sanna Donatelli, Jetty Kleijn, Ricardo Jorge Machado, and João M.
Fernandes, editors, ACSD/Petri Nets Workshops, volume 827 of
CEUR Workshop Proceedings, pages 385–401. CEUR-WS.org, 2010.

64

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[EK14] Javier Esparza and Jan Křetı́nský. From LTL to deterministic au-
tomata: A Safraless compositional approach. In CAV, Lecture Notes
in Computer Science. Springer, 2014. To appear. Technical report
accessible at http://arxiv.org/abs/1402.3388.

[FBU09] Dario Fischbein, Vı́ctor A. Braberman, and Sebastián Uchitel. A
sound observational semantics for modal transition systems. In
Leucker and Morgan [LM09], pages 215–230.

[FL12] Uli Fahrenberg and Axel Legay. A robust specification theory
for modal event-clock automata. In Sebastian S. Bauer and Jean-
Baptiste Raclet, editors, FIT, volume 87 of EPTCS, pages 5–16, 2012.

[Fok00] Wan Fokkink. Introduction to process algebra. Texts in theoretical
computer science. Springer, 2000.

[FP07] Guillaume Feuillade and Sophie Pinchinat. Modal specifications for
the control theory of discrete event systems. Discrete Event Dy-
namic Systems, 17(2):211–232, 2007.

[FS05] Harald Fecher and Martin Steffen. Characteristic mu-calculus for-
mulas for underspecified transition systems. Electr. Notes Theor.
Comput. Sci., 128(2):103–116, 2005.

[FS08] Harald Fecher and Heiko Schmidt. Comparing disjunctive modal
transition systems with an one-selecting variant. J. Log. Algebr. Pro-
gram., 77(1-2):20–39, 2008.

[FU08] Dario Fischbein and Sebastián Uchitel. On correct and complete
strong merging of partial behaviour models. In Mary Jean Harrold
and Gail C. Murphy, editors, SIGSOFT FSE, pages 297–307. ACM,
2008.

[GAW13] Paulo T. Guerra, Aline Andrade, and Renata Wassermann. Toward
the revision of CTL models through Kripke modal transition sys-
tems. In Juliano Iyoda and Leonardo Mendonça de Moura, editors,
SBMF, volume 8195 of Lecture Notes in Computer Science, pages
115–130. Springer, 2013.

[GC06] Arie Gurfinkel and Marsha Chechik. Why waste a perfectly good
abstraction? In Holger Hermanns and Jens Palsberg, editors,
TACAS, volume 3920 of Lecture Notes in Computer Science, pages
212–226. Springer, 2006.

[GH94] Jan Friso Groote and Hans Hüttel. Undecidable equivalences for
basic process algebra. Inf. Comput., 115(2):354–371, 1994.

65

http://arxiv.org/abs/1402.3388

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[GHJ01] Patrice Godefroid, Michael Huth, and Radha Jagadeesan.
Abstraction-based model checking using modal transition sys-
tems. In Kim Guldstrand Larsen and Mogens Nielsen, editors,
CONCUR, volume 2154 of Lecture Notes in Computer Science,
pages 426–440. Springer, 2001.

[GJ03] Patrice Godefroid and Radha Jagadeesan. On the expressive-
ness of 3-valued models. In Lenore D. Zuck, Paul C. Attie,
Agostino Cortesi, and Supratik Mukhopadhyay, editors, VMCAI,
volume 2575 of Lecture Notes in Computer Science, pages 206–222.
Springer, 2003.

[GKE12] Andreas Gaiser, Jan Křetı́nský, and Javier Esparza. Rabinizer: Small
deterministic automata for LTL(F, G). In Supratik Chakraborty and
Madhavan Mukund, editors, ATVA, volume 7561 of Lecture Notes
in Computer Science, pages 72–76. Springer, 2012.

[GM12] Dimitra Giannakopoulou and Dominique Méry, editors. FM 2012:
Formal Methods - 18th International Symposium, Paris, France, Au-
gust 27-31, 2012. Proceedings, volume 7436 of Lecture Notes in
Computer Science. Springer, 2012.

[GNRT10] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep
Tetali. Compositional may-must program analysis: unleashing the
power of alternation. In Manuel V. Hermenegildo and Jens Palsberg,
editors, POPL, pages 43–56. ACM, 2010.

[GP09] Patrice Godefroid and Nir Piterman. LTL generalized model check-
ing revisited. In Jones and Müller-Olm [JMO09], pages 89–104.

[GWC06a] Arie Gurfinkel, Ou Wei, and Marsha Chechik. Systematic construc-
tion of abstractions for model-checking. In E. Allen Emerson and
Kedar S. Namjoshi, editors, VMCAI, volume 3855 of Lecture Notes
in Computer Science, pages 381–397. Springer, 2006.

[GWC06b] Arie Gurfinkel, Ou Wei, and Marsha Chechik. Yasm: A software
model-checker for verification and refutation. In Thomas Ball and
Robert B. Jones, editors, CAV, volume 4144 of Lecture Notes in
Computer Science, pages 170–174. Springer, 2006.

[Hen85] Matthew Hennessy. Acceptance trees. J. ACM, 32(4):896–928, 1985.

[HH08] Altaf Hussain and Michael Huth. On model checking multiple hy-
brid views. Theor. Comput. Sci., 404(3):186–201, 2008.

66

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[HJS01] Michael Huth, Radha Jagadeesan, and David A. Schmidt. Modal
transition systems: A foundation for three-valued program analy-
sis. In David Sands, editor, ESOP, volume 2028 of Lecture Notes in
Computer Science, pages 155–169. Springer, 2001.

[HKK13] Holger Hermanns, Jan Krčál, and Jan Křetı́nský. Compositional
verification and optimization of interactive Markov chains. In
D’Argenio and Melgratti [DM13], pages 364–379.

[HKKG13] Tingting Han, Christian Krause, Marta Z. Kwiatkowska, and Hol-
ger Giese. Modal specifications for probabilistic timed systems. In
Luca Bortolussi and Herbert Wiklicky, editors, QAPL, volume 117
of EPTCS, pages 66–80, 2013.

[HL89] Hans Hüttel and Kim Guldstrand Larsen. The use of static con-
structs in a modal process logic. In Albert R. Meyer and Michael A.
Taitslin, editors, Logic at Botik, volume 363 of Lecture Notes in
Computer Science, pages 163–180. Springer, 1989.

[HM80] Matthew Hennessy and Robin Milner. On observing nondetermin-
ism and concurrency. In J. W. de Bakker and Jan van Leeuwen,
editors, ICALP, volume 85 of Lecture Notes in Computer Science,
pages 299–309. Springer, 1980.

[HO13] Dang Van Hung and Mizuhito Ogawa, editors. Automated Technol-
ogy for Verification and Analysis - 11th International Symposium,
ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, vol-
ume 8172 of Lecture Notes in Computer Science. Springer, 2013.

[Hol89] Sören Holmström. A refinement calculus for specifications in
Hennessy-Milner logic with recursion. Formal Asp. Comput.,
1(3):242–272, 1989.

[Hüt94] Hans Hüttel. Undecidable equivalences for basic parallel processes.
In Masami Hagiya and John C. Mitchell, editors, TACS, volume
789 of Lecture Notes in Computer Science, pages 454–464. Springer,
1994.

[Hut99] Michael Huth. A unifying framework for model checking labeled
Kripke structures, modal transition systems and interval transition
systems. In C. Pandu Rangan, Venkatesh Raman, and Ramaswamy
Ramanujam, editors, FSTTCS, volume 1738 of Lecture Notes in
Computer Science, pages 369–380. Springer, 1999.

[Hut02] Michael Huth. Model checking modal transition systems using
Kripke structures. In Agostino Cortesi, editor, VMCAI, volume 2294

67

6. SUMMARY OF THE RESULTS AND FUTURE WORK

of Lecture Notes in Computer Science, pages 302–316. Springer,
2002.

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. Specification and re-
finement of probabilistic processes. In LICS, pages 266–277. IEEE
Computer Society, 1991.

[JLS12] Line Juhl, Kim G. Larsen, and Jirı́ Srba. Modal transition systems
with weight intervals. J. Log. Algebr. Program., 81(4):408–421, 2012.

[JM95] Petr Jancar and Faron Moller. Checking regular properties of Petri
nets. In Insup Lee and Scott A. Smolka, editors, CONCUR, volume
962 of Lecture Notes in Computer Science, pages 348–362. Springer,
1995.

[JMO09] Neil D. Jones and Markus Müller-Olm, editors. Verification, Model
Checking, and Abstract Interpretation, 10th International Confer-
ence, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Pro-
ceedings, volume 5403 of Lecture Notes in Computer Science.
Springer, 2009.

[KE12] Jan Křetı́nský and Javier Esparza. Deterministic automata for the
(F,G)-fragment of LTL. In P. Madhusudan and Sanjit A. Seshia,
editors, CAV, volume 7358 of Lecture Notes in Computer Science,
pages 7–22. Springer, 2012.

[KLG13] Jan Křetı́nský and Ruslán Ledesma-Garza. Rabinizer 2: Small deter-
ministic automata for LTL\GU. In Hung and Ogawa [HO13], pages
446–450.

[KM99] Antonı́n Kučera and Richard Mayr. Simulation preorder on simple
process algebras. In Jirı́ Wiedermann, Peter van Emde Boas, and
Mogens Nielsen, editors, ICALP, volume 1644 of Lecture Notes in
Computer Science, pages 503–512. Springer, 1999.

[KM02a] Antonı́n Kučera and Richard Mayr. On the complexity of semantic
equivalences for pushdown automata and BPA. In Krzysztof Diks
and Wojciech Rytter, editors, MFCS, volume 2420 of Lecture Notes
in Computer Science, pages 433–445. Springer, 2002.

[KM02b] Antonı́n Kučera and Richard Mayr. Why is simulation harder than
bisimulation? In Lubos Brim, Petr Jancar, Mojmı́r Křetı́nský, and
Antonı́n Kučera, editors, CONCUR, volume 2421 of Lecture Notes
in Computer Science, pages 594–610. Springer, 2002.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255–299, 1990.

68

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor.
Comput. Sci., 27:333–354, 1983.

[Kře13] Jan Křetı́nský. Verification of Discrete- and Continuous-Time Non-
Deterministic Markovian Systems. PhD thesis, Technische Univer-
sität München, 2013.

[KŘS05] Mojmı́r Křetı́nský, Vojtech Řehák, and Jan Strejček. Reachabil-
ity of Hennessy-Milner properties for weakly extended PRS. In
Ramaswamy Ramanujam and Sandeep Sen, editors, FSTTCS, vol-
ume 3821 of Lecture Notes in Computer Science, pages 213–224.
Springer, 2005.

[KS90] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite
state processes, and three problems of equivalence. Inf. Comput.,
86(1):43–68, 1990.

[KS13a] Jan Křetı́nský and Salomon Sickert. MoTraS: A tool for modal tran-
sition systems and their extensions. In Hung and Ogawa [HO13],
pages 487–491.

[KS13b] Jan Křetı́nský and Salomon Sickert. On refinements of Boolean and
parametric modal transition systems. In Zhiming Liu, Jim Wood-
cock, and Huibiao Zhu, editors, ICTAC, volume 8049 of Lecture
Notes in Computer Science, pages 213–230. Springer, 2013.

[KS13c] Jan Křetı́nský and Salomon Sickert. On refinements of Boolean
and parametric modal transition systems. Technical Report
abs/1304.5278, arXiv.org, 2013.

[Lar89] Kim Guldstrand Larsen. Modal specifications. In Joseph Sifakis, ed-
itor, Automatic Verification Methods for Finite State Systems, vol-
ume 407 of Lecture Notes in Computer Science, pages 232–246.
Springer, 1989.

[LIC04] 19th IEEE Symposium on Logic in Computer Science (LICS 2004),
14-17 July 2004, Turku, Finland, Proceedings. IEEE Computer Soci-
ety, 2004.

[LIC06] 21th IEEE Symposium on Logic in Computer Science (LICS 2006),
12-15 August 2006, Seattle, WA, USA, Proceedings. IEEE Computer
Society, 2006.

[LL12] Kim G. Larsen and Axel Legay. Quantitative modal transition sys-
tems. In Narciso Martı́-Oliet and Miguel Palomino, editors, WADT,
volume 7841 of Lecture Notes in Computer Science, pages 50–58.
Springer, 2012.

69

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[LM09] Martin Leucker and Carroll Morgan, editors. Theoretical Aspects
of Computing - ICTAC 2009, 6th International Colloquium, Kuala
Lumpur, Malaysia, August 16-20, 2009. Proceedings, volume 5684
of Lecture Notes in Computer Science. Springer, 2009.

[LNW07a] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski.
Modal I/O automata for interface and product line theories. In
Rocco De Nicola, editor, ESOP, volume 4421 of Lecture Notes in
Computer Science, pages 64–79. Springer, 2007.

[LNW07b] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. On
modal refinement and consistency. In Luı́s Caires and Vasco Thu-
dichum Vasconcelos, editors, CONCUR, volume 4703 of Lecture
Notes in Computer Science, pages 105–119. Springer, 2007.

[LSW95] Kim Guldstrand Larsen, Bernhard Steffen, and Carsten Weise. Fis-
cher’s protocol revisited: A simple proof using modal constraints.
In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, ed-
itors, Hybrid Systems, volume 1066 of Lecture Notes in Computer
Science, pages 604–615. Springer, 1995.

[LT88] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic.
In LICS, pages 203–210. IEEE Computer Society, 1988.

[LV12] Gerald Lüttgen and Walter Vogler. Modal interface automata. In Jos
C. M. Baeten, Thomas Ball, and Frank S. de Boer, editors, IFIP TCS,
volume 7604 of Lecture Notes in Computer Science, pages 265–279.
Springer, 2012.

[LX90] Kim Guldstrand Larsen and Liu Xinxin. Equation solving using
modal transition systems. In LICS, pages 108–117. IEEE Computer
Society, 1990.

[Man13] Alexander Manta. Implementation of algorithms for modal transi-
tion systems with durations. Bachelor’s thesis, Technische Univer-
sität München, 2013.

[May00] Richard Mayr. Process rewrite systems. Inf. Comput., 156(1-2):264–
286, 2000.

[MNS06] Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors. FM
2006: Formal Methods, 14th International Symposium on Formal
Methods, Hamilton, Canada, August 21-27, 2006, Proceedings, vol-
ume 4085 of Lecture Notes in Computer Science. Springer, 2006.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree au-
tomata by nondeterministic automata: New results and new proofs

70

6. SUMMARY OF THE RESULTS AND FUTURE WORK

of the theorems of rabin, mcnaughton and safra. Theor. Comput.
Sci., 141(1&2):69–107, 1995.

[MTS] Motras. Available at http://www7.in.tum.de/˜kretinsk/
motras.html.

[Nam03] Kedar S. Namjoshi. Abstraction for branching time properties. In
Warren A. Hunt Jr. and Fabio Somenzi, editors, CAV, volume 2725
of Lecture Notes in Computer Science, pages 288–300. Springer,
2003.

[NNN08] Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson. Modal
abstractions of concurrent behaviour. In Marı́a Alpuente and
Germán Vidal, editors, SAS, volume 5079 of Lecture Notes in Com-
puter Science, pages 159–173. Springer, 2008.

[Nym08] Ulrik Nyman. Modal Transition Systems as the Basis for Interface
Theories and Product Lines. PhD thesis, Aalborg Universitet, 2008.

[Pit06] Nir Piterman. From nondeterministic Buchi and Streett automata to
deterministic parity automata. In LICS06 [LIC06], pages 255–264.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–
57. IEEE Computer Society, 1977.

[PP06] Nir Piterman and Amir Pnueli. Faster solutions of rabin and streett
games. In LICS06 [LIC06], pages 275–284.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive mod-
ule. In POPL, pages 179–190. ACM Press, 1989.

[PT87] Robert Paige and Robert Endre Tarjan. Three partition refinement
algorithms. SIAM J. Comput., 16(6):973–989, 1987.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification
of concurrent systems in cesar. In Mariangiola Dezani-Ciancaglini
and Ugo Montanari, editors, Symposium on Programming, volume
137 of Lecture Notes in Computer Science, pages 337–351. Springer,
1982.

[Rac07] Jean-Baptiste Raclet. Quotient de spécifications pour la réutilisation
de composants. PhD thesis, Université de Rennes I, 2007. (In
French).

[Rac08] Jean-Baptiste Raclet. Residual for component specifications. Electr.
Notes Theor. Comput. Sci., 215:93–110, 2008.

71

http://www7.in.tum.de/~kretinsk/motras.html
http://www7.in.tum.de/~kretinsk/motras.html

6. SUMMARY OF THE RESULTS AND FUTURE WORK

[RBB+09a] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoı̂t Cail-
laud, Axel Legay, and Roberto Passerone. Modal interfaces: uni-
fying interface automata and modal specifications. In Samarjit
Chakraborty and Nicolas Halbwachs, editors, EMSOFT, pages 87–
96. ACM, 2009.

[RBB+09b] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoı̂t Cail-
laud, and Roberto Passerone. Why are modalities good for interface
theories? In ACSD, pages 119–127. IEEE Computer Society, 2009.

[RBB+11] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoı̂t Cail-
laud, Axel Legay, and Roberto Passerone. A modal interface theory
for component-based design. Fundam. Inform., 108(1-2):119–149,
2011.

[RD12] Abhik Roychoudhury and Meenakshi D’Souza, editors. Theoretical
Aspects of Computing - ICTAC 2012 - 9th International Colloquium,
Bangalore, India, September 24-27, 2012. Proceedings, volume 7521
of Lecture Notes in Computer Science. Springer, 2012.

[Saf88] Shmuel Safra. On the complexity of omega-automata. In FOCS,
pages 319–327. IEEE Computer Society, 1988.

[Sch09] Sven Schewe. Tighter bounds for the determinisation of Büchi au-
tomata. In Luca de Alfaro, editor, FOSSACS, volume 5504 of Lecture
Notes in Computer Science, pages 167–181. Springer, 2009.

[SCU11] Mathieu Sassolas, Marsha Chechik, and Sebastián Uchitel. Explor-
ing inconsistencies between modal transition systems. Software and
System Modeling, 10(1):117–142, 2011.

[SG04] Sharon Shoham and Orna Grumberg. Monotonic abstraction-
refinement for CTL. In Kurt Jensen and Andreas Podelski, editors,
TACAS, volume 2988 of Lecture Notes in Computer Science, pages
546–560. Springer, 2004.

[Sic12] Salomon Sickert. Refinement algorithms for parametric modal tran-
sition systems. Bachelor’s thesis, Technische Universität München,
2012.

[Srb06] Jirı́ Srba. Visibly pushdown automata: From language equivalence
to simulation and bisimulation. In Zoltán Ésik, editor, CSL, volume
4207 of Lecture Notes in Computer Science, pages 89–103. Springer,
2006.

72

[SUBK12] German E. Sibay, Sebastián Uchitel, Vı́ctor A. Braberman, and
Jeff Kramer. Distribution of modal transition systems. In Gian-
nakopoulou and Méry [GM12], pages 403–417.

[UBC07] Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Behaviour
model synthesis from properties and scenarios. In ICSE, pages 34–
43. IEEE Computer Society, 2007.

[UBC09] Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Synthesis of
partial behavior models from properties and scenarios. IEEE Trans.
Software Eng., 35(3):384–406, 2009.

[UC04] Sebastián Uchitel and Marsha Chechik. Merging partial behavioural
models. In Richard N. Taylor and Matthew B. Dwyer, editors, SIG-
SOFT FSE, pages 43–52. ACM, 2004.

[Wal96] Igor Walukiewicz. Pushdown processes: Games and model check-
ing. In Rajeev Alur and Thomas A. Henzinger, editors, CAV, volume
1102 of Lecture Notes in Computer Science, pages 62–74. Springer,
1996.

[WGC09] Ou Wei, Arie Gurfinkel, and Marsha Chechik. Mixed transition sys-
tems revisited. In Jones and Müller-Olm [JMO09], pages 349–365.

73

74

Appendix

Paper A:

Process algebra for modal transition systemses

Nikola Beneš and Jan Křetı́nský

This paper has been published in Luděk Matyska, Michal Kozubek, Tomáš Voj-
nar, Pavel Zemčı́k, and David Antoš, editors, MEMICS, volume 16 of OASICS,
pages 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010.
Copyright c© by Nikola Beneš and Jan Křetı́nský. [BK10]

Summary

There have been several extensions of MTS, which offer various possibilities to
specify modalities in specifications. We extend the framework of MTS and in-
troduce the obligation function as a more general and more succinct way to ex-
press modality. Furthermore, it allows for more efficient composition. We then
compare the expressiveness of subclasses of this new framework (OTS) that have
been studied before (DMTS, MixTS, MTS). We establish several equivalences and
several strict inequalities. Namely, we show that the syntactic consistency require-
ment for DMTS does not decrease the expressiveness except for the empty spec-
ifications. In contrast, it matters for MixTS. Further, we show DMTS to be more
expressive than MixTS and not less expressive than general OTS. In order to es-
tablish the relationships, we introduce a process algebra to describe the systems
and, moreover, characterize the examined classes as syntactic subclasses of this
algebra.

Author’s contribution: 50 %

• participating in the discussions,

• contributing, in particular, to the design of OTS and the process algebra,

• writing Introduction and parts of the paper.

77

78

Process Algebra for Modal Transition Systemses∗

Nikola Beneš†1 and Jan Křetínský‡2

1 Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
xbenes3@fi.muni.cz

2 Institut für Informatik, TU München
Boltzmannstr. 3, D-85748, Garching, Germany
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
jan.kretinsky@fi.muni.cz

Abstract
The formalism of modal transition systems (MTS) is a well established framework for systems
specification as well as abstract interpretation. Nevertheless, due to incapability to capture some
useful features, various extensions have been studied, such as e.g. mixed transition systems or
disjunctive MTS. Thus a need to compare them has emerged. Therefore, we introduce transition
system with obligations as a general model encompassing all the aforementioned models, and
equip it with a process algebra description. Using these instruments, we then compare the
previously studied subclasses and characterize their relationships.

Keywords and phrases modal transition systems, process algebra, specification

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

Design and verification of parallel systems is a difficult task for several reasons. Firstly,
a system usually consists of a number of components working in parallel. Component based
design thus receives much attention and composition is a crucial element to be supported
in every reasonable specification framework for parallel systems. Secondly, the behaviour
of the components themselves is not trivial. One thus begins the design process with an
underspecified system where some behaviour is already prescribed and some may or may
not be present. The specification is then successively refined until a real implementation
is obtained, where all details of the behaviour are settled. Therefore, a need for support
of stepwise refinement design arises. This is indispensable, either due to incapability of
capturing all the required behaviour in the early design phase, or due to leaving a bunch
of possibilities for the implementations, such as in e.g. product lines [6]. Modal transition
systems is a framework supporting both these fundamental features.

Modal transition systems (MTS) is a specification formalism introduced by Larsen and
Thomsen [7, 1] allowing both for stepwise refinement design of systems and their composi-
tion. A considerable attention has been recently paid to MTS due to many applications,
e.g. component-based software development [9], interface theories [10], or modal abstractions
and program analysis [5], to name just a few.

∗ The word “Systemses” in the title is deliberate. Modal transition systems is a formalism. We consider
several formalisms based on modal transition systems here.
† The author has been supported by Czech Grant Agency grant no. GD102/09/H042.
‡ The author is a holder of Brno PhD Talent Financial Aid.

79

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p

client(a) server database

request query

processing
response answer

(b)

request

processing
response

Figure 1 An example of (a) a modal transition system (b) its implementation

The MTS formalism is based on transparent and simple to understand model of labelled
transition systems (LTS). While LTS has only one labelled transition relation between the
states determining the behaviour of the system, MTS as a specification formalism is equipped
with two types of transitions: the must transitions capture the required behaviour, which
is present in all its implementations; the may transitions capture the allowed behaviour,
which need not be present in all implementations. Such a system can be refined in two ways:
a may transition is either implemented (and becomes a must transition) or omitted (and
disappears as a transition). Figure 1 depicts an MTS that has arisen as a composition of
three systems and specifies the following. A request from a client may arrive. Then we can
process it directly or make a query to a database where we are guaranteed an answer. In both
cases we send a response. On the right there is an implementation of the system where the
processing branch is implemented and the database query branch is omitted. Note that in
this formalism we can easily compose implementations as well as specifications.

While specifying may transitions brings guarantees on safety, liveness can be guaranteed to
some extent using must transitions. Nevertheless, at an early stage of design we may not know
which of several possible different ways to implement a particular functionality will later be
chosen, although we know at least one of them has to be present. We want to specify e.g. that
either processing or query will be implemented, otherwise we have no guarantee on receiving
response eventually. Therefore, several formalisms extending MTS have been introduced.
Disjunctive modal transition systems (DMTS) do not enforce a particular transition, but
specify a whole set of transitions at least one of which must be present. (In our example, it
would be the set consisting of processing and query transitions.) DMTS have been introduced
in several flavours [8, 4, 2]. Another extension guaranteeing more structured requirements
on the behaviour are mixed transition systems (MixTS) [3]. Here the required behaviour is
not automatically allowed (not all must transitions are necessarily also may transitions) and
it must be realized using other allowed behaviour. This corresponds to the situation where
a new requirement can be implemented using some reused components. Moreover, it allows
for some liveness properties as well. All in all, a need for more structured requirements has
emerged. Therefore, we want to compare these formalisms and their expressive power.

We introduce transition system with obligations (OTS), a framework that encompasses
all the aforementioned systems. Further, we introduce a new process algebra, since there
was none for any of the discussed classes of systems. The algebra comes with the respective
structural operational semantics, and thus enriches the ways to reason about all these
systems. More importantly it allows us to obtain their alternative characterization and
provide a more compact description language for them. Altogether, these two new tools allow
us to compare all the variants of MTS and we indeed show interesting relationships among
the discussed systems. We characterize the process algebra fragments corresponding to the
various subclasses of OTS, such as MTS, MixTS or variants of DMTS. Since bisimulation
is a congruence w.r.t. all operators of the algebra, this allows for modular analysis of
the systems and also for practical optimizations based on minimization by bisimulation
80

quotienting. Finally, since OTS allow to specify requirements in quite a general form, we can
perform some important optimizations in the composition of systems. E.g., when composing
DMTS we can avoid an additional exponential blowup that was unavoidable so far.

2 Preliminaries

In order to define the framework we will work in, we need a tool to handle complex
requirements imposed on the systems. For this we use positive boolean formulae.

I Definition 1. A positive boolean formula over set X of atomic propositions is given by the
following syntax:

ϕ ::= x | ϕ ∧ ϕ | ϕ ∨ ϕ | tt | ff

where x ranges over X. The set of all positive boolean formulae over X is denoted as B+(X).
The semantics JϕK of a positive boolean formula ϕ is a set of subsets of X satisfying ϕ. It is
inductively defined as follows:

JxK = {Y ⊆ X | x ∈ Y } Jϕ ∧ ψK = JϕK ∩ JψK JttK = 2X JffK = ∅ Jϕ ∨ ψK = JϕK ∪ JψK

Every positive boolean formula can be uniquely represented in conjunctive normal form
(CNF). It can also be uniquely represented in disjunctive normal form (DNF). In the
disjunctive normal form of ϕ, the disjuncts are precisely the minimal elements of JϕK (with
set inclusion). The formulae tt and ff are never needed as proper subformulae of any other
formula.

We now proceed with the definition of the systems that are general enough to capture
features of all the systems that we discuss in the paper.

I Definition 2. A transition system with obligations (OTS) over an action alphabet Σ is
a triple (P, 99K,Ω), where P is a set of processes, 99K ⊆ P × Σ × P is the may transition
relation and Ω : P → B+(Σ× P) is the set of obligations.

For simplicity we also require the systems to be finitely branching, i.e. for every P ∈ P
there are only finitely many P ′ ∈ P with (P, a, P ′) ∈ 99K for some a. Nevertheless, we could
easily drop this assumption if we allowed conjunctions and disjunctions of infinite arities.

Various subclasses of OTS have been studied. We list the most important ones and depict
their syntactic relationships in Fig. 2.

A disjunctive modal transition system (DMTS) [8] is an OTS where the must obligations
are in CNF. An arbitrary OTS can thus be expressed as a DMTS. Indeed, as noted above,
any formula can be translated into CNF. However, this can cost an exponential blowup.
A mixed transition system (MixTS) [3] is an OTS where the must obligations are just
conjunctions of atomic predicates.

Moreover, we can impose the following consistency requirement

Ω(S) 6= ff and if Ω(S) contains (a, T) then S a
99K T,

which guarantees that all required behaviour is also allowed. This gives rise to the following
systems:

A consistent DMTS (cDMTS) [2] is a DMTS satisfying the consistency requirement.
A modal transition system (MTS) [7] is a MixTS satisfying the consistency requirement.

81

OTS

DMTS

MixTS cDMTS

MTS

LTS

Figure 2 The syntactic hierarchy of MTS extensions

A labelled transition system (LTS) is an MTS such that whenever S a
99K T then Ω(S) =

(a, T) ∧ ϕ for some ϕ. Since all behaviour of an LTS is both allowed and required at the
same time, we also call LTS an implementation.

In order to define the refinement relation on the systems, we need the following auxiliary
notion of refinement on formulae motivated by the following example.

I Example 3. Let us assume formulae ϕ = (a ∧ b) ∨ c and ψ = A ∨ C ∨D. The renaming
R : a = A, c = C then guarantees that ϕ⇒ ψ. This logical refinement (entailment) up to
renaming is formalized in the following definition.

I Definition 4. Let R ⊆ X ×X, let ϕ, ψ ∈ B+(X). We write ϕ vR ψ to denote

∀M ∈ JϕK ∃N ∈ JψK ∀n ∈ N ∃m ∈M : (m,n) ∈ R

Note that if we take R = id, ϕ vid ψ if and only if ϕ⇒ ψ (i.e. JϕK ⊆ JψK). Before proceeding
to the fundamental definition of OTS, we prove the following lemmata that will be useful in
later proofs. The first lemma is straightforward.

I Lemma 5. Let ϕ ∈ B+(X). Then JϕK is an upwards closed set in (2X ,⊆).

For the two following lemmata, assume this situation: Let X be an arbitrary set and let
Yx be an arbitrary finite set for all x ∈ X. Let ϕ ∈ B+(X) and ϕ̂ be the formula that is
created from ϕ by replacing all occurrences of x by

∨
Yx (where

∨
∅ = ff).

I Lemma 6. Let Z ⊆ X and let Z ′ ⊆
⋃

z∈Z Yz such that for all z ∈ Z, there is some
y ∈ Yz ∩ Z ′. Then Z ∈ JϕK implies Z ′ ∈ Jϕ̂K.

Proof. The proof is done by induction on ϕ.
The cases of ϕ = tt and ϕ = ff are trivial.
ϕ = x. Then ϕ̂ =

∨
Yx. Z ∈ JϕK implies x ∈ Z and thus there is some y ∈ Yx ∩ Z ′.

Therefore Z ′ ∈ Jϕ̂K as Jϕ̂K contains {y} and it is an upwards closed set.
ϕ = ψ ∧ ξ, then ϕ̂ = ψ̂ ∧ ξ̂. Let Z ∈ JϕK = JψK ∩ JξK. Then Z ∈ JψK and Z ∈ JξK. Due to
the induction hypothesis, Z ′ ∈ Jψ̂K and Z ′ ∈ Jξ̂K, thus also Z ′ ∈ Jψ̂ ∧ ξ̂K = Jϕ̂K.
The case of ∨ is similar to the previous case. J

I Lemma 7. Let Z ′ ⊆
⋃

x Yx and let Z = {x | ∃y ∈ Yx ∩ Z ′}. Then Z ′ ∈ Jϕ̂K implies
Z ∈ JϕK.

Proof. The proof is done by induction on ϕ.
82

The cases of ϕ = tt and ϕ = ff are trivial.
ϕ = x. Then ϕ̂ =

∨
Yx. As Z ′ ∈ Jϕ̂K, there has to be some y ∈ Yx ∩ Z ′. Thus x ∈ Z,

which means that Z ∈ JϕK.
The cases of ∧ and ∨ are similar to the proof of the previous lemma. J

We can now proceed to the fundamental definition of refinement of OTS.

I Definition 8. Let (P1, 99K1,Ω1), (P2, 99K2,Ω2) be two OTS and R ⊆ P1 × P2. We say
that R is a refinement relation, if (S, T) ∈ R implies that:

Whenever S a
99K S′ there is T a

99K T ′ such that (S′, T ′) ∈ R.
Ω1(S) vΣR Ω2(T) where ΣR = {((a, S), (a, T)) | a ∈ Σ, (S, T) ∈ R}.

We say that S refines T (denoted as S ≤ T) if there is a refinement relation R such
that (S, T) ∈ R. Further, we say that a process I is an implementation of a process S
if I is an implementation and I ≤ S. We denote the set of all implementations of S by
JSK = {I | I ≤ S, I is an implementation}.

I Remark. Clearly, our definition of refinement coincides with modal refinements on all
discussed subclasses of OTS.

One can easily see that every system satisfying the consistency requirement has an
implementation, whereas DMTS and MixTS do not necessarily have one. We can compare
various flavours of modal transition systems according to expressivity. Due to previous
observation, we only consider nonempty sets of implementations.

I Definition 9. Let C,D be subclasses of OTS. We say that D is at least as expressive as
C, written C � D, if for every C ∈ C with JCK 6= ∅ there is D ∈ D such that JDK = JCK.We
write C ≡ D to indicate C � D and C � D, and C ≺ D to indicate C � D and not C ≡ D.

3 Process Algebra for DMTS

In this section we define a process algebra for OTS. However, since the processes represent sets
of implemented systems (i.e. sets of sets of behaviours), we still need the obligation function
to fully capture them. For the sake of simplicity, we introduce the parallel composition
operator only in the following subsection.

I Definition 10. Let X be a set of process names. A term of process algebra for OTS is
given by the following syntax:

P ::= nil | co-nil | a.P | X | P ∧ P | P ∨ P | P

where X ranges over X and every X ∈ X is assigned a defining equality of the form X := P

where P is a term. The semantics is given by the following structural operational semantics
rules:

a.P
a

99K P

P
a

99K P ′

X
a

99K P ′
X := P

P
a

99K P ′

P ∧Q a
99K P ′

P
a

99K P ′

P ∨Q a
99K P ′

The obligation function on terms is defined structurally as follows:

Ω(nil) = tt Ω(P ∧Q) = Ω(P) ∧Ω(Q)
Ω(co-nil) = ff Ω(P ∨Q) = Ω(P) ∨Ω(Q)
Ω(a.P) = (a, P) Ω(P) = Ω(P)
Ω(X) = Ω(P) for X := P

83

As a convenient shortcut we introduce ?P ≡ (P ∨ nil) to capture the may transitions, i.e. an
allowed behaviour that is not necessarily forced. Hence we easily obtain the following using
the rules above:

P
a

99K P ′

?P a
99K P ′

Ω(?P) = tt

We now obtain the discussed subclasses of OTS as syntactic subclasses generated by the
following syntax equations (modulo transformation to CNF):

DMTS P ::= nil | a.P | X | P ∧ P | P ∨ P | P | co-nil
cDMTS P ::= nil | a.P | X | P ∧ P | P ∨ P

MixTS P ::= nil | a.P | X | P ∧ P | P ∨ nil | P | co-nil
MTS P ::= nil | a.P | X | P ∧ P | P ∨ nil
LTS P ::= nil | a.P | X | P ∧ P

3.1 Composition

We define the composition operator based on synchronous message passing, as it encompasses
the synchronous product as well as interleaving.

I Definition 11. Let Γ ⊆ Σ be a synchronizing alphabet. For processes S1 and S2 we define
the process S1 ‖ S2 as follows.

S1
a

99K S′1 S2
a

99K S′2

S1 ‖ S2
a

99K S′1 ‖ S′2
a ∈ Γ

S1
a

99K S′1

S1 ‖ S2
a

99K S′1 ‖ S2
a ∈ Σ \ Γ S2

a
99K S′2

S1 ‖ S2
a

99K S1 ‖ S′2
a ∈ Σ \ Γ

As we may assume obligations to be in disjunctive normal form, let us denote Ω(S1) =∨
i

∧
j(aij , Pij) and Ω(S2) =

∨
k

∧
`(bk`, Qk`). We define Ω(S1 ‖ S2) by

∨
i,k

(∧
j,`:aij=bk`∈Γ

(aij , Pij ‖ Qkl) ∧
∧

j:aij /∈Γ

(aij , Pij ‖ S2) ∧
∧

`:bk` /∈Γ

(bk`, S1 ‖ Qkl)
)

Intuitively, for a process S, the set JΩ(S)K ⊆ 2Σ×P consists of all possible choices of
successors of S that realize all obligations. Composing JΩ(S1)K and JΩ(S2)K in the same
manner as may transitions above generates JΩ(S1 ‖ S2)K.

Note that JΩ(S)K corresponds to DNF of obligations. Nevertheless, they can also be
written equivalently in the form of a set of must transitions of DMTS, which corresponds to
CNF. During the design process CNF is more convenient to use, whereas the composition has
to be done in DNF even for DMTS and then translated back, thus causing an exponential
blowup. However, using OTS allows for only one transformation and then the compositions
are done using DNF, as the result is again in DNF. As our definition extends the previous
definitions on all the discussed models, this shows another use of OTS.

I Remark. Refinement is a precongruence with respect to all operators of the process algebra
(including the composition operator). Hence, refinemental equivalence, i.e. ≤ ∩ ≤−1, is a
congruence.
84

4 Hierarchy Results

In this section, we study the relationship between the OTS subclasses and establish the
following complete result:

LTS (implementations) ≺ MTS ≺ MixTS ≺ cDMTS ≡ DMTS (OTS)

We first show that cDMTS ≡ DMTS. We do that by showing that every OTS process that
has an implementation can be substituted by an OTS process that satisfies the consistency
requirement and has the same set of implementations. To that end, we use an auxiliary
definition of a consistency relation. This definition is a slight modification of the consistency
relation defined in [8]. In the definition, the notation 2PFin stands for the set of all finite
subsets of P.

I Definition 12 (consistency). Let (P, 99K,Ω) be a OTS. A subset C of 2PFin is called
a consistency relation if for all {S1, . . . , Sn} ∈ C and i ∈ {1, . . . , n} there is X ∈ JΩ(Si)K
such that for all (a, U) ∈ X there are Sj

a
99K Tj (for all j) such that {U, T1, . . . , Tn} ∈ C.

It may be easily seen that an arbitrary union of consistency relations (for given OTS) is also
a consistency relation. Therefore, we may talk about the greatest consistency relation. The
following lemma explains the motivation behind the consistency relation, i.e. that a set of
processes is consistent if it has a common implementation.

I Lemma 13. Let S1, . . . , Sn be processes. There exists a consistency relation C containing
{S1, . . . , Sn} if and only if

⋂
1≤i≤nJSiK 6= ∅.

Proof. Recall that ϕ vΣ≤ ψ if and only if for all M ∈ JϕK there is some N ∈ JψK such that
for all (a, T) ∈ N there is some (a, S) ∈M such that S ≤ T .

We show that C = {{S1, . . . , Sk} | k ∈ N,
⋂

iJSiK 6= ∅} is a consistency relation. Let
{S1, . . . , Sn} ∈ C, let I ∈

⋂
iJSiK and let i ∈ {1, . . . , n} be arbitrary. Take M = {(a, J) |

I
a

99K J}. Clearly, M ∈ JΩ(I)K as I is an implementation. Due to Ω(I) vΣ≤ Ω(Si) there has
to be some N ∈ JΩ(Si)K such that for each (a, U) ∈ N there is (a, J) ∈M such that J ≤ U .

Let now X = N and let (a, U) ∈ X. Then I a
99K J with J ≤ U . Therefore, as I ≤ Sj ,

Sj
a

99K Tj and J ≤ Tj for all j. Thus J ∈ JUK ∩
⋂

iJTiK and {U, T1, . . . , Tn} ∈ C.
To show the converse, assume that there is a consistency relation C containing {S1, . . . , Sn}.

We know that for all i there is someX ∈ Ω(Si) such that for all (a, U) ∈ X there are Sj
a

99K Tj

(for all j) such that {U, T1, . . . , Tn} ∈ C. For fixed i, we denote the chosen X as Xi. We
construct I coinductively as follows:

Ω(I) =
∧

i

∧
(a,U)∈Xi

(a, JU
i)

with I 99K transitions to all (a, JU
i), where JU

i is a common implementation of U , T1, . . . ,
Tn with Ti given above. Clearly, I is an implementation of all Si. J

We now proceed with the construction of a new consistent OTS that is equivalent to the
original OTS.

I Definition 14. Let (P, 99K,Ω) be a OTS, Con its greatest consistency relation. We create
a new OTS as (Con, 99K,Ω) where
S a
99K T whenever for all S ∈ S, S a

99K T with T ∈ T .
85

Ω(S) =
∧

S∈S Ω̂(S) where Ω̂(S) is the formula that is created from Ω(S) by replacing
all occurrences of (a, U) by

∨
{(a, {U, T1, . . . , Tn}) | ∀i : Si

a
99K Ti, {U, T1, . . . , Tn} ∈ Con}

(where
∨
∅ = ff).

Note that due to the properties of Con, Ω(S) is never ff . We prove that the construction is
correct, i.e. for every consistent process of the original OTS, we have indeed a process of the
new OTS with the same set of implementations.

I Theorem 15. Let S be a process. Then JSK 6= ∅ if and only if {S} ∈ Con. Moreover, if
{S} ∈ Con then JSK = J{S}K.

Proof. The first part of the theorem is already included in Lemma 13. We thus prove the
second part. We first show that I ∈ JSK implies I ∈ J{S}K. We define R as:

R = {(I, {S1, . . . , Sn}) | n ∈ N,∀i : I ∈ JSiK, {S1, . . . , Sn} ∈ Con}

and prove that R is a refinement relation. Let (I, {S1, . . . , Sn}) ∈ R.
Let I a

99K J . Then, as I ≤ Si, Si
a

99K Ti with J ≤ Ti for all i. Thus also {S1, . . . , Sn}
a

99K
{T1, . . . , Tn} and (J, {T1, . . . , Tn}) ∈ R.
Let Ω(I) = ϕ, Ω({S1, . . . , Sn}) = ψ. We need to show that ϕ vΣR ψ.
Let M ∈ JϕK. Then, as I ≤ Si for all i, there exist Ni ∈ JΩ(Si)K such that for all
(a, U) ∈ Ni exists (a, J) ∈ M with J ≤ U (due to ϕ vΣ≤ Ω(SI)). We use the notation
J(a,U) to denote such J .
Let now N = {(a, {U, T1, . . . , Tn}) | ∃i : (a, U) ∈ Ni,∀j : Sj

a
99K Tj , J(a,U) ≤ Tj ,

{U, T1, . . . , Tn} ∈ Con}. Clearly, for all (a, {U, T1, . . . , Tn}) ∈ N there is some (a, J) ∈M
such that (J, {U, T1, . . . , Tn}) ∈ R (we take J = J(a,U)).
We need to prove that N ∈ JψK. In other words, we need to prove that for all i,
N ∈ JΩ̂(Si)K. That is, however, a straightforward corollary of Lemma 6 (take Z = Ni,
Z ′ = N).

We now show that I ∈ J{S}K implies I ∈ JSK. We define R as:

R = {(I, S) | I ≤ S with S ∈ S ∈ Con}

and prove that R is again a refinement relation. Let (I, S) ∈ R and let S be such that I ≤ S
and S ∈ S.

Let I a
99K J . Then S a

99K T with J ≤ T and thus S a
99K T with T ∈ T . Thus also

(J, T) ∈ R.
Let Ω(I) = ϕ, Ω(S) = ψ. We need to show that ϕ vΣR ψ. Let M ∈ JϕK. Due
to the fact that ϕ vΣ≤ ΩS, we know that there exists N ′ ∈ JΩ(S)K such that for
all (a, {U, T1, . . . , Tk}) ∈ N ′ there exists (a, J) ∈ M with J ≤ {U, T1, . . . , Tk}. Take
N = {(a, U) | (a, T) ∈ N ′ with U ∈ T }. Clearly, as N ′ ∈ JΩ(S)K also N ′ ∈ JΩ̂(S)K.
Using Lemma 7, we get that N ∈ JΩ(S)K (take Z ′ = N ′, Z = N). J

The following lemma shows that MixTS ≺ cDMTS.

I Lemma 16. There is no MixTS M such that JMK = Ja.nil ∨ b.nilK.

Proof. We first note that any equation defining a MixTS may be written in the following
normal form:

X :=
∧

i

?ai.Si ∧
∧
j

 aj .Tj

86

Clearly, there are three implementations of a.nil ∨ b.nil, namely a.nil, b.nil and a.nil ∧ b.nil.
Let thus M have these three implementations. Clearly, the part of M has to be empty
(i.e. Ω(M) = tt) asM can force neither a transition nor b transition. But then nil ∈ JMK. J

Due to Theorem 15, we have a syntactic characterization of consistent OTS. Since we now
know MixTS ≺ DMTS, a question arises whether such a characterization can be obtained also
for consistent MixTS. Observe that the previous construction transforms every MixTS into
a consistent OTS with formulae in CNF where all literals in one clause have the same action.
One might be tempted to consider the following syntactic characterization of consistent
MixTS:

P ::= nil | X | a.P | P ∧ P |
∨

i

a.Pi

However, that is not the case, as shown by the following lemma. Hence, this question remains
open.

I Lemma 17. There is no MixTS M such that JMK = J(a.(a.nil ∧ b.nil) ∨ a.nil) ∧ ?a.a.nilK.

Proof. Let M =
∧

i ?a.Ni ∧
∧

j a.Oj . (All outgoing transitions from M have to be a-
transitions.) We make the following observations:

For all j, Ω(Oj) = tt. Otherwise, a.nil could not be an implementation of M .
Also, for all j, Oj

a
99K. Otherwise, a.(a.nil ∧ b.nil) could not be an implementation of M .

There has to be some k such that a.nil ∈ JNkK, as a.nil ∧ a.a.nil also has to be an
implementation of M .

We now show that a.a.nil is an implementation of M . Let R′ be an arbitrary refinement
relation such that (a.nil, Nk) ∈ R′ (we know that such R′ exists as a.nil ≤ Nk). Take R as

R = id ∪R′ ∪ {(a.a.nil,M)} ∪ {(a.nil, Oj) | ∀j}

We now show that R is a refinement.
a.a.nil a

99K a.nil is matched by M a
99K Nk.

Ω(a.a.nil) = (a, a.nil), Ω(M) =
∧

j(a,Oj), thus Ω(a.a.nil) vΣR Ω(M).
((a.nil), Nk) ∈ R′, therefore the conditions of refinement are satisfied.
a.nil a

99K nil is matched by Oj
a

99K nil
As Ω(Oj) = tt, clearly Ω(a.nil) vΣR Ω(Oj).

However, a.a.nil is not an implementation of (a.(a.nil ∧ b.nil) ∨ a.nil) ∧ ?a.a.nil. J

Finally, we show that MTS ≺ MixTS.

I Lemma 18. There is no MTS S such that JSK = J?a.b.nil ∧ ?a.c.nil ∧ a.(?b.nil ∧ ?c.nil)K.

Proof. Similarly to MixTS, any equation defining a MTS can be written in the following
normal form:

X =
∧

i

?ai.Si ∧
∧
j

aj .Tj

There are three implementations which S has to possess and those are a.b.nil, a.c.nil,
and a.b.nil ∧ a.c.nil and S cannot possess any other implementation. Clearly, S cannot
be of the form a.T ∧ P , as then T would have to satisfy b.nil ≤ T (as a.b.nil ≤ S), also
c.nil ≤ T (as a.c.nil ≤ S), yet it cannot satisfy (b.nil ∧ c.nil) ≤ T (as a.(b.nil ∧ c.nil) 6≤ S).
This is not possible as it can be proven that if P ≤ T and Q ≤ T then also P ∧Q ≤ T for
all OTS. Therefore S =

∨
i ?a.Si and thus Ω(S) = tt. But then nil ≤ S and S has more

implementations than ?a.b.nil ∧ ?a.c.nil ∧ a.(?b.nil ∧ ?c.nil). J
87

For the sake of completeness, we also state that LTS ≺ MTS. This trivially follows, as
every LTS only has one implementation, whereas e.g. ?a.nil has two implementations a.nil
and nil.

5 Conclusion and Future Work

We have introduced a new formalism of transition system with obligations together with its
process algebra. We have used it to compare various previously studied systems. The main
result shows that general DMTS are not more powerful than consistent DMTS, whereas mixed
transition systems are strictly less expressive. Furthermore, we have given an alternative
syntactic characterizations of the studied systems, although a complete syntactic criterion
for consistent mixed transition systems remains as a future work. Surprisingly, using more
general OTS leads to some optimizations in computation of the composition that were not
possible in the previously used frameworks (as discussed in [2]).

References
1 A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. 20 years of modal and

mixed specifications. Bulletin of the EATCS no. 95, pages 94–129, 2008.
2 N. Beneš, I. Černá, and J. Křetínský. Disjunctive modal transition systems and generalized

LTL model checking. Submitted.
3 Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive systems.

ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.
4 H. Fecher and M. Steffen. Characteristic mu-calculus formulas for underspecified transition

systems. ENTCS, 128(2):103–116, 2005.
5 M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A foundation for

three-valued program analysis. In Proc. of ESOP’01, volume 2028 of LNCS, pages 155–169.
Springer, 2001.

6 K. G. Larsen, U. Nyman, and A. Wasowski. Modeling software product lines using color-
blind transition systems. STTT, 9(5-6):471–487, 2007.

7 K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages 203–210. IEEE
Computer Society, 1988.

8 K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In LICS,
pages 108–117. IEEE Computer Society, 1990.

9 J.-B. Raclet. Residual for component specifications. In Proc. of the 4th International
Workshop on Formal Aspects of Component Software, 2007.

10 J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone. Why are modalities
good for interface theories? In ACSD, pages 119–127. IEEE, 2009.

88

Paper B:

Modal transition systems: Composition and LTL model checking

Nikola Beneš, Ivana Černá, and Jan Křetı́nský

This paper has been published in Tevfik Bultan and Pao-Ann Hsiung (eds.): Au-
tomated Technology for Verification and Analysis, 9th International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings, volume 6996 of Lec-
ture Notes in Computer Science, pages 228–242. Springer, 2011. Copyright c© by
Springer-Verlag. [BČK11]

Summary

We study syntactically consistent DMTS. We first establish the complexities of
modal refinement (P-complete), thorough refinement (EXP-complete) and refine-
ments of deterministic systems (NL-complete). Second, we provide a unified al-
gorithm for common implementation and specification problems and establish
their complexities for different cases. As opposed to the general case with ex-
ponential complexity, we give a new polynomial solution when the number of
systems on the input is fixed. Third, we show a fundamental flaw in previous at-
tempts at (generalized) LTL model checking MTS, provide a new solution based
on games extending it to DMTS, establish the complexities for several cases (the
general case is 2-EXP-complete) and show how the model checking approach can
help us to cope with the incompleteness of parallel composition of (D)MTS.

Author’s contribution: 45 %

• participating in the discussions,

• contributing, in particular, to solutions to the thorough refinement, paral-
lel composition, and model checking using games,

• writing Introduction and parts of the paper.

89

90

Modal Transition Systems:
Composition and LTL Model Checking

Nikola Beneš1?, Ivana Černá1??, and Jan Křet́ınský1,2? ? ?

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 Institut für Informatik, Technische Universität München, Germany

{xbenes3, cerna, jan.kretinsky}@fi.muni.cz

Abstract. Modal transition systems (MTS) is a well established formal-
ism used for specification and for abstract interpretation. We consider its
disjunctive extension (DMTS) and we provide algorithms showing that
refinement problems for DMTS are not harder than in the case of MTS.
There are two main results in the paper. Firstly, we identify an error in
a previous attempt at LTL model checking of MTS and provide algo-
rithms for LTL model checking of MTS and DMTS. Moreover, we show
how to apply this result to compositional verification and circumvent
the general incompleteness of the MTS composition. Secondly, we give
a solution to the common implementation and conjunctive composition
problems lowering the complexity from EXPTIME to PTIME.

1 Introduction

Specification and verification of programs is a fundamental part of theoretical
computer science and is nowadays regarded indispensable when designing and
implementing safety critical systems. Therefore, many specification formalisms
and verification methods have been introduced. There are two main approaches
to this issue. The behavioural approach exploits various equivalence or refinement
checking methods, provided the specifications are given in the same formalism
as implementations. The logical approach makes use of specifications given as
formulae of temporal or modal logics and relies on efficient model checking al-
gorithms. In this paper, we combine these two methods.

The specifications are rarely complete, either due to incapability of capturing
all the required behaviour in the early design phase, or due to leaving a bunch of
possibilities for the implementations, such as in e.g. product lines [1]. One thus
begins the design process with an underspecified system where some behaviour
is already prescribed and some may or may not be present. The specification is
then successively refined until a real implementation is obtained, where all the

? The author has been supported by Czech Grant Agency, grant no. GD102/09/H042.
?? The author has been supported by Czech Grant Agency, grant no. GAP202/11/0312.

? ? ? The author is a holder of Brno PhD Talent Financial Aid and is supported by the
Czech Science Foundation, grant No. P202/10/1469.

91

client(a) server database

request query

processing
response answer

(b)

request

processing

response

Fig. 1. An example of (a) a modal transition system (b) its implementation

behaviour is completely determined. Of course, we require that our formalism
allow for this stepwise refinement.

Furthermore, since supporting the component based design is becoming cru-
cial, we need to allow also for the compositional verification. To illustrate this,
let us consider a partial specification of a component that we design, and a third
party component that comes with some guarantees, such as a formula of a tempo-
ral logic describing the most important behaviour. Based on these underspecified
models of the systems we would like to prove that their interaction is correct,
no matter what the hidden details of the particular third party component are.
Also, we want to know if there is a way to implement our component specifica-
tion so that the composition fulfills the requirements. Moreover, we would like
to synthesize the respective implementation. We address all these problems.

Modal transition systems (MTS) is a specification formalism introduced by
Larsen and Thomsen [2, 3] allowing for stepwise refinement design of systems
and their composition. A considerable attention has been recently paid to MTS
due to many applications, e.g. component-based software development [4, 5],
interface theories [6, 7], or modal abstractions and program analysis [8–10], to
name just a few.

The MTS formalism is based on transparent and simple to understand model
of labelled transition systems (LTS). While LTS has only one labelled transition
relation between the states determining the behaviour of the system, MTS as
a specification formalism is equipped with two types of transitions: the must
transitions capture the required behaviour, which is present in all its imple-
mentations; the may transitions capture the allowed behaviour, which need not
be present in all implementations. Figure 1 depicts an MTS that has arisen as
a composition of three systems and specifies the following. A request from a client
may arrive. Then we can process it directly or make a query to a database where
we are guaranteed an answer. In both cases we send a response.

Such a system can be refined in two ways: a may transition is either imple-
mented (and becomes a must transition) or omitted (and disappears as a transi-
tion). On the right there is an implementation of the system where the processing
branch is implemented and the database query branch is omitted. Note that an
implementation with both branches realized is also possible. This may model
e.g. behaviour dependent on user input. Moreover, implementations may even
be non-deterministic, thus allowing for modelling e.g. unspecified environment.

On the one hand, specifying may transitions brings guarantees on safety. On
the other hand, liveness can be guaranteed to some extent using must transi-

92

tions. Nevertheless, at an early stage of design we may not know which of several
possible different ways to implement a particular functionality will later be cho-
sen, although we know at least one of them has to be present. We want to specify
e.g. that either processing or query will be implemented, otherwise we have no
guarantee on receiving response eventually. However, MTS has no way to specify
liveness in this setting. Therefore, disjunctive modal transition systems (DMTS)
(introduced in [11] as solutions to process equations) are the desirable extension
appropriate for specifying liveness. This has been advocated also in [12] where
a slight modification of DMTS is investigated under the name underspecified
transition systems. Instead of forcing a particular transition, the must transi-
tions in DMTS specify a whole set of transitions at least one of which must be
present. In our example, it would be the set consisting of processing and query
transitions. DMTS turn out to be capable of forcing any positive Boolean com-
bination of transitions, simply by turning it into the conjunctive normal form.
Another possible solution to this issue is offered in [13] where one-selecting MTS
are introduced with the property that exactly one transition from the set must
be present.

As DMTS is a strict extension of MTS a question arises whether all funda-
mental problems decidable in the context of MTS remain decidable for DMTS,
and if so, whether their complexities remain unchanged. We show that this is
indeed the case. Therefore, using the more powerful DMTS is not more costly
than using MTS.

There is also another good reason to employ the greater power of DMTS
instead of using MTS. Often a set of requirements need to be satisfied at once.
Therefore, we are interested in the common implementation (CI) problem, where
one asks whether there is an implementation that refines all specifications in a
given set, i.e. whether the specifications are consistent. (In accordance with the
traditional usage, the states of (D)MTS specifications shall be called processes.)
Moreover, we also want to construct the most general process refining all pro-
cesses, i.e. the greatest lower bound with respect to the refinement. We call this
process a conjunction as this composition is the analog of logical and. We show
there may not be any process that is a conjunction of a given set of processes,
when only considering MTS processes. However, we also show that there is al-
ways a DMTS process that is a conjunction of a given set of (D)MTS processes.
This again shows that DMTS is a more appropriate framework than MTS.

As the first main result, we show a new perspective on these problems, namely
we give a simple co-inductive characterization yielding a straightforward fix-
point algorithm. This characterization unifies the view not only (i) in the MTS
vs. DMTS aspect, but also (ii) in the cases of number of specifications being fixed
or a part of the input, and most importantly (iii) establishes connection between
CI and the conjunction. Our new view provides a solution for DMTS and yields
algorithms for the aforementioned cases with the respective complexities being
the same as for CI over MTS as determined in [14, 15]. So far, conjunction has
been solved for MTS enriched with weights on transitions in [16], however, only
for the deterministic case. Previous results on conjunction over DMTS [11] yield

93

an algorithm that requires exponential time (even for only two processes on
input). Our algorithm runs in polynomial time both for conjunction and CI for
any fixed number of processes on input.

As the second main result, as already mentioned we would like to supplement
the refinement based framework of (D)MTS with model checking methods. Since
a specification induces a set of implementations, we apply the thorough approach
of generalized model checking of Kripke structures with partial valuations [17, 18]
in our setting. Thus a specification either satisfies a formula ϕ if all its implemen-
tations satisfy ϕ; or refutes it if all implementations refute it; or neither of the
previous holds, i.e. some of the implementations satisfy and some refute ϕ. This
classification has also been adopted in [3] for CTL model checking MTS. Sim-
ilarly, [19] provides a solution to LTL model checking over deadlock-free MTS,
which was implemented in the tool support for MTS [20]. However, we identify
an error in this LTL solution and provide correct model checking algorithms.
The erroneous algorithm for the deadlock-free MTS was running in PSPACE,
nevertheless, we show that this problem is 2-EXPTIME-complete by reduction
to and from LTL games. The generalized model checking problem is equivalent
to solving the problems (i) whether all implementations satisfy the given formula
and if they do not then (ii) whether there exists an implementation satisfying the
formula. We provide algorithms for both the universal and the existential case,
and moreover, for the cases of MTS, deadlock-free MTS and DMTS, providing
different complexities. Due to our reduction, the resulting algorithm can be also
used for synthesis, i.e. if there is a satisfying implementation, we automatically
receive it. Not only is the application in the specification area clear, but there is
also an important application to abstract interpretation. End-users are usually
more comfortable with linear time logic and the analysis of path properties re-
quires to work with abstractions capturing over- and under-approximation of a
system simultaneously. MTS are a perfect framework for this task, as may and
must transitions can capture over- and under-approximations, respectively [8].
Our results thus allow for LTL model-checking of system abstractions, including
counterexample generation.

Finally, we show how the model checking approach can help us getting around
the fundamental problem with the parallel composition. There are MTS pro-
cesses S and T , where the composed process S ‖ T contains more implemen-
tations than what can be obtained by composing implementations of S and T .
Hence the composition is not complete with respect to the semantic view. Some
conditions to overcome this difficulty were identified in [15]. Here we show the
general completeness of the composition with respect to the LTL formulae sat-
isfaction, and generally to all linear time properties.

The rest of the paper is organized as follows. We provide basic definitions
and results on refinements in Section 2. The results on LTL model checking and
its relation to the parallel composition can be found in Section 3. The “logical
and” composition is investigated in Section 4. Section 5 concludes and discusses
future work. Due to space limitations the proofs are omitted and can be found
in [21].

94

2 Preliminaries

In this section we define the specification formalism of disjunctive modal transi-
tion systems (DMTS). A DMTS can be gradually refined until we get a labelled
transition system (LTS) where all the behaviour is fully determined. The seman-
tics of a DMTS will thus be the set of its refining LTSs. The following definition
is a slight modification of the original definition in [11].

Definition 2.1. A disjunctive modal transition system (DMTS) over an action
alphabet Σ and a set of propositions Ap is a tuple (P, 99K,−→, ν) where P is
a set of processes, 99K ⊆ P ×Σ × P and −→ ⊆ P × 2Σ×P are may and must
transition relations, respectively, and ν : P → 2Ap is a valuation. We write

S
a

99K T meaning (S, a, T) ∈ 99K, and S −→ T meaning (S, T) ∈ −→. We
require that whenever S −→ T then (i) T 6= ∅ and (ii) for all (a, T) ∈ T we also

have S
a

99K T .

The original definition of DMTS does not include the two requirements, thus
allowing for inconsistent DMTS, which have no implementations. Due to the
requirements, our DMTS guarantee that all must obligations can be fulfilled.
Hence, we do not have to expensively check for consistency? when working with
our DMTS. And there is yet another difference to the original definition. Since
one of our aims is model checking state and action based LTL, we not only have
labelled transitions, but we also equip DMTS with a valuation over states.

Clearly, the must transitions of DMTS can be seen as a positive boolean
formula in conjunctive normal form. Arbitrary requirements expressible as pos-
itive boolean formulae can be thus represented by DMTS, albeit at the cost of
possible exponential blowup, as commented on in [22].

Example 2.2. Figure 2 depicts three DMTSs. The may transitions are drawn
as dashed arrows, while each must transition of the form (S, T) is drawn as
a solid arrow from S branching to all elements in T . Due to requirement (ii) it
is redundant to draw the dashed arrow when there is a solid arrow and we never
depict it explicitly.

While in DMTS we can specify that at least one of the selected transitions
has to be present, in modal transition systems (MTS) we can only specify that
a particular transition has to be present, i.e. we need to know from the begin-
ning which one. Thus MTS is a special case of DMTS. Further, when the may
and must transition relations coincide, we get labelled transition systems (with
valuation).

Definition 2.3. A DMTS S = (P, 99K,−→, ν) is an MTS (with valuation) if

S −→ T implies that T is a singleton. We then write S
a−→ T for T = {(a, T)}.

? Checking consistency is an EXPTIME-complete problem. It is polynomial [11] only
under an assumption that all “conjunctions” of processes are also present in the
given DMTS which is very artificial in our setting. For more details, see [21].

95

If moreover S
a

99K T implies S
a−→ T , then S is an LTS. Processes of an LTS

are called implementations.
A DMTS S = (P, 99K,−→, ν) is deterministic if for every process S and

action a there is at most one process T with S
a

99K T .

For the sake of readable notation, when speaking of a process, we often omit
the underlying DMTS if it is clear from the context. Moreover, we say that S
is deterministic (an MTS etc.) meaning that the DMTS on processes reachable
from S is deterministic (MTS etc.). Further, when analyzing the complexity we
assume we are given finite DMTSs.

SMI

e$

C ≤m

e$ coffee tea coffeecoffeecoffeee$ coffee

Fig. 2. An implementation I, a process M of an MTS, and a process S of a DMTS
such that I CM ≤m S

When refining a process, we need to satisfy two conditions: (1) the respective
refining process cannot allow any new behaviour not allowed earlier; and (2) if
there is a requirement to implement an action by choosing among several options,
the refining process can only have more restrictive set of these options.

Definition 2.4 (Modal refinement). Let (P, 99K,−→, ν) be a DMTS. Then
R ⊆ P × P is called a modal refinement relation if for all (A,B) ∈ R

– ν(A) = ν(B), and

– whenever A
a

99K A′ then B
a

99K B′ for some B′ with (A′, B′) ∈ R, and
– whenever B −→ B′ then A −→ A′ for some A′ such that for all (a,A′) ∈ A′

there is (a,B′) ∈ B′ with (A′, B′) ∈ R.

We say that S modally refines T , denoted by S ≤m T , if there exists a modal
refinement relation R with (S, T) ∈ R.

Note that since a union of modal refinement relations is a modal refinement
relation, the relation ≤m is the greatest modal refinement relation. Also note
that on implementations the modal refinement coincides with bisimulation.

We now define the semantics of a process as a set of implementations that are
refining it. The defined notion of thorough refinement is a semantic counterpart
to the syntactic notion of modal refinement.

Definition 2.5 (Thorough refinement). Let I, S, T be processes. We say that
I is an implementation of S, denoted by I C S, if I is an implementation and
I ≤m S. We say that S thoroughly refines T , denoted by S ≤t T , if J C S
implies J C T for every implementation J .

While the syntactic characterization is sound, it is not complete since it is incom-
plete already for MTS. However, completeness can be achieved on a reasonable
subclass.

96

Proposition 2.6. Let S and T be processes. Then S ≤m T implies S ≤t T . If
T is deterministic then S ≤t T implies S ≤m T .

Next we show that both refinement problems are not harder for DMTS than for
MTS. This allows for using more powerful DMTS instead of MTS. The following
is proven similarly as in [15]. In order to prove the last claim significantly involved
modifications of the approach of [23] are needed.

Theorem 2.7. Deciding ≤m is PTIME-complete. Deciding ≤m when restricted
to the refined (i.e. right-hand-side) process being deterministic is NLOGSPACE-
complete. Deciding ≤t is EXPTIME-complete.

3 LTL Model Checking

This section discusses the model checking problem for linear temporal logic
(LTL) [24] and its application on compositional verification. The following defi-
nition of state and action based LTL is equivalent to that of [25], with a slight
difference in syntax.

Definition 3.1 (LTL syntax). The formulae of state and action based LTL
(LTL in the following) are defined as follows.

ϕ ::= tt | p | ¬ϕ | ϕ ∧ ϕ | ϕU ϕ | Xϕ | Xa ϕ

where p ranges over Ap and a ranges over Σ.

We use the standard derived operators, such as Fϕ = ttUϕ and Gϕ = ¬F¬ϕ.

Definition 3.2 (LTL semantics). Let I be an implementation. A run of I is
a maximal (finite or infinite) alternating sequence of state valuations and actions

π = ν(I0), a0, ν(I1), a1, . . . such that I0 = I and Ii−1
ai−1−→ Ii for all i > 0. If a run

π is finite, we denote by |π| the number of state valuations in π, we set |π| =∞
if π is infinite. We also define the ith subrun of π as πi = ν(Ii), ai, ν(Ii+1), . . .
Note that this definition only makes sense when i < |π|. The set of all runs of I
is denoted by R∞(I), the set of all infinite runs is denoted by Rω(I).

The semantics of LTL on π = ν0, a0, ν1, a1, . . . is then defined as follows:

π |= tt always

π |= p ⇐⇒ p ∈ ν0
π |= ¬ϕ ⇐⇒ π 6|= ϕ

π |= ϕ ∧ ψ ⇐⇒ π |= ϕ and π |= ψ

π |= ϕU ψ ⇐⇒ ∃ 0 ≤ k < |π| : πk |= ψ and ∀ 0 ≤ j < k : πj |= ϕ

π |= Xϕ ⇐⇒ |π| > 1 and π1 |= ϕ

π |= Xa ϕ ⇐⇒ |π| > 1, a0 = a and π1 |= ϕ

We say that an implementation I satisfies ϕ on infinite runs, denoted as I |=ω ϕ,
if for all π ∈ Rω(I), π |= ϕ. We say that an implementation I satisfies ϕ on all
runs, denoted as I |=∞ ϕ, if for all π ∈ R∞(I), π |= ϕ.

97

The use of symbols ω and ∞ to distinguish between using only infinite runs or
all runs is in accordance with standard usage in the field of infinite words.

It is common to define LTL over infinite runs only. In that respect, our
definition of |=ω matches the standard definition. In the following, we shall first
talk about this satisfaction relation only, and comment on |=∞ afterwards.

The generalized LTL model checking problem for DMTS can be split into two
subproblems – deciding whether all implementations satisfy a given formula, and
deciding whether at least one implementation does. We therefore introduce the
following notation: we write S |=ω

∀ ϕ to mean ∀I C S : I |=ω ϕ and S |=ω
∃ ϕ to

mean ∃I C S : I |=ω ϕ ; similarly for |=∞.
Note that |=ω

∃ contains a hidden alternation [26] of quantifiers, as it actually
means ∃I C S : ∀π ∈ Rω(I) : I |=ω ϕ. No alternation is present in |=ω

∀ . This
observation hints that the problem of deciding |=ω

∀ is easier than deciding |=ω
∃ .

Our first two results show that indeed, deciding |=ω
∀ is not harder than the

standard LTL model checking whereas deciding |=ω
∃ is 2-EXPTIME-complete.

The only known correct result on LTL model checking of MTS is that deciding
MTS |=ω

∀ over MTS is PSPACE-complete [19]. This holds also for DMTS.

Theorem 3.3. The problem of deciding |=ω
∀ over DMTS is PSPACE-complete.

Proof (Sketch). All implementations of S satisfy ϕ if and only if the may struc-
ture of S satisfies ϕ. ut

In [18] the generalized model checking of LTL over partial Kripke structures
(PKS) is shown to be 2-EXPTIME-hard. Further, [27] describes a reduction
from generalized model checking of µ-calculus over PKS to µ-calculus over MTS.
However, the hardness for LTL over MTS does not follow since the encoding of
an LTL formula into µ-calculus includes an exponential blowup. There is thus no
straightforward way to use the result of [27] to provide a polynomial reduction.
Therefore, we prove the following theorem directly.

Theorem 3.4. The problem of deciding |=ω
∃ over DMTS is 2-EXPTIME-complete.

Proof (Sketch). We show the reduction to and from the 2-EXPTIME-complete
problem of deciding existence of a winning strategy in an LTL game [28]. An LTL
game is a two player positional game over a finite Kripke structure. The winning
condition is the set of all infinite plays (sequences of states) satisfying a given
LTL formula.

Thus, an LTL game may be seen as a special kind of DMTS over unary
action alphabet. Here the processes are the states of the Kripke structure, the
may structure is the transition relation of the Kripke structure, and the must
structure is built as follows. Every process corresponding to a state of Player I
has one must transition spanning all may-successors; every process corresponding
to a state of Player II has several must transitions, one to each may-successor.
The implementations of such DMTS now correspond to strategies of Player I in
the original LTL game. Thus follows the hardness part of the theorem.

For the containment part, we provide an algorithm that transforms the given
DMTS into a Kripke structure with states assigned to the two players. This

98

construction bears some similarities to the construction transforming Kripke
MTS into alternating tree automata in [29].

S

T U V W

a

b c

d

S

SU

U V

SW

W

τ τ

b c d

(S,−)

(SU , τ) (SW , τ)

(U, b) (V, c) (W,d)

Fig. 3. Transformation from DMTS into a two player game

The transformation from a DMTS into a two player game proceeds as follows.
We first eliminate all may transitions that are not covered by any must transi-
tions. We then modify the must transitions. For each S −→ U we create a unique
new process SU and set S

τ−→ SU and SU
a−→ T for all (a, T) ∈ U . We thus now

have a labelled transition system, possibly with valuation. We then eliminate
actions by encoding them into their target state, thus obtaining a Kripke struc-
ture. States that were created from processes of the original DMTS belong to
Player II, states created from must transitions belong to Player I. The construc-
tion is illustrated in Fig. 3. We then modify the LTL formula in two steps. First,
we add the possibility of a τ action in every odd step. Second, we transform
the state-and-action LTL formula into a purely state-based one. The resulting
game over the Kripke structure together with the modified LTL formula form
the desired LTL game. ut

There are constructive algorithms for solving LTL games, i.e. not only do
they decide whether a winning strategy exists, but they can also synthesize such
a strategy. Furthermore, our reduction effectively transforms a winning strategy
into an implementation satisfying the given formula. We can thus synthesize an
implementation of a given DMTS satisfying a given formula in 2-EXPTIME.

Although the general complexity of the problem is very high, various sub-
classes of LTL have been identified in [30] for which the problem is computa-
tionally easier. These complexity results can be easily carried over to generalized
model checking of DMTS.

Interestingly enough, deciding |=ω
∃ is much easier over MTS.

Theorem 3.5. The problem of deciding |=ω
∃ over MTS is PSPACE-complete.

Proof (Sketch). The proof is similar to the proof of Theorem 3.3, only instead
of checking the may structure of S, we check the must structure of S. ut

However, despite its lower complexity, |=ω
∃ over MTS is not a very useful

satisfaction relation. As we only considered infinite runs, an MTS may (and

99

frequently will) possess trivial implementations without infinite runs. The state-
ment S |=ω

∃ ϕ then holds vacuously for all ϕ. Two natural ways to cope with
this issue are (a) using |=∞∃ (see below) and (b) considering only deadlock-free
implementations, i.e. with infinite runs only.

S
a

a

b

Fig. 4. No deadlock-free implementation of S satisfies GXa tt

The deadlock-free approach has been studied in [19] and the proposed solu-
tion was implemented in the tool MTSA [20]. However, the solution given in [19]
is incorrect. In particular, existence of a deadlock-free implementation satisfying
a given formula is claimed even in some cases where no such implementation
exists. A simple counterexample is given in Fig. 4. Clearly, S has no deadlock-
free implementation with action a only, i.e. satisfying G Xa tt. Yet the method
of [19] as well as the tool [20] claim that such an implementation exists.

Furthermore, there is no chance that the approach of [19] could be easily fixed
to provide correct results. The reason is that this approach leads to a PSPACE
algorithm, whereas we prove again by reduction from LTL games that finding
a deadlock-free implementation of a given MTS is 2-EXPTIME-hard. For more
details see [21]. The containment in 2-EXPTIME is then proved by reduction to
the problem of deciding |=ω

∃ for DMTS. The basic idea is to modify all processes
without must transitions, enhancing them with one must transition spanning all
may-successors.

Proposition 3.6. The problem of deciding the existence of a deadlock-free im-
plementation of a given MTS satisfying a given LTL formula, is 2-EXPTIME-
complete.

We now turn our attention to the (a) option, i.e. all (possibly finite) runs, and
investigate the |=∞ satisfaction. Checking properties even on finite runs is indeed
desirable when considering (D)MTS used for modelling non-reactive systems. We
show that deciding |=∞∃ and |=∞∀ over DMTS has the same complexity as deciding
|=ω
∃ and |=ω

∀ over DMTS, respectively. We also show that contrary to the case of
infinite runs, the problem of deciding |=∞∃ remains 2-EXPTIME-hard even for
standard MTS.

Theorem 3.7. The problem of deciding |=∞∃ over (D)MTS is 2-EXPTIME-
complete, the problem of deciding |=∞∀ over (D)MTS is PSPACE-complete.

Although we have so far considered the more general state and action based
LTL, this costs no extra overhead when compared to state-based or action-
based LTL.

100

Table 1. Complexities of generalized LTL model checking

|=∀ |=∃

MTS |=ω PSPACE-complete PSPACE-complete

MTS |=df PSPACE-complete 2-EXPTIME-complete

MTS |=∞ PSPACE-complete 2-EXPTIME-complete

DMTS PSPACE-complete 2-EXPTIME-complete

Proposition 3.8. The complexity of deciding |=?
∃ and |=?

∀ for ? ∈ {ω,∞} re-
mains the same if the formula ϕ is a purely state-based or a purely action-based
formula.

The results of this section are summed up in Table 1. We use |=df to de-
note that only deadlock-free implementations are considered. Recall that the
surprising result for |=ω

∃ over MTS is due to the fact that the formula may hold
vacuously.

The best known time complexity bounds with respect to the size of system |S|
and the size of LTL formula |ϕ| are the following. In all PSPACE-complete cases
the time complexity is O(|S| · 2|ϕ|); in all 2-EXPTIME-complete cases the time

complexity is |S|2O(|ϕ|) ·22O(|ϕ| log|ϕ|)
. The latter upper bound is achieved by trans-

lating the LTL formula into a deterministic Rabin automaton of size 22
O(|ϕ| log|ϕ|)

with 2O(|ϕ|) accepting pairs, thus changing the LTL game into a Rabin game.
State of the art algorithm for solving Rabin games can be found e.g. in [31].

3.1 Parallel Composition

We conclude this section with an application to compositional verification. In [3]
the composition of MTS is shown to be incomplete, i.e. there are processes
S1, S2 such that their composition S1 ‖ S2 has an implementation I that does
not arise as a composition I1 ‖ I2 of any two implementations I1 C S1, I2 C S2.
Completeness can be achieved only under some restrictive conditions [15]. Here
we show that composition is sound and complete with respect to every logic of
linear time, i.e. it preserves and reflects all linear time properties.

For the sake of readability, we present the results on MTS only. Nevertheless,
the same holds for the straightforward extension of ‖ to DMTS, see [21].

The composition operator used is based on synchronous message passing,
since it is the most general one. Indeed, it encompasses the synchronous product
as well as interleaving. It is defined as follows. Let Γ ⊆ Σ be a synchronizing
alphabet. Then

– for a ∈ Γ , we set S1 ‖ S2
a

99K S′1 ‖ S′2 whenever S1
a

99K S′1 and S2
a

99K S′2;

– for a ∈ Σ \ Γ , we set S1 ‖ S2
a

99K S′1 ‖ S2 whenever S1
a

99K S′1, and similarly

S1 ‖ S2
a

99K S1 ‖ S′2 whenever S2
a

99K S′2;

and analogously for the must transition relation. As for valuations, we can con-
sider any function f : 2Ap × 2Ap → 2Ap to define ν(S1 ‖ S2) = f(ν(S1), ν(S2)),
such as e.g. union.

101

The completeness of composition with respect to linear time logics holds for
all discussed cases: both for MTS and DMTS, both for infinite and all runs, and
both universally and existentially. We do not define linear properties formally
here, see e.g. [32]. As a special case, one may consider LTL formulae.

Theorem 3.9. Let S1, S2 be processes, ϕ a linear time property, and ? ∈ {ω,∞}.
Then S1 ‖ S2 |=?

∀ ϕ if and only if I1 ‖ I2 |=? ϕ for all I1 C S1 and I2 C S2.

Theorem 3.10. Let S1, S2 be processes, ϕ a linear time property, and ? ∈
{ω,∞}. Then S1 ‖ S2 |=?

∃ ϕ if and only if there exist I1 C S1 and I2 C S2

such that I1 ‖ I2 |=? ϕ.

The idea of the proof is that the minimal (w.r.t. the set of runs) implemen-
tations of S1 ‖ S2 are decomposable, i.e. they can be written as I1 ‖ I2 where
I1 C S1 and I2 C S2. The same holds for the maximal implementations of
S1 ‖ S2. The results imply that although the composition is incomplete with
respect to thorough refinement no new behaviour arises in the composition.

4 Common Implementation Problem and Conjunction

In the following, we study composing (D)MTS in the sense of logical conjunc-
tion. The common implementation problem (CI) is to decide whether there is
an implementation refining all processes from a given set. Furthermore, we also
want to construct the conjunction, i.e. the process that is the greatest lower
bound for a given set of processes w.r.t. the modal refinement, if it exists. We
show that although MTSs may not have an MTS conjunction, there is always
a conjunction expressible as a DMTS. The complexity depends on the number
of the input processes. We examine the complexity both for the case when it is
fixed and when it is a part of the input.

Theorem 4.1. For the number of input processes being a part of the input, the
CI problem is EXPTIME-complete and conjunction can be computed in expo-
nential time. For any fixed number of input processes, CI is PTIME-complete
and conjunction can be computed in polynomial time.

We first give a coinductive syntactic characterization of the problem and
proceed by constructing the greatest lower bound.

Definition 4.2 (Consistency relation). Let (P, 99K,−→, ν) be a DMTS and
n ≥ 2. Then C ⊆ Pn is called a consistency relation if for all (A1, . . . , An) ∈ C

– ν(A1) = ν(A2) = . . . = ν(An), and
– whenever there exists i such that Ai −→ Bi, then there is some (a,Bi) ∈ Bi

such that there exist Bj for all j 6= i with Aj
a

99K Bj and (B1, . . . , Bn) ∈ C.

In the following, we will assume an arbitrary, but fixed n. Clearly, arbitrary
union of consistency relations is also a consistency relation, we may thus assume
the existence of the greatest consistency relation for a given DMTS. We now
show how to use this relation to construct a DMTS that is the greatest lower
bound with regard to modal refinement (taken as a preorder).

102

Definition 4.3. Let S = (P, 99K,−→, ν) be a DMTS and Con its greatest con-
sistency relation. We define a new DMTS SCon = (Con, 99KCon,−→Con, νCon),
where

– νCon((A1, . . . , An)) = ν(A1),

– (A1, . . . , An)
a

99KCon (B1, . . . , Bn) whenever ∀i : Ai
a

99K Bi, and
– whenever ∃j : Aj −→ Bj, then (A1, . . . , An) −→Con B where

B = {(a, (B1, . . . , Bn)) | (a,Bj) ∈ Bj and (A1, . . . , An)
a

99KCon (B1, . . . , Bn)}.

Clearly, the definition gives a correct DMTS due to the properties of Con, no-
tably, B is never empty. The following two theorems state the results about the
CI problem and conjunction construction, respectively. The second theorem also
states that the actual result is stronger than originally intended.

Theorem 4.4. Let S1, . . . , Sn be processes. Then S1, . . . , Sn have a common
implementation if and only if (S1, . . . , Sn) ∈ Con.

Theorem 4.5. Let (S1, . . . , Sn) ∈ Con. Then the set of all implementations
of (S1, . . . , Sn) is exactly the intersection of the sets of all implementations of
all Si. In other words, I C (S1, . . . , Sn) if and only if I C Si for all i. Therefore,
(S1, . . . , Sn) as a process of SCon is the greatest lower bound of S1, . . . , Sn with
regard to the modal as well as the thorough refinement.

The greatest consistency relation can be computed using standard greatest
fixed point computation, i.e. we start with all ntuples of processes and eliminate
those that violate the conditions. One elimination step can clearly be done in
polynomial time. As the number of all ntuples is at most |P|n, this means that
the common implementation problem may be solved in PTIME, if n is fixed; and
in EXPTIME, if n is a part of the input. The problem is also PTIME/EXPTIME-
hard, which follows from (a) PTIME-hardness of bisimulation of two LTSs and
(b) EXPTIME-hardness of the common implementation problem for ordinary
MTS [14]. The statement of Theorem 4.1 thus follows.

Note that even if S1, . . . , Sn are MTSs, (S1, . . . , Sn) may not be an MTS.
Indeed, there exist MTSs without a greatest lower bound that is also an MTS;
there may only be several maximal lower bounds, see Fig. 5. This gives another
justification for using DMTS instead of MTS. However, if the MTSs are moreover
deterministic, then the greatest lower bound is—as our algorithm computes it—
also a deterministic MTS [16].

5 Conclusion and Future Work

Our generalization of the known algorithms has shown that refinement prob-
lems on DMTS are not harder than for MTS. As the first main result, we have
solved the LTL model checking and synthesis problems and shown how the model
checking approach helps overcoming difficulties with the parallel composition.

We have implemented the algorithm in
−→=⇒99K
MoTraS, our prototype tool available

103

S1 S2 (S1, S2)

a
a

b, c

a a

b c b c

M1 M2

a a a a

b c b c

Fig. 5. MTSs S1, S2, their greatest lower bound (S1, S2), and their two maximal MTS
lower bounds M1, M2

at http://anna.fi.muni.cz/~xbenes3/MoTraS/ (the site includes further de-
tails about the tool and its functionality). As the second main result, we have
given a general solution to the common implementation problem and conjunctive
composition.

There are several possible extensions of DMTS such as the mixed variant
(where must transition need not be syntactically under the may transitions)
or systems with partial valuation on states [3]. Yet another modification adds
weights on transitions [16]. It is not clear whether all results of this paper can
be extended to these systems and whether the respective complexities remain
the same.

References

1. Larsen, K.G., Nyman, U., Wasowski, A.: Modeling software product lines using
color-blind transition systems. STTT 9(5-6) (2007) 471–487

2. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, IEEE Computer
Society (1988) 203–210

3. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bulletin of the EATCS no. 95 (2008) 94–129

4. Raclet, J.B.: Residual for component specifications. In: Proc. of the 4th Interna-
tional Workshop on Formal Aspects of Component Software. (2007)

5. Bertrand, N., Pinchinat, S., Raclet, J.B.: Refinement and consistency of timed
modal specifications. In: Proc. of LATA’09. Volume 5457 of LNCS., Springer (2009)
152–163

6. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories? In: ACSD, IEEE (2009) 119–127

7. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Proc. of FSE’04,
ACM (2004) 43–52

8. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation
for three-valued program analysis. In: Proc. of ESOP’01. Volume 2028 of LNCS.,
Springer (2001) 155–169

9. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Proc. CONCUR’01. Volume 2154 of LNCS., Springer
(2001) 426–440

10. Nanz, S., Nielson, F., Nielson, H.R.: Modal abstractions of concurrent behaviour.
In: Proc. of SAS’08. Volume 5079 of LNCS., Springer (2008) 159–173

104

11. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS, IEEE Computer Society (1990) 108–117

12. Fecher, H., Steffen, M.: Characteristic mu-calculus formulas for underspecified
transition systems. ENTCS 128(2) (2005) 103–116

13. Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an
one-selecting variant. J. of Logic and Alg. Program. 77(1-2) (2008) 20–39

14. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: EXPTIME-
complete decision problems for mixed and modal specifications. In: 15th Interna-
tional Workshop on Expressiveness in Concurrency. (2008)

15. Beneš, N., Křet́ınský, J., Larsen, K., Srba, J.: On determinism in modal transition
systems. Theoretical Computer Science 410(41) (2009) 4026–4043

16. Juhl, L., Larsen, K.G., Srba, J.: Introducing modal transition systems with weight
intervals. (Submitted.)

17. Bruns, G., Godefroid, P.: Generalized model checking: Reasoning about partial
state spaces. In: CONCUR 2000. Volume 1877 of LNCS., Springer (2000) 168–182

18. Godefroid, P., Piterman, N.: LTL generalized model checking revisited. In: VM-
CAI. Volume 5403 of LNCS., Springer (2009) 89–104

19. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Software Eng. 35(3) (2009) 384–406

20. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: The modal transi-
tion system analyser. In: Proc. of ASE’08, IEEE (2008) 475–476

21. Beneš, N., Černá, I., Křet́ınský, J.: Disjunctive modal transition systems and
generalized LTL model checking. Technical report FIMU-RS-2010-12, Faculty of
Informatics, Masaryk University, Brno (2010)

22. Beneš, N., Křet́ınský, J.: Process algebra for modal transition systemses. In:
MEMICS. Volume 16 of OASICS., Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, Germany (2010) 9–18

23. Beneš, N., Křet́ınský, J., Larsen, K.G., Srba, J.: Checking thorough refinement on
modal transition systems is EXPTIME-complete. In: ICTAC 2009. Volume 5684
of LNCS., Springer (2009)

24. Pnueli, A.: The temporal logic of programs. In: FOCS, IEEE (1977) 46–57
25. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-

based software model checking. In: Proceedings of IFM’04. Volume 2999 of LNCS.,
Springer-Verlag (2004) 128–147

26. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model
checking. In: CAV. Volume 2404 of LNCS. Springer (2002) 137–151

27. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In:
VMCAI. Volume 2575 of LNCS., Springer (2003) 206–222

28. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
ICALP. Volume 372 of LNCS., Springer (1989) 652–671

29. Dams, D., Namjoshi, K.S.: Automata as abstractions. In: VMCAI. Volume 3385
of LNCS. (2005) 216–232

30. Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments. ACM
Trans. Comput. Log. 5(1) (2004) 1–25

31. Piterman, N., Pnueli, A.: Faster solution of rabin and streett games. In: Proceed-
ings of LICS’06, IEEE press (2006) 275–284

32. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)

105

106

Paper C:

Parametric modal transition systems

Nikola Beneš, Jan Křetı́nský, Kim G. Larsen, Mikael H. Moller, and Jiri Srba

This paper has been published in Tevfik Bultan and Pao-Ann Hsiung (eds.): Au-
tomated Technology for Verification and Analysis, 9th International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011. Proceedings, volume 6996 of Lec-
ture Notes in Computer Science, pages 275–289. Springer, 2011. Copyright c© by
Springer-Verlag. [BKL+11]

Summary

MTS and their mixed and disjunctive extensions lack the ability to express prac-
tically useful modalities such as exclusive choices (exactly one of the possible
options is always available in the implementation), persistent choices (an imple-
mentation always offers the same choices in states implementing the same spec-
ification) or conditional choices (the choices are dependent on each other across
the whole system). Therefore, we extend MTS with parameters (PMTS) and ex-
press modalities with an obligation function introduced in Paper A extended to
general Boolean expressions over transitions as well as parameters. Further, we
also provide the respective notion of modal refinement and provide a detailed
account on its complexity for the most relevant subclasses of PMTS.

Author’s contribution: 30 %

• participating in the discussions,

• contributing, in particular, to defining the framework and finding solu-
tions to several complexity problems,

• writing parts of the paper.

107

108

Parametric Modal Transition Systems

Nikola Beneš2? Jan Křet́ınský2,3?? Kim G. Larsen1

Mikael H. Møller1 Jǐŕı Srba1? ? ?

1 Aalborg University, Denmark
2 Masaryk University, Czech Republic

3 Technische Universität München, Germany

Abstract. Modal transition systems (MTS) is a well-studied specifi-
cation formalism of reactive systems supporting a step-wise refinement
methodology. Despite its many advantages, the formalism as well as its
currently known extensions are incapable of expressing some practically
needed aspects in the refinement process like exclusive, conditional and
persistent choices. We introduce a new model called parametric modal
transition systems (PMTS) together with a general modal refinement
notion that overcome many of the limitations and we investigate the
computational complexity of modal refinement checking.

1 Introduction

The specification formalisms of Modal Transition Systems (MTS) [11, 1] grew
out of a series of attempts to achieve a flexible and easy-to-use compositional
development methodology for reactive systems. In fact the formalism of MTS
may be seen as a fragment of a temporal logic [5], while having a behavioural
semantics allowing for an easy composition with respect to process constructs.

In short, MTS are labelled transition systems equipped with two types of
transitions: must transitions which are mandatory for any implementation, and
may transitions which are optional for an implementation. Refinement of an
MTS now essentially consists of iteratively resolving the unsettled status of may
transitions: either by removing them or by turning them into must transitions.

It is well admitted (see e.g. [15]) that MTS and their extensions like dis-
junctive MTS (DMTS) [12], 1-selecting MTS (1MTS) [6] and transition systems
with obligations (OTS) [4] provide strong support for a specification formalism
allowing for step-wise refinement process. Moreover, the MTS formalisms have
applications in other contexts, which include verification of product lines [8, 10],
interface theories [17, 15] and modal abstractions in program analysis [7, 9, 13].

Unfortunately, all of these formalisms lack the capability to express some
intuitive specification requirements like exclusive, conditional and persistent

? The author is supported by Czech Grant Agency, grant no. GAP202/11/0312.
?? The author is a holder of Brno PhD Talent Financial Aid and is supported by the

Czech Science Foundation, grant No. P202/10/1469.
? ? ? The author is partially supported by Ministry of Education of The Czech Republic,

grant no. MSM 0021622419.

109

choices. In this paper we extend considerably the expressiveness of MTS and
its variants so that it can model arbitrary Boolean conditions on transitions and
also allows to instantiate persistent transitions. Our model, called parametric
modal transition systems (PMTS), is equipped with a finite set of parameters
that are fixed prior to the instantiation of the transitions in the specification.
The generalized notion of modal refinement is designed to handle the paramet-
ric extension and it specializes to the well-studied modal refinements on all the
subclasses of our model like MTS, disjunctive MTS and MTS with obligations.

To the best of our knowledge, this is the first sound attempt to introduce
persistence into a specification formalism based on modal transition systems. The
most related work is by Fecher and Schmidt on 1-selecting MTS [6] where the
authors allow to model exclusive-or and briefly mention the desire to extend the
formalism with persistence. However, as in detail explained in [3], their definition
does not capture the notion of persistence. Our formalism is in several aspects
semantically more general and handles persistence in a complete and uniform
manner.

The main technical contribution, apart from the formalism itself, is a compre-
hensive complexity characterization of modal refinement checking on all of the
practically relevant subclasses of PMTS. We show that the complexity ranges
from P-completeness to Πp

4-completeness, depending on the requested generality
of the PMTS specifications on the left-hand and right-hand sides.

2 Parametric Modal Transition Systems

In this section we present the formalism of parametric modal transition systems
(PMTS), starting with a motivating example and continuing with the formal
definitions, followed by the general notion of modal refinement.

2.1 Motivation

Modal transition systems and their extensions described in the literature are
lacking the capability to express several specification requirements like exclusive,
conditional and persistent choices. We shall now discuss these limitations on an
example as a motivation for the introduction of parametric MTS formalism with
general Boolean conditions in specification requirements.

Consider a simple specification of a traffic light controller that can be at any
moment in one of the four predefined states: red , green, yellow or yellowRed .
The requirements of the specification are: when green is on the traffic light may
either change to red or yellow and if it turned yellow it must go to red afterward;
when red is on it may either turn to green or yellowRed , and if it turns yellowRed
(as it is the case in some countries) it must go to green afterwords.

Figure 1a shows an obvious MTS specification (defined formally later on) of
the proposed specification. The transitions in the standard MTS formalism are
either of type may (optional transitions depicted as dashed lines) or must (re-
quired transitions depicted as solid lines). In Figure 1c, Figure 1d and Figure 1e

110

green

red

yellow

yellowRed

go

stop

readygo

ready sto
p

(a) MTS specification S1

go

stop

readygo

ready sto
p

(b) DMTS specification S2

(c) Implementation I1

go

stop

readygo

ready sto
p

(d) Implementation I2

sto
p go

re
ad
y

stop

go

(e) Implementation I3

go

stop

readygo

ready sto
p

Obligation function:
Φ(green) = (stop, red)⊕ (ready , yellow)
Φ(red) = (go, green)⊕ (ready , yellowRed)

(f) Specification S3

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}
Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqYfromG ⇔ (ready , yellow))
Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqYfromR ⇔ (ready , yellowRed))

(g) PMTS specification S4

Fig. 1: Specifications and implementations of a traffic light controller

we present three different implementations of the MTS specification where there
are no more optional transitions. The implementation I1 does not implement
any may transition as it is a valid possibility to satisfy the specification S1. Of
course, in our concrete example, this means that the light is constantly green and
it is clearly an undesirable behaviour that cannot be, however, easily avoided.
The second implementation I2 on the other hand implements all may transi-
tions, again a legal implementation in the MTS methodology but not a desirable
implementation of a traffic light as the next action is not always deterministi-
cally given. Finally, the implementation I3 of S1 illustrates the third problem
with the MTS specifications, namely that the choices made in each turn are not
persistent and the implementation alternates between entering yellow or not.
None of these problems can be avoided when using the MTS formalism.

111

A more expressive formalism of disjunctive modal transition systems (DMTS)
can overcome some of the above mentioned problems. A possible DMTS specifi-
cation S2 is depicted in Figure 1b. Here the ready and stop transitions, as well
as ready and go ones, are disjunctive, meaning that it is still optional which
one is implemented but at least one of them must be present. Now the system
I1 in Figure 1c is not a valid implementation of S2 any more. Nevertheless, the
undesirable implementations I2 and I3 are still possible and the modelling power
of DMTS is insufficient to eliminate them.

Inspired by the recent notion of transition systems with obligations [4], we
can model the traffic light using specification as a transition system with ar-
bitrary4 obligation formulae. These formulae are Boolean propositions over the
outgoing transitions from each state, whose satisfying assignments yield the al-
lowed combinations of outgoing transitions. A possible specification called S3

is given in Figure 1f and it uses the operation of exclusive-or. We will follow
an agreement that whenever the obligation function for some node is not listed
in the system description then it is implicitly understood as requiring all the
available outgoing transitions to be present. Due to the use of exclusive-or in
the obligation function, the transition systems I1 and I2 are not valid imple-
mentation any more. Nevertheless, the implementation I3 in Figure 1e cannot
be avoided in this formalism either.

Finally, the problem with the alternating implementation I3 is that we can-
not enforce in any of the above mentioned formalisms a uniform (persistent)
implementation of the same transitions in all its states. In order to overcome
this problem, we propose the so-called parametric MTS where we can, more-
over, choose persistently whether the transition to yellow is present or not via
the use of parameters. The PMTS specification with two parameters reqYfromR
and reqYfromG is shown in Figure 1g. Fixing a priori the (Boolean) values of the
parameters makes the choices permanent in the whole implementation, hence we
eliminate also the last problematic implementation I3.

2.2 Definition of Parametric Modal Transition System

We shall now formally capture the intuition behind parametric MTS introduced
above. First, we recall the standard propositional logic.

A Boolean formula over a set X of atomic propositions is given by the fol-
lowing abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X. The set of all Boolean formulae over the set X is denoted
by B(X). Let ν ⊆ X be a truth assignment, i.e. a set of variables with value
true, then the satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and
the satisfaction of the remaining Boolean connectives is defined in the standard
way. We also use the standard derived operators like exclusive-or ϕ⊕ ψ = (ϕ ∧
4 In the transition systems with obligations only positive Boolean formulae are allowed.

112

¬ψ) ∨ (¬ϕ ∧ ψ), implication ϕ ⇒ ψ = ¬ϕ ∨ ψ and equivalence ϕ ⇔ ψ =
(¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS.

Definition 1. A parametric MTS (PMTS) over an action alphabet Σ is a tuple
(S, T, P,Φ) where S is a set of states, T ⊆ S×Σ×S is a transition relation, P is
a finite set of parameters, and Φ : S → B((Σ×S)∪P) is an obligation function
over the atomic propositions containing outgoing transitions and parameters.
We implicitly assume that whenever (a, t) ∈ Φ(s) then (s, a, t) ∈ T . By T (s) =
{(a, t) | (s, a, t) ∈ T} we denote the set of all outgoing transitions of s.

We recall the agreement that whenever the obligation function for some node
is not listed in the system description then it is implicitly understood as Φ(s) =∧
T (s), with the empty conjunction being tt.
We call a PMTS positive if, for all s ∈ S, any negation occurring in Φ(s) is

applied only to a parameter. A PMTS is called parameter-free if P = ∅. We can
now instantiate the previously studied specification formalisms as subclasses of
PMTS.

Definition 2. A PMTS is called

– transition system with obligation (OTS) if it is parameter-free and positive,
– disjunctive modal transition system (DMTS) if it is an OTS and Φ(s) is in

the conjunctive normal form for all s ∈ S,
– modal transition system (MTS) if it is a DMTS and Φ(s) is a conjunction

of positive literals (transitions) for all s ∈ S, and
– implementation (or simply a labelled transition system) if it is an MTS and

Φ(s) =
∧
T (s) for all s ∈ S.

Note that positive PMTS, despite the absence of a general negation and the
impossibility to define for example exclusive-or, can still express useful require-
ments like Φ(s) = p ⇒ (a, t) ∧ ¬p ⇒ (b, u) requiring in a state s a conditional
presence of certain transitions. Even more interestingly, we can enforce binding
of actions in different states, thus ensuring certain functionality. Take a simple
two state-example: Φ(s) = p ⇒ (request , t) and Φ(t) = p ⇒ (response, s). We
shall further study OTS with formulae in the disjunctive normal form that are
dual to DMTS and whose complexity of parallel composition is lower [4] while
still being as expressive as DMTS.

2.3 Modal Refinement

A fundamental advantage of MTS-based formalisms is the presence of modal
refinement that allows for a step-wise system design (see e.g. [1]). We shall
now provide such a refinement notion for our general PMTS model so that
it will specialize to the well-studied refinement notions on its subclasses. In the
definition, the parameters are fixed first (persistence) followed by all valid choices
modulo the fixed parameters that now behave as constants.

113

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqYfromG ⇔ (ready , yellow))

Φ(red) = ((go, green)⊕ (ready , yellowRed))
∧(reqYfromR ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

Parameters: {reqY }

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqY ⇔ (ready , yellow))

Φ(red) = ((go, green)⊕ (ready , yellowRed))
∧(reqY ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

Fig. 2: Example of modal refinement

First we set the following notation. Let (S, T, P,Φ) be a PMTS and ν ⊆ P
be a truth assignment. For s ∈ S, we denote by Tranν(s) = {E ⊆ T (s) | E∪ν |=
Φ(s)} the set of all admissible sets of transitions from s under the fixed truth
values of the parameters.

We can now define the notion of modal refinement between PMTS.

Definition 3 (Modal Refinement). Let (S1, T1, P1,Φ1) and (S2, T2, P2,Φ2)
be two PMTSs. A binary relation R ⊆ S1×S2 is a modal refinement if for each
µ ⊆ P1 there exists ν ⊆ P2 such that for every (s, t) ∈ R holds

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

We say that s modally refines t, denoted by s ≤m t, if there exists a modal
refinement R such that (s, t) ∈ R.

Example 4. Consider the rightmost PMTS in Figure 2. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can
be refined by the system in the middle of the figure having only one parameter
reqY . This single parameter simply binds the two original parameters to the same
value. The PMTS in the middle can be further refined into the implementations
where either yellow is always used in both cases, or never at all. Notice that there
are in principle infinitely many implementations of the system in the middle,
however, they are all bisimilar to either of the two implementations depicted in
the left of Figure 2.

In the next section, we shall investigate the complexity of positive subclasses
of PMTS. For this reason we prove the following lemma showing how the defi-
nition of modal refinement can be simplified in this particular case.

We shall first realize that in positive PMTS and for any truth assignment ν,
Tranν(s) is upward closed, meaning that if M ∈ Tranν(s) and M ⊆ M ′ ⊆ T (s)
then M ′ ∈ Tranν(s).

114

Lemma 5. Consider Definition 3 where the right-hand side PMTS is positive.
Now the condition in Definition 3 can be equivalently rewritten as a conjunction
of conditions (1) and (2)

∀M ∈ Tranµ(s) : ∀(a, s′) ∈M : ∃(a, t′) ∈ T (t) : (s′, t′) ∈ R (1)

∀M ∈ Tranµ(s) : matcht(M) ∈ Tranν(t) (2)

where matcht(M) denotes the set {(a, t′) ∈ T (t) | ∃(a, s′) ∈ M : (s′, t′) ∈ R}. If
the left-hand side PMTS is moreover positive too, Condition (1) is equivalent to

∀(a, s′) ∈ T (s) : ∃(a, t′) ∈ T (t) : (s′, t′) ∈ R . (3)

Proof. We shall first argue that the condition of modal refinement is equivalent
to the conjunction of Conditions (4) and (5).

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R (4)

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R (5)

Let µ, ν, R, s and t be fixed. Definition 3 trivially implies both Conditions (4)
and (5). We now prove that (4) and (5) imply the condition in Definition 3.

Let M ∈ Tranµ(s) be arbitrary. There is some N1 ∈ Tranν(t) satisfying (4)
and some N2 ∈ Tranν(t) satisfying (5). Let now N ′1 = {(a, t′) ∈ N1 | ∃(a, s′) ∈
M : (s′, t′) ∈ R}. Consider N = N ′1 ∪N2. Clearly, as Tranν(t) is upward closed,
N ∈ Tranν(t). Moreover, due to Condition (4) we have some (a, t′) ∈ N1 such
that (s′, t′) ∈ R. Clearly, (a, t′) ∈ N ′1 and thus also in N .

Now let (a, t′) ∈ N be arbitrary. If (a, t′) ∈ N2, due to Condition (5) we
have some (a, s′) ∈ M such that (s′, t′) ∈ R. If (a, t′) 6∈ N2 then (a, t′) ∈ N ′1.
The existence of (a, s′) ∈ M such that (s′, t′) ∈ R is then guaranteed by the
definition of N ′1.

Let us now proceed with proving the claims of the lemma. Condition (4)
is trivially equivalent to (1) since Tranν(t) is upward closed. Condition (5) is
equivalent to (2). Indeed, (2) clearly implies (5) and we show that also (5) implies
(2). Let M be arbitrary. We then have some N satisfying (5). Clearly, N ⊆
matcht(M). Since Tranν(t) is upward closed, N ∈ Tranν(t) implies matcht(M) ∈
Tranν(t). Due to the upward closeness of both Tranµ(s) and Tranν(t) in the case
of a positive left-hand side, the equivalence of (1) and (3) follows. ut

Theorem 6. Modal refinement as defined on PMTS coincides with the standard
modal refinement notions on MTS, DMTS and OTS. On implementations it
coincides with bisimulation.

Proof. The fact that Definition 3 coincides with modal refinement on OTS as
defined in [4] is a straightforward corollary of Lemma 5 and its proof. Indeed, the
two conditions given in [4] are exactly conditions (3) and (5). As the definition of
modal refinement on OTS coincides with modal refinement on DMTS (as shown
in [4]) and thus also on MTS, the proof is done.

However, for the reader’s convenience, we present a direct proof that Defini-
tion 3 coincides with modal refinement on MTS. Assume a parameter-free PMTS

115

Table 1: Complexity of modal refinement checking of parameter-free systems
Boolean Positive pCNF pDNF MTS

Boolean Πp
2-complete coNP-complete

∈ coNP
coNP-complete

∈ coNP
P-hard P-hard

Positive Πp
2-complete coNP-complete P-complete coNP-complete P-complete

pCNF Πp
2-complete coNP-complete P-complete coNP-complete P-complete

pDNF Πp
2-complete P-complete P-complete P-complete P-complete

MTS Πp
2-complete P-complete P-complete P-complete P-complete

Impl NP-complete P-complete P-complete P-complete P-complete

(S, T, P,Φ) where Φ(s) is a conjunction of transitions for all s ∈ S, in other words
it is a standard MTS where the must transitions are listed in the conjunction
and the may transitions are simply present in the underlying transition system
but not a part of the conjunction. Observe that every transition (s, a, t) ∈ T
is contained in some M ∈ Tran∅(s). Further, each must transition (s, a, t) ∈ T
is contained in all M ∈ Tran∅(s). Therefore, the first conjunct in Definition 3
requires that for all may transition from s there be a corresponding one from
t with the successors in the refinement relation. Similarly, the second conjunct
now requires that for all must transitions from t there be a corresponding must
transition from s. This is exactly the standard notion of modal refinement as
introduced in [11]. ut

3 Complexity of Modal Refinement Checking

We shall now investigate the complexity of refinement checking on PMTS and its
relevant subclasses. Without explicitly mentioning it, we assume that all consid-
ered PMTS are now finite and the decision problems are hence well defined. The
complexity bounds include classes from the polynomial hierarchy (see e.g. [14])
where for example Σp

0 = Πp
0 = P, Πp

1 = coNP and Σp
1 = NP.

3.1 Parameter-Free Systems

Since even the parameter-free systems have interesting expressive power and the
complexity of refinement on OTS has not been studied before, we first focus on
parameter-free systems. Moreover, the results of this subsection are then applied
to parametric systems in the next subsection. The results are summarized in
Table 1. The rows in the table correspond to the restrictions on the left-hand
side PMTS while the columns correspond to the restrictions on the right-hand
side PMTS. Boolean denotes the general system with arbitrary negation. Positive
denotes the positive systems, in this case exactly OTS. We use pCNF and pDNF
to denote positive systems with formulae in conjunctive and disjunctive normal
forms, respectively. In this case, pCNF coincides with DMTS. The special case of
satisfaction relation, where the refining system is an implementation is denoted
by Impl. We do not include Impl to the columns as it makes sense that an
implementation is refined only to an implementation and here modal refinement

116

corresponds to bisimilarity that is P-complete [2] (see also [16]). The P-hardness
is hence the obvious lower bound for all the problems mentioned in the table.

We start with the simplest NP-completeness result.

Proposition 7. Modal refinement between an implementation and a parameter-
free PMTS is NP-complete.

Proof. The containment part is straightforward. First we guess the relation R.
As s is an implementation then the set Tran∅(s) is a singleton. We thus only
need to further guess N ∈ Tranν(t) and then in polynomial time verify the two
conjuncts in Definition 3.

The hardness part is by a simple reduction from SAT. Let ϕ(x1, . . . , xn) be an
given Boolean formula (instance of SAT). We construct two PMTSs (S, T, P,Φ)
and (S′, T ′, P ′,Φ′) such that (i) S = {s, s′}, T = (s, a, s′), P = ∅, Φ(s) = (a, s′)
and Φ(s′) = tt and (ii) S′ = {t, t1, . . . , tn}, T = {(t, a, ti) | 1 ≤ i ≤ n.}, P ′ = ∅,
Φ(t) = ϕ[(a, ti)/xi] and Φ(ti) = tt for all i, 1 ≤ i ≤ n. Clearly, ϕ is satisfiable if
and only if s ≤m t. ut

Next we show that modal refinement is Πp
2-complete. The following lemma

introduces a gadget used also later on in other hardness results. We will refer to
it as the ∗-construction.

Proposition 8. Modal refinement between two parameter-free PMTS is Πp
2-

hard even if the left-hand side is an MTS.

Proof. The proof is by polynomial time reduction from the validity of the quan-
tified Boolean formula ψ ≡ ∀x1 . . . ∀xn∃y1 . . . ∃ym : ϕ(x1, . . . , xn, y1, . . . , ym) to
the refinement checking problem s ≤m t where s and t are given as follows.

s

s′

· · ·x1 x2 xn ∗

Φ(s) = (∗, s′)

t

t′ t1 t2 tm

· · ·

· · ·

x1 x2 xn ∗ ∗ ∗ ∗

Φ(t) = ϕ[(xi, t
′)/xi, (∗, ti)/yi]

Assume that ψ is true. Let M ∈ Tran∅(s) (clearly (∗, s′) ∈M) and we want
to argue that there is N ∈ Tran∅(t) with (∗, t′) ∈ N such that for all (xi, s

′) ∈M
there is (xi, t

′) ∈ N (clearly the states s′, t′ and ti are in modal refinement) and
for all (xi, t

′) ∈ N there is (xi, s
′) ∈ M . Such an N can be found by simply

including (xi, t
′) whenever (xi, s

′) ∈ M and by adding also (∗, t′) into N . As ψ
is true, we include into N also all (∗, ti) whenever yi is set to true in ψ. Hence
we get s ≤m t.

On the other hand if ψ is false then we pick M ∈ Tran∅(s) such that M
corresponds to the values of xi’s such that there are no values of y1, . . . , ym that
make ψ true. This means that from t there will be no transitions as Tran∅(t) = ∅

117

assuming that (xi, t
′) have to be set to true whenever (xi, s

′) ∈ M , otherwise
the refinement between s and t will fail. However, now (∗, s′) ∈ M cannot be
matched from t and hence s 6≤m t. ut
Proposition 9. Modal refinement between two parameter-free PMTS is in Πp

2 .

Proof. The containment follows directly from Definition 3 (note that the pa-
rameters are empty) and the fact that the last conjunction in Definition 3 is
polynomially verifiable once the sets M and N were fixed. The relation R could
be in principle guessed before it is verified, however, this would increase the
complexity bound to Σp

3 . Instead, we will initially include all pairs (polynomi-
ally many) into R and for each pair ask whether for every M there is N such
that the two conjuncts are satisfied. If it fails, we remove the pair and continue
until we reach (after polynomially many steps) the greatest fixed point. The
complexity in this way remains in Πp

2 . We shall use this standard method also
in further proofs and refer to it as a co-inductive computation of R. ut

Positive Right-Hand Side. We have now solved all the cases where the right-
hand side is arbitrary. We now look at the cases where the right-hand side is
positive. In the proofs that follow we shall use the alternative characterization of
refinement from Lemma 5. The following proposition determines the subclasses
on which modal refinement can be decided in polynomial time.

Proposition 10. Modal refinement on parameter-free PMTS is in P, provided
that both sides are positive and either the left-hand side is in pDNF or the right-
hand side is in pCNF.

Proof. Due to Lemma 5, the refinement is equivalent to the conjunction of (3)
and (2). Clearly, (3) can be checked in P. We show that Condition (2) can be
verified in P too. Recall that (2) says that

∀M ∈ Tranµ(s) : matcht(M) ∈ Tranν(t)

where matcht(M) = {(a, t′) ∈ T (t) | ∃(a, s′) ∈M : (s′, t′) ∈ R}.
First assume that the left-hand side is in pDNF. If for some M the Condi-

tion (2) is satisfied then it is also satisfied for all M ′ ⊇M , as Tranµ(s) is upwards
closed. It it thus sufficient to verify the condition for all minimal elements (wrt.
inclusion) of Tranµ(s). In this case it correspond to the clauses of Φ(s). Thus we
get a polynomial time algorithm as shown in Algorithm 1.

Second, assume that the right-hand side is in pCNF. Note that Condition (2)
can be equivalently stated as

∀M : matcht(M) 6∈ Tranν(t)⇒M 6∈ Tranµ(s) (6)

As Φ(t) is in conjunctive normal form then N ∈ Tranν(t) is equivalent to say-
ing that N has nonempty intersection with each clause of Φ(t). We may thus
enumerate all maximal N 6∈ Tranν(t). Having a maximal N 6∈ Tranν(t), we can
easily construct M such that N = matcht(M). This leads to the polynomial
time Algorithm 2.

The statement of the proposition thus follows. ut

118

Algorithm 1: Test for Condition (2) of modal refinement (pDNF)

Input : states s and t such that Φ(s) is in positive DNF and Φ(t) is positive,
relation R

Output: true if s, t satisfy the refinement condition, false otherwise
foreach clause (a1, s1) ∧ · · · ∧ (ak, sk) in Φ(s) do

N ← {(a, t′) ∈ T (t) | ∃i : ai = a ∧ (si, t
′) ∈ R};

if N 6∈ Tranν(t) then return false;

return true;

Algorithm 2: Test for Condition (2) of modal refinement (pCNF)

Input : states s and t such that Φ(s) is positive and Φ(t) is in positive CNF,
relation R

Output: true if s, t satisfy the refinement condition, false otherwise
foreach clause (a1, t1) ∨ · · · ∨ (ak, tk) in Φ(t) do

M ← T (s) \ {(a, s′) ∈ T (s) | ∃i : ai = a ∧ (s′, ti) ∈ R};
if M ∈ Tranµ(s) then return false;

return true;

Proposition 11. Modal refinement on parameter-free PMTS is in coNP, if the
right-hand side is positive.

Proof. Due to Lemma 5 we can solve the two refinement conditions separately.
Furthermore, both Condition (1) an (2) of Lemma 5 can be checked in coNP. The
guessing of R is done co-inductively as described in the proof of Proposition 9.

ut

Proposition 12. Modal refinement on parameter-free systems is coNP-hard,
even if the left-hand side is in positive CNF and the right-hand side is in positive
DNF.

Proof. We reduce SAT into non-refinement. Let ϕ(x1, . . . , xn) be a formula in
CNF. We modify ϕ into an equivalent formula ϕ′ as follows: add new variables
x̃1, . . . , x̃n and for all i change all occurrences of ¬xi into x̃i and add new clauses
(xi ∨ x̃i) and (¬xi ∨ ¬x̃i).

Observe now that all clauses contain either all positive literals or all negative
literals. Let ψ+ denote a CNF formula that contains all positive clauses of ϕ′

and ψ− denote a CNF formula that contains all negative clauses of ϕ′. As ϕ′ =
ψ+ ∧ ψ− it is clear that ϕ′ is satisfiable if and only if (ψ+ ⇒ ¬ψ−) is not valid.

Now we construct two PMTSs (S, T, P,Φ) and (S′, T ′, P ′,Φ′) over Σ =
{x1, . . . , xn, x̃1, . . . , x̃n} as follows: (i) S = {s, s′}, T = {(s, xi, s′), (s, x̃i, s′) |
1 ≤ i ≤ n}, P = ∅, Φ(s) = ψ+[(xi, s

′)/xi, (x̃i, s
′)/x̃i] and Φ(s′) = tt, and

(ii) S′ = {t, t′}, T ′ = {(t, xi, t′), (t, x̃i, t) | 1 ≤ i ≤ n}, P ′ = ∅, Φ(t) =
¬ψ−[(xi, t

′)/xi, (x̃i, t
′)/x̃i] and Φ(t′) = tt. Note that by pushing the negation

of ψ− inside, this formula can be written as pDNF. It is easy to see that now
s ≤m t if and only if (ψ+ ⇒ ¬ψ−) is valid. Therefore, s 6≤m t if and only if ϕ is
satisfiable. ut

119

Table 2: Complexity of modal refinement checking with parameters
Boolean positive pCNF pDNF

Boolean Πp
4-complete Πp

3-complete
∈ Πp

3 Πp
3-complete

Πp
2-hard

positive Πp
4-complete Πp

3-complete Πp
2-complete Πp

3-complete

pCNF Πp
4-complete Πp

3-complete Πp
2-complete Πp

3-complete

pDNF Πp
4-complete Πp

2-complete Πp
2-complete Πp

2-complete

MTS Σp
3-complete NP-complete NP-complete NP-complete

Impl NP-complete NP-complete NP-complete NP-complete

Note that the exact complexity of modal refinement with the right-hand side
being in positive CNF or MTS and the left-hand side Boolean remains open.

3.2 Systems with Parameters

In the sequel we investigate the complexity of refinement checking in the general
case of PMTS with parameters. The complexities are summarized in Table 2.
We start with an observation of how the results on parameter-free systems can
be applied to the parametric case.

Proposition 13. The complexity upper bounds from Table 1 carry over to Ta-
ble 2, as follows. If the modal refinement in the parameter-free case is in NP,
coNP or Πp

2 , then the modal refinement with parameters is in Πp
2 , Πp

3 and Πp
4 ,

respectively. Moreover, if the left-hand side is an MTS, the complexity upper
bounds shift from NP and Πp

2 to NP and Σp
3 , respectively.

Proof. In the first case, we first universally choose µ, we then existentially choose
ν and modify the formulae Φ(s) and Φ(t) by evaluating the parameters. This
does not change the normal form/positiveness of the formulae. We then perform
the algorithm for the parameter-free refinement. For the second case note that
implementations and MTS have no parameters and we may simply choose (ex-
istentially) ν and run the algorithm for the parameter-free refinement. ut

We now focus on the respective lower bounds (proof of Proposition 15 can
be found in [3]).

Proposition 14. Modal refinement between an implementation and a right-
hand side in positive CNF or in DNF is NP-hard.

Proof. The proof is by reduction from SAT. Let ϕ(x1, . . . , xn) be a formula in
CNF and let ϕ1, ϕ2, . . . , ϕk be the clauses of ϕ. We construct two PMTSs
(S, T, P,Φ) and (S′, T ′, P ′,Φ′) over the action alphabet Σ = {a1, . . . , ak} as
follows: (i) S = {s, s′}, T = {(s, ai, s′) | 1 ≤ i ≤ k}, P = ∅, Φ(s) =

∧
1≤i≤k(ai, s

′)
and Φ(s′) = tt and (ii) S′ = {t} ∪ {ti | 1 ≤ i ≤ k}, T ′ = {(t, ai, ti) | 1 ≤ i ≤ k},
P ′ = {x1, . . . , xn}, Φ′(t) =

∧
1≤i≤k(ai, ti) and Φ′(ti) = ϕi for all 1 ≤ i ≤ k.

Notice that each ϕi in Φ′(ti) is in positive form as we negate only the parameters
xi and every clause ϕi is trivially in DNF. Now we easily get that s ≤m t if and
only if ϕ is satisfiable. ut

120

Proposition 15. Modal refinement is Σp
3-hard even if the left-hand side is MTS.

The following proof introduces a gadget used also later on in other hardness
results. We refer to it as CNF-binding. Further, we use the ∗-construction here.

Proposition 16. Modal refinement is Πp
4-hard even if the left-hand side is in

positive CNF.

Proof (Sketch). Consider a Πp
4-hard QSAT instance, a formula ψ = ∀x∃y∀z∃w :

ϕ(x, y, z, w) with ϕ is in CNF and x, y, z, w vectors of length n. We construct
two system s and t and use the variables {x1, . . . , xn} as parameters for the
left-hand side system s, and {y1, . . . , yn} as parameters for the right-hand side
system t.

s

s′

ti fi zi ∗

Φ(s) = (∗, s′) ∧ CNF-binding

t

t′ ui

ti fi zi ∗ ∗

Φ(t) = (∗, s′) ∧ ϕ[(ti, t
′)/xi, (fi, t

′)/¬xi,

(zi, t
′)/zi, (∗, ui)/wi]

for all 1 ≤ i ≤ n

On the left we require Φ(s) = (∗, s′) ∧
∧

1≤i≤n

(
(xi ⇒ (ti, s

′)) ∧ (¬xi ⇒

(fi, s
′)
)

and call the latter conjunct CNF-binding. Thus the value of each pa-

rameter xi is “saved” into transitions of the system. Note that although both
ti and fi may be present, a “minimal” implementation contains exactly one
of them. On the right-hand side the transitions look similar but we require
Φ(t) = (∗, t) ∧ ϕ′ where ϕ′ is created from ϕ by changing every positive literal
xi into (ti, t

′), every negative literal ¬xi into (fi, t
′), every zi into (zi, t

′), and
every wi into (∗, ui).

We show that ψ is true iff s ≤m t. Assume first that ψ is true. Therefore,
for every choice of parameters xi there is a choice of parameters yi so that
∀z∃w : ϕ(x, y, z, w) is true and, moreover, ti or fi is present on the left whenever
xi or ¬xi is true, respectively (and possibly even if it is false). We set exactly
all these transitions ti and fi on the right, too. Further, for every choice of
transitions zi on the left there are wi’s so that ϕ(x, y, z, w) holds. On the right,
we implement a transition (zi, t

′) for each zi set to true and (∗, ui) for each wi set
to true. Now ϕ′ is satisfied as it has only positive occurrences of (ti, t

′) and (fi, t
′)

and hence the extra ti’s and fi’s do not matter. Now for every implementation
of s we obtained an implementation of t. Moreover, their transitions match.
Indeed, ti’s and fi’s were set the same as on the left, similarly for zi’s. As for the
∗-transition, we use the same argumentation as in the original ∗-construction.
On the left, there is always one. On the right, there can be more of them due to
wi’s but at least one is also guaranteed by Φ(t).

Let now s ≤m t. Then for every choice of xi’s—and thus also for every choice
of exactly one transition of ti, fi for each i—there are yi’s so that every choice of
transitions zi can be matched on the right so that ϕ′ is true with some transitions

121

(∗, ui). Since choices of ti/fi correspond exactly to choices of xi it only remains
to set wi true for each transition (∗, ui) on the right, thus making ϕ true. ut

Based on the idea of CNF-binding, the following propositions are proved in [3].

Proposition 17. Modal refinement is Πp
3-hard for the left-hand side in positive

CNF and the right-hand side in positive DNF.

Proposition 18. Modal refinement is Πp
2-hard even if both sides are in positive

CNF.

The last three propositions use a modification of the CNF-binding idea called
DNF-binding. Instead of (xi ⇒ (ti, s

′)) ∧ (¬xi ⇒ (fi, s
′)) we use (xi ∧ (ti, s

′)) ∨
(¬xi ∧ (fi, s

′)) to bind parameters of the left-hand side system with transitions
of the right-hand side system. Details are in [3].

Proposition 19. Modal refinement is Πp
2-hard even if left-hand side is in posi-

tive DNF and right-hand side is in positive CNF.

Proposition 20. Modal refinement is Πp
2-hard even if left-hand side is in posi-

tive DNF and right-hand side is in positive DNF.

Proposition 21. Modal refinement is Πp
4-hard even if the left-hand side is in

positive DNF.

Although the complexity may seem discouraging in many cases, there is an
important remark to make. The refinement checking may be exponential, but
only in the outdegree of each state and the number of parameters, while it is
polynomial in the number of states. As one may expect the outdegree and the
number of parameters to be much smaller than the number of states, this means
that the refinement checking may still be done in a rather efficient way. This
claim is furthermore supported by the existence of efficient SAT solvers that
may be employed to check the inner conditions in the modal refinement.

4 Conclusion and Future Work

We have introduced an extension of modal transition systems called PMTS for
parametric systems. The formalism is general enough to capture several features
missing in the other extensions, while at the same time it offers an easy to un-
derstand semantics and a natural notion of modal refinement that specializes to
the well-known refinements already studied on the subclasses of PMTS. Finally,
we provided a comprehensive overview of complexity of refinement checking on
PMTS and its subclasses.

We believe that our formalism is a step towards a more applicable notion
of specification theories based on MTS. In the future work we will study logical
characterizations of the refinement relation, investigate compositional properties
and focus on introducing quantitative aspects into the model in order to further
increase its applicability.

122

Acknowledgments. We would like to thank to Sebastian Bauer for suggesting the
traffic light example and for allowing us to use his figure environments.

References

1. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bulletin of the EATCS no. 95 pp. 94–129 (2008)

2. Balcazar, J.L., Gabarró, J., Santha, M.: Deciding bisimilarity is P-complete. Formal
aspects of computing 4(6 A), 638–648 (1992)

3. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal
transition systems. Technical report FIMU-RS-2011-03, Faculty of Informatics,
Masaryk University, Brno (2011)

4. Beneš, N., Křet́ınský, J.: Process algebra for modal transition systemses. In:
Matyska, L., Kozubek, M., Vojnar, T., Zemćık, P., Antos, D. (eds.) MEMICS.
OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany (2010)

5. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor. Comput.
Sci. 106(1), 3–20 (1992)

6. Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an
one-selecting variant. J. of Logic and Alg. Program. 77(1-2), 20–39 (2008)

7. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Proc. CONCUR’01. LNCS, vol. 2154, pp. 426–440.
Springer (2001)

8. Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and model checking soft-
ware product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS. Lecture Notes
in Computer Science, vol. 5051, pp. 113–131. Springer (2008)

9. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation
for three-valued program analysis. In: Proc. of ESOP’01. LNCS, vol. 2028, pp.
155–169. Springer (2001)

10. Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency.
In: Proc. of CONCUR’07. LNCS, vol. 4703, pp. 105–119. Springer (2007)

11. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS. pp. 203–210. IEEE
Computer Society (1988)

12. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS. pp. 108–117. IEEE Computer Society (1990)

13. Nanz, S., Nielson, F., Nielson, H.R.: Modal abstractions of concurrent behaviour.
In: Proc. of SAS’08. LNCS, vol. 5079, pp. 159–173. Springer (2008)

14. Papadimitriou, C.H.: Computational complexity. Addison-Wesley Publishing Co.,
Inc., Reading, MA, USA (1994)

15. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories? In: ACSD. pp. 119–127. IEEE (2009)

16. Sawa, Z., Jančar, P.: Behavioural equivalences on finite-state systems are PTIME-
hard. Computing and informatics 24(5), 513–528 (2005)

17. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Proc. of FSE’04.
pp. 43–52. ACM (2004)

123

124

Paper D:

Dual-priced modal transition systems with time durations

Nikola Beneš, Jan Křetı́nský, Kim G. Larsen, Mikael H. Moller, and Jiri Srba

This paper has been published in Nikolaj Bjørner and Andrei Voronkov (eds.):
Logic for Programming, Artificial Intelligence, and Reasoning - 18th International
Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceedings, vol-
ume 7180 of Lecture Notes in Computer Science, pages 122–137. Springer, 2012.
Copyright c© by Springer-Verlag. [BKL+12]

Summary

We extend BMTS and introduce time durations of transitions. The time is chosen
non-deterministically from an interval either by the implementator or by the un-
controllable environment at run time. Further, we introduce price for performing
an action per unit time paid at run time and a price for implementing an action
paid once at the implementation time. The latter models the hardware investment
cost while the former the running cost of the resulting implementation. We show
how to construct the “cheapest” implementation, i.e. an implementation with the
lowest average running cost for a given maximum investment cost. To this end,
we reduce our problem to a new, weighted, extension of mean-payoff games. Fur-
ther, we show that deciding whether there is an implementation with both costs
under given thresholds is NP-complete. However, for a certain still very general
subclass we provide an optimization yielding a pseudo-polynomial algorithm.

Author’s contribution: 30 %

• participating in the discussions,

• contributing, in particular, to the formulation of time durations mecha-
nism and solution to the cheapest implementation problem using mean-
payoff games,

• writing parts of the paper.

125

126

Dual-Priced Modal Transition Systems
with Time Durations?

Nikola Beneš2?? Jan Křet́ınský2,3? ? ? Kim G. Larsen1

Mikael H. Møller1 Jǐŕı Srba1

1 Aalborg University, Denmark
2 Masaryk University, Czech Republic

3 Technical University München, Germany

Abstract. Modal transition systems are a well-established specification
formalism for a high-level modelling of component-based software sys-
tems. We present a novel extension of the formalism called modal tran-
sition systems with durations where time durations are modelled as con-
trollable or uncontrollable intervals. We further equip the model with
two kinds of quantitative aspects: each action has its own running cost
per time unit, and actions may require several hardware components of
different costs. We ask the question, given a fixed budget for the hard-
ware components, what is the implementation with the cheapest long-run
average reward. We give an algorithm for computing such optimal im-
plementations via a reduction to a new extension of mean payoff games
with time durations and analyse the complexity of the algorithm.

1 Introduction and Motivating Example

Modal Transition Systems (MTS) is a specification formalism [16, 2] that aims
at providing a flexible and easy-to-use compositional development methodology
for reactive systems. The formalism can be viewed as a fragment of a temporal
logic [1, 9] that at the same time offers a behavioural compositional semantics
with an intuitive notion of process refinement. The formalism of MTS is es-
sentially a labelled transition system that distinguishes two types of labelled
transitions: must transitions which are required in any refinement of the sys-
tem, and may transitions that are allowed to appear in a refined system but are
not required. The refinement of an MTS now essentially consists of iteratively
resolving the presence or absence of may transitions in the refined process.

In a recent line of work [15, 3], the MTS framework has been extended to
allow for the specification of additional constraints on quantitative aspects (e.g.
time, power or memory), which are highly relevant in the area of embedded
systems. In this paper we continue the pursuit of quantitative extensions of MTS

? Supported by VKR Center of Excellence MT-LAB.
?? The author has been supported by Czech Grant Agency, grant no. GAP202/11/0312.

? ? ? The author is a holder of Brno PhD Talent Financial Aid and is supported by the
Czech Science Foundation, grant No. P202/10/1469.

127

by presenting a novel extension of MTS with time durations being modelled as
controllable or uncontrollable intervals. We further equip the model with two
kinds of quantitative aspects: each action has its own running cost per time
unit, and actions may require several hardware components of different costs.
Thus, we ask the question, given a fixed budget for the investment into the
hardware components, what is the implementation with the cheapest long-run
average reward.

Before we give a formal definition of modal transition systems with dura-
tions (MTSD) and the dual-price scheme, and provide algorithms for computing
optimal implementations, we present a small motivating example.

Consider the specification S in Figure 1a describing the work of a shuttle bus
driver. He drives a bus between a hotel and the airport. First, the driver has to
Wait for the passengers at the hotel. This can take one to five minutes. Since
this behaviour is required to be present in all the implementations of this specifi-
cation, it is drawn as a solid arrow and called a must transition. Then the driver
has to Drive the bus to the airport (this takes six to ten minutes) where he has
to do a SmallCleanup, then Wait before he can Drive the bus back to the hotel.
When he returns he can do either a SmallCleanup, BigCleanup or SkipCleanup
of the bus before he continues. Here we do not require a particular option to be
realised in the implementations, hence we only draw the transitions as dashed
arrows. As these transitions may or may not be present in the implementations,
they are called may transitions. However, here the intention is to require at least
one option be realised. Hence, we specify this using a propositional formula Φ
assigned to the state t over its outgoing transitions as described in [5, 6]. After
performing one of the actions, the driver starts over again. Note that next time
the choice in t may differ.

Observe that there are three types of durations on the transitions. First, there
are controllable intervals, written in angle brackets. The meaning of e.g. 〈1, 5〉 is
that in the implementation we can instruct the driver to wait for a fixed number
of minutes in the range. Second, there are uncontrollable intervals, written in
square brackets. The interval [6, 10] on the Drive transition means that in the
implementation we cannot fix any particular time and the time can vary, say,
depending on the traffic and it is chosen nondeterministically by the environ-
ment. Third, the degenerated case of a single number, e.g. 0, denotes that the
time taken is always constant and given by this number. In particular, a zero
duration means that the transition happens instantaneously.

The system S1 is another specification, a refinement of S, where we addi-
tionally specify that the driver must do a SmallCleanup after each Drive. Note
that the Wait interval has been narrowed. The system I1 is an implementation
of S1 (and actually also of S) where all controllable time intervals have already
been fully resolved to their final single values: the driver must Wait for 5 min-
utes and do the SmallCleanup for 6 minutes. Note that uncontrollable intervals
remain unresolved in the implementations and the time is chosen by the environ-
ment each time the action is performed. This reflects the inherent uncontrollable
uncertainty of the timing, e.g. of a traffic.

128

start
s

t
Φ(t) = (BigCleanup, s) ∨

(SkipCleanup, s) ∨
(SmallCleanup, s)

Wait

〈1, 5〉
Drive

[6, 10] S
m
a
l
l
C
l
e
a
n
u
p

〈4
,
6〉

Wait

〈1, 5〉
Drive

[6, 10]

S
m
a
l
l
C
l
e
a
n
u
p

〈4
,
6
〉

B
i
g
C
l
e
a
n
u
p

〈2
0
,
3
0
〉

S
k
i
p
C
l
e
a
n
u
p

0

(a) Specification S

start
Wait

〈3, 5〉

D
r
i
v
e

[6
, 1
0
]

S
m
a
l
l
C
l
e
a
n
u
p

〈4
, 6〉

(b) Specification S1

start
Wait

5

D
r
i
v
e

[6
, 1
0
]

S
m
a
l
l
C
l
e
a
n
u
p

6

(c) Implementation I1

start
s

t

Wait

〈1, 5〉
Drive

[6, 10] S
m
a
l
l
C
l
e
a
n
u
p

6

Wait

〈1, 5〉
Drive

[6, 10]

S
m
a
l
l
C
l
e
a
n
u
p

[4
,
5
]

B
i
g
C
l
e
a
n
u
p

〈2
0
,
3
0
〉

(d) Specification S2

start
Wait

1

Drive

[6, 10] S
m
a
l
l
C
l
e
a
n
u
p

6

Wait

1

Drive

[6, 10]

B
i
g
C
l
e
a
n
u
p

3
0

(e) Implementation I2

a ∈ Σ r(a)
Wait 8
Drive 10
SmallCleanup 6
BigCleanup 7
SkipCleanup 0

H = {VacuumCleaner, Sponge}

Ψ(a) =


VacuumCleaner if a = BigCleanup

Sponge ∨ VacuumCleaner if a = SmallCleanup

true otherwise

h ∈ H i(h)
VacuumCleaner 100
Sponge 5

(f) Price Scheme

Fig. 1: Example of Dual-Priced Modal Transition Systems with Time Durations

The system S2 is yet another specification and again a refinement of S,
where the driver can always do a BigCleanup in t and possibly there is also
an alternative allowed here of a SmallCleanup. Notice that both SmallCleanup

intervals have been restricted and changed to uncontrollable. This means that
we give up the control over the duration of this action and if this transition is
implemented, its duration will be every time chosen nondeterministically in that
range. Finally, I2 is then an implementation of S2 and S.

129

Furthermore, we develop a way to model cost of resources. Each action is as-
signed a running price it costs per time unit, e.g. Drive costs 10 each time unit it
is being performed as it can be seen in the left table of Figure 1f. In addition, in
order to perform an action, some hardware may be needed, e.g. a VacuumCleaner

for the BigCleanup and its price is 100 as can be seen on the right. This invest-
ment price is paid once only.

Let us now consider the problem of finding an optimal implementation, so
that we spend the least possible amount of money (e.g. the pay to the driver)
per time unit while conforming to the specification S. We call this problem the
cheapest implementation problem. The optimal implementation is to buy a vac-
uum cleaner if one can afford an investment of 100 and do the BigCleanup every
time as long as possible and Wait as shortly as possible. (Note that BigCleanup
is more costly per time unit than SmallCleanup but lasts longer.) This is pre-
cisely implemented in I2 and the (worst-case) average cost per time unit is
≈ 7.97. If one cannot afford the vacuum cleaner but only a sponge, the optimal
worst case long run average is then a bit worse and is implemented by doing
the SmallCleanup as long as possible and Wait now as long as possible. This is
depicted in I1 and the respective average cost per time unit is ≈ 8.10.

The most related work is [12] where prices are introduced into a class of inter-
face theories and long-run average objectives are discussed. Our work omits the
issue of distinguishing input and output actions. Nevertheless, compared to [12],
this paper deals with the time durations, the one-shot hardware investment and,
most importantly, refinement of specifications. Further, timed automata have
also been extended with prices [4] and the long-run average reward has been
computed in [10]. However, priced timed automata lack the hardware and any
notion of refinement, too.

The paper is organized as follows. We introduce the MTS with the time
durations in Section 2 and the dual-price scheme in Section 3. Section 4 presents
the main results on the complexity of the cheapest implementation problem.
First, we state the complexity of this problem in general and in an important
special case and prove the hardness part. The algorithms proving the complexity
upper bounds are presented only after introducing an extension of mean payoff
games with time durations. These are needed to establish the results but are also
interesting on their own as discussed in Section 4.1. Due to space limitations,
some of the proofs are in the full version of the paper [7]. We conclude and give
some more account on related and future work in Section 5.

2 Modal Transition Systems with Durations

In order to define MTS with durations, we first introduce the notion of con-
trollable and uncontrollable duration intervals. A controllable interval is a pair
〈m,n〉 where m,n ∈ N0 and m ≤ n. Similarly, an uncontrollable interval is a pair
[m,n] where m,n ∈ N0 and m ≤ n. We denote the set of all controllable intervals
by Ic, the set of all uncontrollable intervals by Iu, and the set of all intervals
by I = Ic ∪ Iu. We also write only m to denote the singleton interval [m,m].

130

Singleton controllable intervals need not be handled separately as there is no
semantic difference to the uncontrollable counterpart.

We can now formally define modal transition systems with durations. In what
follows, B(X) denotes the set of propositional logic formulae over the set X of
atomic propositions, where we assume the standard connectives ∧,∨,¬.

Definition 1 (MTSD). A Modal Transition System with Durations (MTSD)
is a tuple S = (S, T,D, Φ, s0) where S is a set of states with the initial state
s0, T ⊆ S × Σ × S is a set of transitions, D : T → I is a duration interval
function, and Φ : S → B(Σ × S) is an obligation function. We assume that
whenever the atomic proposition (a, t) occurs in the Boolean formula Φ(s) then
also (s, a, t) ∈ T .

We moreover require that there is no cycle of transitions that allows for zero
accumulated duration, i.e. there is no path s1a1s2a2 · · · sn where (si, ai, si+1) ∈ T
and sn = s1 such that for all i, the interval D((si, ai, si+1)) is of the form either
〈0,m〉 or [0,m] for some m.

Note that instead of the basic may and must modalities known from the clas-
sical modal transition systems (see e.g. [2]), we use arbitrary boolean formulae
over the outgoing transitions of each state in the system as introduced in [6]. This
provides a higher generality as the formalism is capable to describe, apart from
standard modal transition systems, also more expressive formalisms like disjunc-
tive modal transition systems [17] and transition systems with obligations [5].
See [6] for a more thorough discussion of this formalism.

In the rest of the paper, we adapt the following convention when drawing
MTSDs. Whenever a state s is connected with a solid arrow labelled by a to
a state s′, this means that in any satisfying assignment of the Boolean formula
Φ(s), the atomic proposition (a, s′) is always set to true (the transition must
be present in any refinement of the system). Should this not be the case, we
use a dashed arrow instead (meaning that the corresponding transition may be
present in a refinement of the system but it can be also left out). For example the
solid edges in Figure 1a correspond to an implicitly assumed Φ(s) = (a, s′) where
(s, a, s′) is the (only) outgoing edge from s; in this case we do not explicitly write
the obligation function. The three dashed transitions in the figure are optional,
though at least one of them has to be preserved during any refinement (a feature
that can be modelled for example in disjunctive MTS [17]).

Remark 2. The standard notion of modal transition systems (see e.g. [2]) is
obtained under the restriction that the formulae Φ(s) in any state s ∈ S have
the form (a1, s1) ∧ . . . ∧ (an, sn) where (s, a1, s1), . . . , (s, an, sn) ∈ T . The edges
mentioned in such formulae are exactly all must transitions; may transitions are
not listed in the formula and hence can be arbitrarily set to true or false.

Let by T (s) = {(a, t) | (s, a, t) ∈ T} denote the set of all outgoing transitions
from the state s ∈ S. A modal transition system with durations is called an im-
plementation if Φ(s) =

∧
T (s) for all s ∈ S (every allowed transition is also

131

required), and D(s, a, s′) ∈ Iu for all (s, a, s′) ∈ T , i.e. all intervals are uncon-
trollable, often singletons. Figure 1c shows an example of an implementation,
while Figure 1b is not yet an implementation as it still contains the controllable
intervals 〈3, 5〉 and 〈4, 6〉.

We now define a notion of modal refinement. In order to do that, we first
need to define refinement of intervals as a binary relation ≤ ⊆ I× I such that

– 〈m′, n′〉 ≤ 〈m,n〉 whenever m′ ≥ m and n′ ≤ n, and
– [m′, n′] ≤ 〈m,n〉 whenever m′ ≥ m and n′ ≤ n.

Thus controllable intervals can be refined by narrowing them, at most until they
become singleton intervals, or until they are changed to uncontrollable intervals.
Let us denote the collection of all possible sets of outgoing transitions from a
state s by Tran(s) := {E ⊆ T (s) | E |= Φ(s)} where |= is the classical satisfaction
relation on propositional formulae assuming that E lists all true propositions.

Definition 3 (Modal Refinement). Let S1 = (S1, T1, D1, Φ1, s1) and S2 =
(S2, T2, D2, Φ2, s2) be two MTSDs. A binary relation R ⊆ S1 × S2 is a modal
refinement if for every (s, t) ∈ R the following holds:

∀M ∈ Tran(s) : ∃N ∈ Tran(t) :

∀(a, s′) ∈M : ∃(a, t′) ∈ N : D1(s, a, s′) ≤ D2(t, a, t′) ∧ (s′, t′) ∈ R and

∀(a, t′) ∈ N : ∃(a, s′) ∈M : D1(s, a, s′) ≤ D2(t, a, t′) ∧ (s′, t′) ∈ R .

We say that s ∈ S1 modally refines s′ ∈ S2, denoted by s ≤m s′, if there exists
a modal refinement R such that (s, s′) ∈ R. We also write S1 ≤m S2 if s1 ≤m s2.

Intuitively, the pair (s, t) can be in the relation R if for any satisfiable instan-
tiation of outgoing edges from s there is a satisfiable instantiation of outgoing
edges from t so that they can be mutually matched, possibly with s having more
refined intervals, and the resulting states are again in the relation R.

Observe that in our running example the following systems are in modal
refinement: I1 ≤m S1 ≤m S and thus also I1 ≤m S, and similarly I2 ≤m S2 ≤m

S and thus also I2 ≤m S.
The reader can verify that on the standard modal transition systems (see

Remark 2) the modal refinement relation corresponds to the classical modal
refinement as introduced in [16].

3 Dual-Price Scheme

In this section, we formally introduce a dual-price scheme on top of MTSD in
order to model the investment cost (cost of hardware necessary to perform the
implemented actions) and the running cost (weighted long-run average of run-
ning costs of actions). We therefore consider only deadlock-free implementations
(every state has at least one outgoing transition) so that the long-run average
reward is well defined.

132

Definition 4 (Dual-Price Scheme). A dual-price scheme over an alphabet Σ
is a tuple P = (r,H, Ψ, i) where

– r : Σ → Z is a running cost function of actions per time unit,
– H is a finite set of available hardware,
– Ψ : Σ → B(H) is a hardware requirement function, and
– i : H → N0 is a hardware investment cost function.

Hence every action is assigned its unit cost and every action can have dif-
ferent hardware requirements (specified as a Boolean combination of hardware
components) on which it can be executed. This allows for much more variability
than a possible alternative of a simple investment cost Σ → N0. Further, observe
that the running cost may be negative, meaning that execution of such an action
actually gains rather than spends resources.

Let I be an implementation with an initial state s0. A set G ⊆ H of hardware
is sufficient for an implementation I, writtenG |= I, ifG |= Ψ(a) for every action
a reachable from s0. The investment cost of I is then defined as

ic(I) = min
G|=I

∑
g∈G

i(g) .

Further, a run of I is an infinite sequence s0a0t0s1a1t1 · · · with (si, ai, si+1) ∈ T
and ti ∈ D(si, ai, si+1). Hence, in such a run, a concrete time duration in each
uncontrollable interval is selected. We denote the set of all runs of I by R(I).
The running cost of an implementation I is the worst-case long-run average

rc(I) = sup
s0a0t0s1a1t1···∈R(I)

lim sup
n→∞

∑n
i=0 r(ai) · ti∑n

i=0 ti
.

Our cheapest-implementation problem is now defined as follows: given an
MTSD specification S together with a dual-price scheme over the same alphabet,
and given an upper-bound max ic for the investment cost, find an implementation
I of S (i.e. I ≤m S) such that ic(I) ≤ max ic and for every implementation I ′
of S with ic(I ′) ≤ max ic, we have rc(I) ≤ rc(I ′).

Further, we introduce the respective decision problem, the implementation
problem, as follows: given an MTSD specification S together with a dual-price
scheme, and given an upper-bound max ic for the investment cost and an upper
bound max rc on the running cost, decide whether there is an implementation I
of S such that both ic(I) ≤ max ic and rc(I) ≤ max rc.

Example 5. Figure 1f depicts a dual-price scheme over the same alphabet Σ =
{Wait, Drive, SmallCleanup, BigCleanup, SkipCleanup} as of our motivating
specification S. The running cost of the implementation I2 is (1 · 8 + 10 · 10 + 6 ·
6+1 ·8+10 ·10+30 ·7)/(1+10+6+1+10+30) ≈ 7.97 as the maximum value is
achieved when Drive (with running cost 10) takes 10 minutes. On the one hand,
this is optimal for S and a maximum investment cost at least 100. On the other
hand, if the maximum investment cost is 99 or less then the optimal implemen-
tation is depicted in I1 and its cost is (5 · 8 + 10 · 10 + 6 · 5)/(5 + 10 + 6) ≈ 8.10.

133

Remark 6. Note that the definition of the dual-price scheme only relies on having
durations on the labelled transition systems. Hence, one could easily apply this
in various other settings like in the special case of traditional MTS (with may
and must transitions instead of the obligation function) or in the more general
case of parametric MTS (see [6]) when equipped with durations as described
above.

4 Complexity Results

In this section, we give an overview of the complexity of our problem both in
general and in an important special case. We start with establishing the hardness
results. The matching upper bounds and the outline of their proofs follow. When
referring to the size of MTSDs and the dual-price scheme, we implicitly assume
binary encoding of numbers. We start by observing that the implementation
problem is NP-hard even if no hardware is involved.

Proposition 7. The implementation problem is NP-hard even for the hardware
requirement function Ψ that is constantly true for all actions.

Proof. We shall reduce the satisfiability problem of Boolean formulae (SAT) to
our problem. Let ϕ be a Boolean formula over the variables x1, . . . , xn. We define
a MTSD S over the set of actions Σ = {x1, . . . , xn, ∗} such that the running
cost is r(xj) = 1 for all 1 ≤ j ≤ n and r(∗) = 2 and the duration of all actions
is 1. The specification S has one state s and a self-loop under all elements of
Σ with the obligation function Φ(s) = ϕ ∨ (∗, s). The reason for adding the
action ∗ is to make sure that in case ϕ is not satisfiable then we can still have
a deadlock-free, but more running-cost-expensive implementation. Now we set
the hardware to H = ∅ and the hardware requirement function Ψ(a) constantly
true for all a ∈ Σ. It is easy to observe that the formula ϕ is satisfiable iff S has
an implementation I with rc(I) ≤ 1 (and ic(I) = 0). ut

Note that in the proof we required Φ to be a general Boolean formula. If, for
instance, we considered Φ in positive form (i.e. only containing ∧ and ∨ operators
and not ¬), the hardness would not hold. Thus on the one hand, one source of
hardness is the complexity of Φ. On the other hand, even if Φ corresponds to the
simplest case of an implementation (Φ is a conjunction of atomic propositions),
the problem remains hard due to the hardware.

Proposition 8. The implementation problem is NP-hard even for specifications
that are already implementations.

Proof. We reduce the NP-complete problem of vertex cover to our problem.
Let (V,E) where E ⊆ V × V be a graph and k ∈ N be an integer. We ask
whether there is a subset of vertices Vk ⊆ V of cardinality k such that for
every (v1, v2) ∈ E at least v1 ∈ Vk or v2 ∈ Vk. Let us construct an MTSD
specification S with hardware H = V and the investment function i(v) = 1 for
all v ∈ H, such that S has only one state s and a self-loop under a single action

134

a that is required (Φ(s) = (a, s)) and where the hardware requirement function
is Ψ(a) =

∧
(u,v)∈E(u∨v). There is now a vertex cover in (V,E) of size k iff S has

an implementation I with ic(I) ≤ k. Setting e.g. D(s, a, s) = 1 and the running
cost r(a) = 0 establishes NP-hardness of the implementation problem where we
ask for the existence of an implementation of S with maximum running cost 0
and maximum investment cost k.

Alternatively, we may introduce a self-loop with a new action name a(u,v)
for every edge (u, v) in the graph such that Ψ(a(u,v)) = u ∨ v, showing NP-
hardness even for the case where the hardware requirement function is a simple
disjunction of hardware components. ut

In the subsequent sections, we obtain the following matching upper bound
which yields the following theorem.

Theorem 9. The implementation problem is NP-complete.

By analysing the proof of Proposition 8, it is clear that we have to restrict the
hardware requirement function before we can obtain a more efficient algorithm
for the implementation problem. We do so by assuming a constant number of
hardware components (not part of the input). If we at the same time require the
obligation function in positive form, we obtain a simpler problem as stated in
the following theorem.

Theorem 10. The implementation problem with positive obligation function
and a constant number of hardware components is polynomially equivalent to
mean payoff games and thus it is in NP∩coNP and solvable in pseudo-polynomial
time.

The subsequent sections are devoted to proving Theorems 9 and 10. The
algorithm to solve the implementation problem first reduces the dual-priced
MTSD into a mean payoff game extended with time durations and then solves
this game. This new extension of mean payoff games and an algorithm to solve
them is presented in Section 4.1. The translation follows in Section 4.2. Since
this translation is exponential in general, Section 4.3 then shows how to translate
in polynomial time with only local exponential blow-ups where negations occur.
Section 4.4 then concludes and establishes the complexity bounds.

4.1 Weighted Mean Payoff Games

We extend the standard model of mean payoff games (MPG) [14] with time
durations. Not only is this extension needed for our algorithm, but it is also useful
for modelling by itself. Consider, for instance, energy consumption of 2kW for 10
hours and 10kW for 2 hour, both followed by 10 hours of inactivity. Obviously,
although both consumptions are 20kWh per cycle, the average consumption
differs: 1kW in the former case and 20/12kW in the latter one. We also allow
zero durations in order to model e.g. discrete changes of states, an essential part
of our algorithm. Another extension of MPGs with dual-cost was studied in [8].

135

Definition 11. A weighted mean payoff game is G = (V, Vmin, Vmax, E, r, d)
where V is a set of vertices partitioned into Vmin and Vmax, E ⊆ V ×V is a set
of edges, r : E → Z is a rate function, d : E → N0 is a duration function.

It is assumed that there are no deadlocks (vertices with out-degree 0) and that
there are no zero-duration cycles. The game is played by two players, min and
max. The play is an infinite path such that each player picks successors in his/her
vertices. The value of a play v0v1v2 · · · is defined as:

ν(v0v1v2 · · ·) = lim sup
n→∞

∑n
i=0 r(vi, vi+1) · d(vi, vi+1)∑n

i=0 d(vi, vi+1)
. (∗)

Player min tries to minimize this value, while max aims at the opposite. Let
v(s) denote the infimum of the values min can guarantee if the play begins in
the vertex s, no matter what the player max does.

Note that the standard MPGs where edges are assigned only integer weights
can be seen as weighted MPGs with rates equal to weights and durations equal
to 1 on all edges.

We now show how to solve weighted MPGs by reduction to standard MPGs.
We first focus on the problem whether v(s) ≥ 0 for a given vertex s. As the
durations are nonnegative and there are no zero-duration cycles, the denomina-
tor of the fraction in (∗) will be positive starting from some n. Therefore, the
following holds for every play v0v1v2 . . . and every (large enough) n:∑n

i=0 r(vi, vi+1) · d(vi, vi+1)∑n
i=0 d(vi, vi+1)

≥ 0 ⇐⇒ 1

n

n∑
i=0

r(vi, vi+1) · d(vi, vi+1) ≥ 0 .

We may thus solve the question whether v(s) ≥ 0 by transforming the weighted
MPG into a standard MPG, leaving the set of vertices and edges the same and
taking w(u, v) = r(u, v) · d(u, v) as the edge weight function. Although the value
v(s) may change in this reduction, its (non)negativeness does not.

Further, we may transform any problem of the form v(s) ≥ λ for any fixed
constant λ into the above problem. Let us modify the weighted MPG as follows.
Let r′(u, v) = r(u, v)−λ and leave everything else the same. The value of a play
v0v1v2 · · · is thus changed as follows.

ν′(v0v1v2 · · ·) = lim sup
n→∞

∑n
i=0(r(vi, vi+1)− λ) · d(vi, vi+1)∑n

i=0 d(vi, vi+1)
= ν(v0v1v2 · · ·)− λ

It is now clear that v(s) ≥ λ in the original game if and only if v′(s) ≥ 0 in the
modified game.

Furthermore, there is a one-to-one correspondence between the strategies in
the original weighted MPG and the constructed MPG. Due to the two equiv-
alences above, this correspondence preserves optimality. Therefore, there are
optimal positional strategies in weighted MPGs since the same holds for stan-
dard MPGs [14]. (A strategy is positional if its decision does not depend on the
current history of the play but only on the current vertex, i.e. can be described
as a function V → V .)

136

4.2 Translating Dual-priced MTSD into Weighted MPG

We first focus on the implementation problem without considering the hardware
(H = ∅). We show how the implementation problem can be solved by reduction
to the weighted MPGs. The first translation we present is exponential, however,
we provide methods for making it smaller in the subsequent section.

We are given an MTSD S = (S, T,D, Φ, s0) and a dual-price scheme (r,H, Ψ, i)
and assume that there is no state s with ∅ ∈ Tran(s). Let us define the following
auxiliary vertices that will be used to simulate the more complicated transitions
of MTSD in the simpler setting of weighted MPG (by convention all singleton
intervals are treated as uncontrollable).

Tu = {(s, a, t) | (s, a, t) ∈ T ; D(s, a, t) ∈ Iu}
Tc = {(s, a, t) | (s, a, t) ∈ T ; D(s, a, t) ∈ Ic}
T∗ = {(s, a, j, t) | (s, a, t) ∈ T ; j ∈ D(s, a, t)}

We construct the weighted mean-payoff game with Vmin = S ∪ Tc ∪ T∗, Vmax =
2T ∪ Tu and E defined as follows:

(s,X) ∈ E ⇐⇒ ∃V ∈ Tran(s) : X = {(s, a, t) | (a, t) ∈ V }
(X, (s, a, t)) ∈ E ⇐⇒ (s, a, t) ∈ X

((s, a, t), (s, a, j, t)) ∈ E ⇐⇒ j ∈ D(s, a, t)

((s, a, j, t), t) ∈ E (always)

Further, r((s, a, j, t), t) = r(a), d((s, a, j, t), t) = j and r(−,−) = d(−,−) = 0
otherwise.

Example 12. In Figure 2 we show an example of how this translation to weighted
MPG works. For simplicity we only translate a part of the MTSD S shown in
Figure 2a. The resulting weighted MPG is shown in Figure 2b. The diamond
shaped states belong to min and the squared states belong to max. In the
vertex s, min chooses which outgoing transition are implemented. Only the
choices satisfying Φ(s) are present in the game. Afterwards, max decides which
transition to take. The chosen transition is then assigned by one of the players
a time that it is going to take.

Notice that (s, a, t1) is the only transition controlled by min, because it
has a controllable interval 〈2, 3〉. The remaining transitions with uncontrollable
intervals are operated by max who chooses the time from these intervals. All the
“auxiliary” transitions are displayed without any labels meaning their duration
(and rate) is zero. Thus, only the transitions corresponding to “real” transitions
in MTSDs are taken into account in the value of every play.

A strategy for min can now be translated into an implementation of the
original MTSD in a straightforward way. The implemented transitions in s are
given by σ(s), similarly the durations of a transition (s, a, t) with a controllable
interval are given by the third component of σ((s, a, t)).

137

start
s

t2

t1

t3

Φ(s) = (a, t1) ∧ ((b, t2) ∨ (c, t3))

a

〈2
, 3
〉

b

[1, 3]

c
3

(a) A part of an MTSD S

s {(s, a, t1), (s, c, t3)}

{(s, a, t1), (s, b, t2)}

{(s, a, t1), (s, b, t2),
(s, c, t3)}

(s, b, t2)

(s, a, t1)

(s, c, t3)

(s, a, 3, t1)

(s, a, 2, t1)

(s, b, 1, t2)

(s, b, 2, t2)

(s, b, 3, t2)

(s, c, 3, t3)

t1

t2

t3

2
r(a)

3

r(a)

1

r(b)

2

r(b)

3

r(b
)

3

r(c)

(b) Resulting weighted MPG from translation of S

Fig. 2: Translating MTSD to weighted MPG

4.3 Optimizations

We now simplify the construction. The first simplification is summarized by the
observation that the strategies of both players only need to choose the extremal
points of the interval in vertices of the form (s, a, t).

Lemma 13. There are optimal positional strategies for both min and max such
that the choice in vertices of the form (s, a, t) is always one of the two extremal
points of the interval D(s, a, t).

We may thus simplify the construction according to the previous lemma so
that there are at most two outgoing edges for each state of the form (s, a, t) are
as follows: ((s, a, t), (s, a, j, t)) ∈ E iff j is an extremal point of D(s, a, t).

We can also optimize the expansion of Tran(s). So far, we have built an
exponentially larger weighted MPG graph as the size of Tran(s) is exponential
in the out-degree of s. However, we can do better if we restrict ourselves to
the class of MTSD where all Φ(s) are positive boolean formulae, i.e. the only
connectives are ∧ and ∨. Instead of enumerating all valuations, we can use the
syntactic tree of the formula to build a weighted MPG of polynomial size.

Let sf (ϕ) denote the set of all sub-formulae of ϕ (including ϕ). Let further
S∗ = {(s, ϕ) | s ∈ S; ϕ ∈ sf (Φ(s))}. The weighted MPG is constructed with

– Vmin = {(s, ϕ) ∈ S∗ | ϕ = ϕ1 ∨ ϕ2 or (ϕ = (a, t) and D(s, a, t) ∈ Ic)} ∪ T∗
– Vmax = {(s, ϕ) ∈ S∗ | ϕ = ϕ1 ∧ ϕ2 or (ϕ = (a, t) and D(s, a, t) ∈ Iu)}
– E is defined as follows:

((s, ϕ1 ∧ ϕ2), (s, ϕi)) ∈ E i ∈ {1, 2}
((s, ϕ1 ∨ ϕ2), (s, ϕi)) ∈ E i ∈ {1, 2}
((s, (a, t)), (s, a, j, t)) ∈ E ⇐⇒ j is an extremal point of D(s, a, t)

((s, a, j, t), (t, Φ(t))) ∈ E (always)

138

– r((s, a, j, t), (t, Φ(t))) = r(a) and r(−,−) = 0 otherwise
– d((s, a, j, t), (t, Φ(t))) = j and d(−,−) = 0 otherwise.

Example 14. In Figure 3 we show the result of translating the part of an MTSD
from Figure 2a. This weighted MPG is similar to the one in Figure 2b, but
instead of having a vertex for each satisfying set of outgoing transitions, we
now have the syntactic tree of the obligation formula for each state. Further the
vertex (s, b, 2, t2) is left out, due to Lemma 13. Note that the vertices (t1, Φ(t1)),
(t2, Φ(t2)) and (t3, Φ(t3)) are drawn as circles, because the player of these states
depends on the obligation formula and the outgoing transitions.

(s, Φ(s))

(s, (b, t2) ∨ (c, t3))

(s, (a, t1))

(s, (b, t2))

(s, (c, t3))

(s, a, 3, t1)

(s, a, 2, t1)

(s, b, 1, t2)

(s, b, 2, t2)

(s, b, 3, t2)

(s, c, 3, t3)

(t1, Φ(t1))

(t2, Φ(t2))

(t3, Φ(t3))

2

r(a)

3

r(a)

1

r(b)

3

r(b)

3

r(c)

Fig. 3: Result of the improved translation of S in Figure 2a

Remark 15. Observe that one can perform this optimization even in the general
case. Indeed, for those s where Φ(s) is positive we locally perform this transfor-
mation; for s with Φ(s) containing negations we stick to the original expansion.
Thus, the exponential (in out-degree) blow-up occurs only locally.

Lemma 16. Both optimized translations are correct and on MTSDs where the
obligation function is positive they run in polynomial time.

4.4 The Algorithm and its Complexity

The algorithm for our problem, given a specification S, works as follows.

1. Nondeterministically choose hardware with the total price at most maxic.
2. Create the weighted MPG out of S.
3. Solve the weighted MPG using the reduction to MPG and any standard algo-

rithm for MPG that finds an optimal strategy for player min and computes
the value v(s0).

4. Transform the strategy to an implementation I.

139

5. In the case of the cheapest-implementation problem return I;
in the case of the implementation (decision) problem return v(s0) ≤ maxrc.

We can now prove the following result, finishing the proof of Theorem 9.

Proposition 17. The implementation problem is in NP.

Proof. We first nondeterministically guess the hardware assignment. Due to Sec-
tion 4.2, we know that the desired implementation has the same states as the
original MTSD and its transitions are a subset of the transitions of the original
MTSD as the corresponding optimal strategies are positional. The first opti-
mization (Section 4.3) guarantees that durations can be chosen as the extremal
points of the intervals. Thus we can nondeterministically guess an optimal imple-
mentation and its durations, and verify that it satisfies the price inequality. ut

Proposition 18. The implementation problem for MTSD with positive obliga-
tion function and a constant number of hardware components is in NP ∩ coNP
and solvable in pseudo-polynomial time.

Proof. With the constant number of hardware components, we get a constant
number of possible hardware configurations and we can check each configuration
separately one by one. Further, by the first and the second optimization in
Section 4.3, the MPG graph is of size O(|T |+ |Φ|). Therefore, we polynomially
reduce the implementation problem to the problem of solving constantly many
mean payoff games. The result follows by the existence of pseudo-polynomial
algorithms for MPGs [18]. ut

Further, our problem is at least as hard as solving MPGs that are clearly a
special case of our problem. Hence, Theorem 10 follows.

5 Conclusion and Future Work

We have introduced a new extension of modal transition systems. The extension
consists in introducing (1) variable time durations of actions and (2) pricing of
actions, where we combine one-shot investment price for the hardware and cost
for running it per each time unit it is active. We believe that this formalism is
appropriate to modelling many types of embedded systems, where safety comes
along with economical requirements.

We have solved the problem of finding the cheapest implementation w.r.t. the
running cost given a maximum hardware investment we can afford, and we es-
tablished the complexity of the decision problem in the general setting and in a
practically relevant subcase revealing a close connection with mean payoff games.

As for the future work, apart from implementing the algorithm, one may
consider two types of extensions. First, one can extend the formalism to cover
the distinction between input, output and internal actions as it is usual in inter-
face theories [12], and include even more time features, such as clocks in priced
timed automata [4, 10]. Second, one may extend the criteria for synthesis of the

140

cheapest implementation by an additional requirement that the partial sums stay
within given bounds as done in [11], or requiring the satisfaction of a temporal
property as suggested in [12, 13].

References

1. Aceto, L., Fábregas, I., de Frutos-Escrig, D., Ingólfsdóttir, A., Palomino, M.:
Graphical representation of covariant-contravariant modal formulae. In: EX-
PRESS. EPTCS, vol. 64, pp. 1–15 (2011)

2. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bulletin of the EATCS no. 95 pp. 94–129 (2008)

3. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.R.: Quan-
titative refinement for weighted modal transition systems. In: MFCS. LNCS, vol.
6907, pp. 60–71. Springer (2011)

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algorithms
and applications. In: FMCO. LNCS, vol. 3657, pp. 162–182. Springer (2004)

5. Beneš, N., Křet́ınský, J.: Process algebra for modal transition systemses. In:
MEMICS. OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany (2010)

6. Beneš, N., Křet́ınský, J., Larsen, K., Møller, M., Srba, J.: Parametric modal transi-
tion systems. In: Proceedings of ATVA’11. LNCS, vol. 6996, pp. 275–289. Springer-
Verlag (2011)

7. Beneš, N., Křet́ınský, J., Larsen, K., Møller, M., Srba, J.: Dual-priced modal tran-
sition systems with time durations. Tech. Rep. FIMU-RS-2012-01, Faculty of In-
formatics MU (2012)

8. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust sys-
tems. In: Proc. of FMCAD09. pp. 85–92. IEEE (2009)

9. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor. Comput.
Sci. 106(1), 3–20 (1992)

10. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-
priced timed automata. Formal Methods in System Design 32(1), 3–23 (2008)

11. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: FORMATS. LNCS, vol.
5215, pp. 33–47. Springer (2008)

12. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT. Lecture Notes in Computer Science, vol. 2855,
pp. 117–133. Springer (2003)

13. Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C.,
Kirchner, C., auf der Heide, F.M., Spirakis, P.G. (eds.) ICALP (2). Lecture Notes
in Computer Science, vol. 6199, pp. 599–610. Springer (2010)

14. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
national Journal of Game Theory 8, 109–113 (1979), 10.1007/BF01768705

15. Juhl, L., Larsen, K.G., Srba, J.: Introducing modal transition systems with weight
intervals. Journal of Logic and Algebraic programming (2011), to appear

16. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS. pp. 203–210. IEEE
Computer Society (1988)

17. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS. pp. 108–117. IEEE Computer Society (1990)

18. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theo-
retical Computer Science 158, 343–359 (1996)

141

142

Paper E:

Modal process rewrite systems

Nikola Beneš and Jan Křetı́nský

This paper has been published in Abhik Roychoudhury and Meenakshi D’Souza
(eds.): Theoretical Aspects of Computing - ICTAC 2012 - 9th International Col-
loquium, Bangalore, India, September 24-27, 2012. Proceedings, volume 7521 of
Lecture Notes in Computer Science, pages 120–135. Springer, 2012. Copyright
c© by Springer-Verlag. [BK12]

Summary

We introduce MTS with an infinite state space generated by rules for sequential
and parallel compositions as defined in process rewrite systems. We investigate
the induced notion of modal refinement and provide a detailed account on decid-
ability and complexity on the subclasses corresponding to standard infinite state
systems studied in literature. We show that refinement between MTS generated
by sequential composition (pushdown automata) and finite MTS are decidable,
whereas on MTS generated by parallel composition (Petri nets, basic parallel pro-
cesses) it is undecidable even when the other system is finite. In order to achieve
decidability in the case with both sides infinite, we restrict to visibly pushdown
automata. Finally, we define a bisimulation relation on MTS called birefinement
and show that it is decidable between finite MTS and MTS generated by any pro-
cess rewrite system rules.

Author’s contribution: 50 %

• participating in the discussions,

• contributing, in particular, to the definition using process rewrite systems
and to undecidability proofs,

• writing Introduction and parts of the paper.

143

144

Modal Process Rewrite Systems

Nikola Beneš1? and Jan Křet́ınský1,2??

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 Institut für Informatik, Technische Universität München, Germany

{xbenes3, jan.kretinsky}@fi.muni.cz

Abstract. We consider modal transition systems with infinite state
space generated by finite sets of rules. In particular, we extend pro-
cess rewrite systems to the modal setting and investigate decidability of
the modal refinement relation between systems from various subclasses.
Since already simulation is undecidable for most of the cases, we focus on
the case where either the refined or the refining process is finite. Namely,
we show decidability for pushdown automata extending the non-modal
case and surprising undecidability for basic parallel processes. Further,
we prove decidability when both systems are visibly pushdown automata.
For the decidable cases, we also provide complexities. Finally, we discuss
a notion of bisimulation over MTS.

1 Introduction

The ever increasing complexity of software systems together with their reuse call
for efficient component-based design and verification. One of the major theoreti-
cally well founded frameworks that answer this call are modal transition systems
(MTS) [LT88]. Their success resides in natural combination of two features.
Firstly, it is the simplicity of labelled transition systems, which have proved ap-
propriate for behavioural description of systems as well as their compositions;
MTS as their extension inherit this appropriateness. Secondly, as opposed to
temporal logic specifications, MTS can be easily gradually refined into imple-
mentations while preserving the desired behavioural properties.

MTS consist of a set of states and two transition relations. The must tran-
sitions prescribe which behaviour has to be present in every refinement of the
system; the may transitions describe the behaviour that is allowed, but need not
be realized in the refinements. This allows for underspecification of non-critical
behaviour in the early stage of design, focusing on the main properties, verifying
them and sorting out the details of the yet unimplemented non-critical behaviour
later.

The formalism of MTS has proven to be useful in practice. Industrial ap-
plications are as old as [Bru97] where MTS have been used for an air-traffic
system at Heathrow airport. Besides, MTS are advocated as an appropriate

? The author has been supported by the Czech Science Foundation, grant
No. GAP202/11/0312.

?? The author is a holder of Brno PhD Talent Financial Aid and is supported by the
Czech Science Foundation, grant No. P202/12/G061.

145

base for interface theories in [RBB+09] and for product line theories in [Nym08].
Further, MTS based software engineering methodology for design via merging
partial descriptions of behaviour has been established in [UC04]. Moreover, the
tool support is quite extensive, e.g. [BLS95,DFFU07,BML11,BČK11].

Over the years, many extensions of MTS have been proposed. While MTS can
only specify whether or not a particular transition is required, some extensions
equip MTS with more general abilities to describe what combinations of tran-
sitions are possible [LX90,FS08,BK10,BKL+11]. Further, MTS framework has
also been lifted to quantitative settings. This includes probabilistic [CDL+10] and
timed systems [ČGL93,JLS11,BFJ+11,BKL+12,DLL+10,BLPR11] with clear ap-
plications in the embedded systems design. As far as the infinite state systems are
concerned, only a few more or less ad hoc extensions have been proposed, such
as systems with asynchronous communication based on FIFO [BHJ10] or Petri
nets [EBHH10]. In this paper, we introduce modalities into a general framework
for infinite-state systems, where we study modal extensions of well-established
classes of infinite-state systems.

Such a convenient unifying framework for infinite-state systems is provided by
Process rewrite systems (PRS) [May00]. They encompass many standard models
such as pushdown automata (PDA) or Petri nets (PN) as syntactic subclasses.
A PRS consists of a set of rewriting rules that model computation. These rules
may contain sequential and parallel composition. For example, a transition t of
a Petri net with input places I1, I2 and output places O1, O2 can be described by

the rule I1 ‖ I2
t−→ O1 ‖ O2. A transition of a pushdown automaton in a state

s with a top stack symbol X reading a letter a resulting in changing the state
to q and pushing Y to the stack can be written as sX

a−→ qYX . Limiting the
occurrences of parallel and sequential composition on the left and right sides of
the rules yields the most common automata theoretic models. For these syntactic
subclasses of PRS, see Figure 1 and a more detailed description in Section 2.

Motivation One can naturally lift PRS to the modal world by having two
sets of rules, may and must rules. What is then the use of such modal process
rewrite systems (mPRS)? Firstly, potentially infinite-state systems such as Petri
nets are very popular for modelling whenever communication or synchronization
between processes occurs. This is true even when they are actually bounded and
thus with a finite state space.

Example 1. Consider the following may rule (we use dashed arrows to denote
may rules) generating a small Petri net.

resource ‖ customer
consume
99K trash

This rewrite rule implies that e.g. a process resource ‖ customer ‖ customer may
be changed into trash ‖ customer. Therefore, if there is no other rule with trash
on the right side a safety property is guaranteed for all implementations of this
system, namely that trash can only arise if there is at least one resource and
one customer. On the other hand, it is not guaranteed that trash can indeed be

146

produced in such a situation. This is very useful as during the design process
new requirements can arise, such as necessity of adding more participants to
perform this transition. For instance,

resource ‖ customer ‖ permit
consume
99K trash

expresses an auxiliary condition required to produce trash, namely that permit
is available. Replacing the old rule with the new one is equivalent to adding
an input place permit to the Petri net. In the modal transition system view,
the new system refines the old one. Indeed, the new system is only more specific
about the allowed behaviour than the old one and does not permit any previously
forbidden behaviour. One can further refine the system by the one given by

resource ‖ customer ‖ permit ‖ bribe consume−→ trash

where additional condition is imposed and now the trash-producing transition
has to be available (denoted by an unbroken arrow) whenever the left hand side
condition is satisfied.

Secondly, even if an original specification is finite its refinements and the final
implementation might be infinite. For instance, consider a specification where
permit needs to be available but is not consumed or there is an unlimited amount
of permits. In an implementation, the number of permits could be limited and thus
this number with no known bounds needs to be remembered in the state of the
system. Similarly, consider a finite safety specification of a browser together with
its implementation that due to the presence of back button requires the use of
stack, and is thus a pushdown system. Further, sometimes both the specification
and the implementation are infinite such as a stateless BPA specification of
a stateful component implemented by a PDA.

Example 2. Consider a basic process algebra (BPA) given by rules X
(−→ XX

and X
)−→ ε for correctly parenthesized expressions with X

a
99K X for all other

symbols a, i.e. with no restriction on the syntax of expressions. One can easily
refine this system into a PDA that accepts correct arithmetic expressions by
remembering in the state whether the last symbol read was an operand or an
operator.

Further, opposite to the design of correct software where an abstract ver-
ified MTS is transformed into a concrete implementation, one can consider
checking correctness of software through abstracting a concrete implementa-
tion into a coarser system. The use of MTS as abstractions has been advocated
e.g. in [GHJ01]. While usually overapproximations (or underapproximations) of
systems are constructed and thus only purely universal (or existential) properties
can be checked, [GHJ01] shows that using MTS one can check mixed formulae
(arbitrarily combining universal and existential properties) and, moreover, at the
same cost as checking universal properties using traditional conservative abstrac-
tions. This advantage has been investigated also in the context of systems equiva-
lent or closely related to MTS [HJS01,DGG97,Nam03,DN04,CGLT09,GNRT10].

147

PRS
(G, G)

PAD
(S, G)

PAN
(P, G)

PDA
(S, S)

PN
(P, P)

PA
(1, G)

BPA
(1, S)

BPP
(1, P)

FSM
(1, 1)

Fig. 1. PRS hierarchy

Although one is usually interested in generating finite abstractions of infinite sys-
tems, it might be interesting to consider situations where the abstract system is
infinite. For instance, if one is interested in a property that is inherently non-
regular such as correct parenthesizing in the previous example, the abstraction
has to capture this feature. One could thus abstract the PDA from the previous
example into the smaller BPA above and prove the property here using algo-
rithms for BPA. Moreover, if one is interested in mixed properties the abstract
system has to be modal. It would be useful to extend the verification algorithms
for systems such as PDA to their modal versions along the lines of the gener-
alized model checking approach [BG00,BČK11]. This is, however, beyond the
scope of this paper.

Our contribution In this paper, we focus on modal infinite-state systems
and decidability of the most fundamental problem here, namely deciding the
refinement relation, for most common classes of systems. Since simulation is
undecidable already on basic parallel processes (BPP) [Hüt94] and basic pro-
cess algebras (BPA) [GH94], cf. Figure 1, the refinement as a generalization of
simulation is undecidable in general. However, one can consider the case where
either the refined or the refining system is finite (a finite state machine, FSM).
This case is still very interesting, e.g. in the context of finite abstractions or
implementations with bounded resources. [KM99] shows that while simulation
remains undecidable between process algebras (PA) and FSM, it is decidable
between PDA and FSM. We extend this result using methods of [KM02b] to
the modal setting. Further, although simulation is decidable between PN and
FSM [JM95] (in both directions), we show that surprisingly this result cannot be
extended and the refinement is undecidable even for BPP and FSM in the modal
setting. Although the decidability of the refinement seems quite limited now, we
show that refinement is sometimes decidable even between two infinite-state sys-
tems, namely between modal extensions of visibly pushdown automata [AM04],
cf. Example 2; for this, we use the methods of [Srb06]. To summarize:

– We introduce a general framework for studying modal infinite-state system,
namely we lift process rewrite systems to the modal setting. This definition
comes along with the appropriate notion of refinement.

148

– We prove un/decidability of the refinement problem for modal extensions of
standard classes of infinite-state systems. Apart from trivial corollaries due
to the undecidability of simulation, this amount to proving undecidability
of refinement between Petri nets and FSM (on either side) and decidability
between pushdown systems and FSM (again on either side). Moreover, we
prove decidability for visibly PDA. For the decidable cases, we show that
the complexity is the same as for checking the respective simulation in the
non-modal setting. Finally, we discuss a notion of bisimulation over MTS,
which we name birefinement.

Related work There are various other approaches to deal with component re-
finements. They range from subtyping [LW94] over Java modelling language [JP01]
to interface theories close to MTS such as interface automata [dAH01]. Similarly
to MTS, interface automata are behavioural interfaces for components. However,
their composition works very differently. Furthermore, its notion of refinement is
based on alternating simulation [AHKV98], which has been proved strictly less
expressive than MTS refinement—actually coinciding on a subclass of MTS—in
a paper [LNW07] that combines MTS and interface automata based on I/O au-
tomata [Lyn88]. The compositionality of this combination is further investigated
in [RBB+11].

MTS can also be viewed as a fragment of mu-calculus that is “graphically
representable” [BL90]. The graphical representability of a variant of alternating
simulation called covariant-contravariant simulation has been recently studied
in [AFdFE+11].

The PRS framework has been introduced in [May00]. Simulation on classes
of PRS tends to be computationally harder than bisimilarity [KM02b]. While
e.g. bisimulation between any PRS and FSM is decidable [KŘS05], simulation
with FSM is undecidable already for PA (see above). Therefore, the decidability
is limited to PDA and PN, and we show that refinement is even harder (unde-
cidability for BPP). Another aspect that could help to extend the decidability
is determinism. For instance, simulation between FSM and deterministic PA is
decidable [KM99]. It is also the case with the abovementioned [EBHH10] where
refinement over “weakly deterministic” modal Petri nets is shown decidable.

Outline of the paper In Section 2, we introduce modal process rewrite sys-
tems formally and recall the refinement preorder. In Section 3 and 4, we show
undecidability and decidability results for the refinement. Section 5 concludes.

2 Refinement Problems
In this section, we introduce modal transition systems generated by process
rewrite systems and define the notion of modal refinement. We start with the
usual definition of MTS.

2.1 Modal Transition Systems

Definition 1 (Modal transition system). A modal transition system (MTS)
over an action alphabet Act is a triple (P, 99K,−→), where P is a set of processes
and −→ ⊆ 99K ⊆ P×Act×P are must and may transition relations, respectively.

149

Observe that P is not required to be finite. We often use letters s, t, . . .
for processes of MTS. Whenever clear from the context, we refer to processes
without explicitly mentioning their underlying MTS.

We proceed with the standard definition of (modal) refinement.

Definition 2 (Refinement). Let (P1, 99K1,−→1), (P2, 99K2,−→2) be MTS over
the same action alphabet and s ∈ P1, t ∈ P2 be processes. We say that s refines
t, written s ≤m t, if there is a relation R ⊆ P1×P2 such that (s, t) ∈ R and for
every (p, q) ∈ R and every a ∈ Act:

1. if p
a

99K1 p′ then there is a transition q
a

99K2 q′ s.t. (p′, q′) ∈ R, and

2. if q
a−→2 q

′ then there is a transition p
a−→1 p

′ s.t. (p′, q′) ∈ R.

The ultimate goal of the refinement process is to obtain an implementation,
i.e. an MTS with 99K = −→. Implementations can be considered as the standard
labelled transition systems (LTS). Note that on implementations refinement co-
incides with strong bisimilarity, and on modal transition systems without any
must transitions it corresponds to the simulation preorder, denoted by ≤sim. Fur-
ther, refinement has a game characterization [BKLS09] similar to (bi)simulation
games, which we often use in the proofs.

2.2 Modal Process Rewrite Systems

We now move our attention to infinite-state MTS generated by finite sets of rules.
Let Const be a set of process constants. We define the set of process expressions
E by the following abstract syntax:

E ::= ε | X | E ‖ E | E;E

where X ranges over Const . We often use Greek letters α, β, . . . for elements of E .
The process expressions are considered modulo the usual structural congruence,
i.e. the smallest congruence such that the operator ; is associative, ‖ is associative
and commutative and ε is a unit for both ; and ‖. We often omit the ; operator.

Definition 3 (Modal process rewrite system). A process rewrite system
(PRS) is a finite relation ∆ ⊆ (E \ {ε})×Act × E, elements of which are called
rewrite rules. A modal process rewrite system (mPRS) is a tuple (∆may, ∆must)
where ∆may, ∆must are process rewrite systems such that ∆must ⊆ ∆may.

An mPRS ∆ = (∆may, ∆must) induces an MTS MTS(∆) = (E , 99K,−→) as
follows:

(E, a,E′) ∈ ∆may

E
a

99K E′

E
a

99K E′

E;F
a

99K E′;F

E
a

99K E′

E ‖ F a
99K E′ ‖ F

(E, a,E′) ∈ ∆must

E
a−→ E′

E
a−→ E′

E;F
a−→ E′;F

E
a−→ E′

E ‖ F a−→ E′ ‖ F

150

∆may = { (X, a,X ‖ Y),
(X, c, ε),
(Y, b, ε) }

∆must = { (X, a,X ‖ Y),
(Y, b, ε) }

· · ·

· · ·

a a a

b b b

b b b

c c c

Fig. 2. An example of a mBPP and its corresponding (infinite) MTS; the dashed arrows
represent may transitions, the unbroken arrows represent must transitions; as s

a−→ t

implies s
a

99K t we omit the may transitions where must transitions are also present

We consider four distinguished classes of process expressions. Class S stands
for expressions with no ‖ (purely sequential expressions) and class P stands
for expressions with no ; (purely parallel expressions). Further, we use G for
the whole E (general expressions) and 1 for Const (one process constant and
no operators). Now restricting the left and right sides of rules of PRS to these
classes yields subclasses of PRS as depicted in Figure 1 using the standard
shortcuts also introduced in Section 1. Each subclass C has a corresponding
modal extension mC containing all mPRS (∆may, ∆must) with both ∆may and
∆must in C. For instance, mFSM correspond to the standard finite MTS and
mPN are modal Petri nets as introduced in [EBHH10]. An example of an mBPP
and the resulting MTS are depicted in Figure 2.

For any classes C, D, we define the following decision problem mC ≤m mD.

Given mPRS ∆1 ∈ mC, ∆2 ∈ mD and process terms δ1, δ2 conforming
to left-hand side restrictions of C,D, respectively, does δ1 ≤m δ2 hold
considering δ1, δ2 as processes of MTS(∆1),MTS(∆2)?

3 Undecidability Results

In this section, we present all the negative results. As already discussed in Sec-
tion 1, simulation—and thus refinement—is undecidable already on BPP [Hüt94]
and BPA [GH94]. When considering the case where one of the two classes is
mFSM, the undecidability holds for mPA [KM99]. Thus we are left with the prob-
lems mFSM≤mmPDA, mPDA≤mmFSM and mFSM≤mmPN, mPN≤mmFSM.
On the one hand, the two former are shown decidable in Section 4 using non-
modal methods for simulation of [KM02b]. On the other hand, the non-modal
methods for simulation of [JM95] cannot be extended to the latter two prob-
lems. In this section, we show that (surprisingly) they are both undecidable and,
moreover, even for mBPP.

Theorem 1. The problem mBPP≤mmFSM is undecidable.

Proof. We reduce the undecidable problem of simulation between two BPPs
(even normed ones) to the problem mBPP≤mmFSM.

151

•
A a C b

•
B a′b′

s

sa sb u

a b

Act′

a′

Act ∪Act′

b′

Act ∪Act′
Act ∪Act′

Fig. 3. A ‖ B ≤m s where the original two BPPs are given by A
a−→ A ‖ C, C

b−→ ε,

B
a−→ B ‖ B, B

b−→ ε.

Let A, B be two BPP processes with underlying PRS ∆A and ∆B ; w.l.o.g.
∆A ∩ ∆B = ∅. We transform them as follows. We rename all actions of the
underlying PRS of B from a to a′. Let Act′ be the set of these renamed actions
and let ∆′

B be the modification of ∆B by renaming the actions. The mBPP is
defined as (∆A ∪∆′

B , ∆
′
B), i.e. the transitions of A are just may, the (modified)

transitions of B are both must and may.
We then build a finite mPRS as follows. The states are {s, u}∪{sa | a ∈ Act}.

– s
a

99K sa and s
a′

99K u for all a ∈ Act
– sa

a′

−→ s for all a ∈ Act (with the corresponding may transition)

– sa
x

99K u for all a ∈ Act and x ∈ Act ∪Act′
– u

x
99K u for all x ∈ Act ∪Act′

Clearly q ≤m u for any process q. The construction is illustrated in Figure 3.
We now show that A ≤sim B iff A ‖ B ≤m s. In the following, α always

denotes a process of ∆A, while β denotes a process of ∆B . Furthermore, we use
the notation LTS(∆A) to denote the LTS induced by ∆A (similarly for ∆B). We
use the refinement game argumentation, see [BKLS09].
⇒: Let R = {(α ‖ β, s) | α ≤sim β}. We show that R can be extended to be

a modal refinement relation. Let (α ‖ β, s) ∈ R:

– If the attacker plays α ‖ β a′

99K α ‖ β′ (where a′ ∈ Act′), the defender can

play s
a′

99K u and obviously wins.

– If the attacker plays α ‖ β a
99K α′ ‖ β (where a ∈ Act), the defender has to

play s
a

99K sa. There are two possibilities then:
• if the attacker plays α′ ‖ β x

99K, the defender can play sa
x

99K u and
obviously wins;

• if the attacker plays sa
a′

−→ s, the defender can play α′ ‖ β a′

−→ α′ ‖ β′

where β′ is a process such that β
a−→ β′ in LTS(∆B) and α′ ≤sim β′.

Such β′ obviously exists due to α ≤sim β. Thus (α′ ‖ β′, s) ∈ R.

⇐: We show that R := {(α, β) | α ‖ β ≤m s} is a simulation. Let (α, β) ∈ R:

– If α
a−→ α′ in LTS(∆A) then α ‖ β a

99K α′ ‖ β. This has to be matched by

s
a

99K sa. Furthermore, sa
a′

−→ s has to be matched by α′ ‖ β a′

−→ α′ ‖ β′.

This means that β
a−→ β′ in LTS(∆B) and that (α′, β′) ∈ R. ut

152

Theorem 2. The problem mFSM≤mmBPP is undecidable.

Proof. We reduce the undecidable problem of simulation between two BPPs to
the problem mFSM≤mmBPP. The proof is similar to the previous one. However,
as the situation is not entirely symmetric (the requirement that ∆must ⊆ ∆may

introduces asymmetry), we need to modify the construction somewhat.
Let again A, B be two BPP processes with underlying PRS ∆A and ∆B ;

w.l.o.g. ∆A∩∆B = ∅. We rename all actions of ∆B from a to a′. Let Act′ be the
set of these renamed actions and let ∆′

B be the modification of ∆B . We further
create a new PRS as follows:

∆X = {(X, a, Y) | a ∈ Act} ∪ {(Y, x,X) | x ∈ Act ∪Act′}

The mBPP is defined as (∆A ∪ ∆′
B ∪ ∆X , ∆A), i.e. the (modified) transitions

of B are just may, the transitions of A are both must and may, and the new
transitions of ∆X are may.

We then build a finite mPRS as follows. The states are {s, v}∪{sa | a ∈ Act}.

– s
a−→ sa for all a ∈ Act (with the corresponding may transitions)

– sa
a′

99K s for all a ∈ Act
– sa

a−→ v for all a ∈ Act (with the corresponding may transitions)

– v
a−→ v for all a ∈ Act (with the corresponding may transitions)

The construction is illustrated in Figure 4.

•
A a C

b

•
B a′

b′

•
X

Act

Act ∪Act′
Y

s

sa sb

v

a b

a′

Act

b′

Act

Act

Fig. 4. s ≤m A ‖ B ‖ X where the original two BPPs are again given by A
a−→ A ‖ C,

C
b−→ ε, B

a−→ B ‖ B, B
b−→ ε.

We now show that A ≤sim B iff s ≤m A ‖ B ‖ X. As in the previous proof,
α denotes a process of ∆A while β denotes a process of ∆B .

We first show that v ≤m α ‖ β ‖ V for all V ∈ {X,Y } and all processes
α, β. Whenever the attacker plays a must transition of α, it is matched by
v

a−→ v. Whenever the attacker plays a may transition of v, it is matched either

by X
a

99K Y or by Y
a

99K X (α and β are unaffected).
⇒: Let R = {(s, α ‖ β ‖ X) | α ≤sim β}. We show that R can be extended

to be a modal refinement relation. Let (s, α ‖ β ‖ X) ∈ R:

153

– If the attacker plays s
a

99K sa then the defender can play α ‖ β ‖ X a
99K α ‖

β ‖ Y . The attacker then has two possibilities:

• if the attacker plays sa
a′

99K s then the defender can play α ‖ β ‖ Y a′

99K
α ‖ β ‖ X and the game is back in R;

• if the attacker plays α ‖ β ‖ Y a−→ α′ ‖ β ‖ Y then the defender can

play sa
a−→ v and win due to the fact above.

– If the attacker plays α ‖ β ‖ X a−→ α′ ‖ β ‖ X then the defender has to play

s
a−→ sa. The attacker then has three possibilities:

• if the attacker plays α′ ‖ β ‖ X b−→ α′′ ‖ β ‖ X then the defender can

play sa
b−→ v and win due to the fact above.

• if the attacker plays sa
b

99K v then the defender can play α′ ‖ β ‖ X b
99K

α′ ‖ β ‖ Y and win due to the fact above.

• if the attacker plays sa
a′

99K s then the defender plays α′ ‖ β ‖ X a′

99K
α′ ‖ β′ ‖ X where β′ is a process such that β

a−→ β′ in LTS(∆B)
and α′ ≤sim β′. Such process has to exist due to α ≤sim β. Therefore,
(s, α′ ‖ β′ ‖ X) ∈ R.

⇐: Let R = {(α, β) | s ≤m α ‖ β ‖ X}. We show that R is a simulation. Let
(α, β) ∈ R.

– If α
a−→ α′ then α ‖ β ‖ X a−→ α′ ‖ β ‖ X. This has to be matched by

s
a−→ sa. Furthermore, sa

a′

99K s has to be matched by α′ ‖ β ‖ X a′

99K α′ ‖
β′ ‖ X (note that neither α′ nor X can make an a′-transition). This means

that β
a−→ β′ in LTS(∆B) and that (α′, β′) ∈ R. ut

4 Decidability Results

We prove that the problems mFSM≤mmPDA and mPDA≤mmFSM are decid-
able and EXPTIME-complete like the corresponding simulation problems.

We modify the result of [KM02b] and show that, in certain classes of mPRS,
refinement can be reduced to simulation. The original method introduces two
translations, A and D, that transform two processes s and t into A(s) and D(t)
in such a way that s and t are bisimilar iff A(s) ≤sim D(t). This approach can
be modified in a straightforward way to work with modal refinement instead of
bisimulation. The idea of the modification is that the part of the construction
that simulates the attacker’s possibility to play on the right-hand side is only
done for must transitions. The modified A and D translations are then functions
from MTS to LTS such that if we have two MTS processes s and t, it holds that
s ≤m t iff A(s) ≤sim D(t). As these translations are only slightly changed from
the original ones, we omit their definition here and refer to [BK12].

The applicability of this method is the same (modulo the modal extension)
as the applicability of the original method. Both the A-translation and the D-
translation preserve the following subclasses of PRS: PDA, BPA, FSM, nPDA,

154

nBPA and OC. Here, nPDA and nBPA are the normed variants (every process
may be rewritten to ε in finite number of steps) of PDA and BPA, respectively.
OC is the subclass of one-counter automata, i.e. PDA with only one stack symbol.
Furthermore, the A-translation also preserves determinism.

As a direct corollary of the previous remark and the results of [KM02a], we
obtain the following.

Theorem 3. The problem mPDA≤mmFSM is EXPTIME-complete in both ways,
even if the mFSM is of a fixed size. The problem mBPA≤mmFSM is EXPTIME-
complete in both ways, but if the mFSM is of a fixed size, it is PTIME-complete.

4.1 Visibly PDA

We have seen that the refinement relation is undecidable between any two infinite
classes of the hierarchy depicted in Figure 1. However, there are other subclasses
where the refinement is decidable. In this section, we show that the refinement
between two modal visibly PDA is decidable.

Definition 4. A PDA is a visibly PDA (vPDA) if there is a partitioning Act =

Actc]Actr]Act i such that every rule pX
a−→ qα satisfies the following:

– if a ∈ Actc then |α| = 2 (call),
– if a ∈ Actr then |α| = 0 (return),
– if a ∈ Act i then |α| = 1 (internal).

The modal extension (mvPDA) is straightforward; its subclass mvBPA can be
defined similarly.

In order to prove decidability, we make use of the idea of [Srb06] for showing
that simulation between two vPDA is decidable. We modify and simplify the
method somehow, as the original method is used to prove decidability of various
kinds of equivalences and preorders, while we are only considering the modal
refinement.

Theorem 4. The problem mvPDA≤mmvPDA is decidable.

Proof. Let (∆may, ∆must) be a mvPDA with a stack alphabet Γ and a set of
control states Q. Let sA and tB be two processes of the mvPDA. Note that for
simplicity we consider two processes of a single mvPDA. However, as a disjoint
union of two mPRS is a mPRS, this also solves the case of two distinct mvPDA.
Our goal is to transform the mvPDA into a PDA with a distinguished process
such that this process satisfies certain µ-calculus formula if and only if sA ≤m tB.

We create a PDA∆′ with actions Act′ = {att , def }, stack alphabet Γ ′ = G×G
where G = Γ ∪ (Γ × Γ) ∪ (Γ × Act) ∪ {ε}, and control states Q′ = Q×Q. We
write Ya instead of (Y, a) as an element of G.

We use a (stack merging) partial mapping [Xα, Y β] = (X,Y)[α, β], [ε, ε] = ε.
In the following, we abuse the notation of the rules, as we did in the introduction,

and write e.g. pX
a

99K p′α instead of (pX, a, p′α) ∈ ∆may.
The set of rules of ∆′ is as follows:

155

– Whenever pX
a

99K p′α then
• (p, q)(X,Y)

att−→ (p′, q)(α, Ya) for every q ∈ Q and Y ∈ Γ
• (q, p)(β,Xa)

def−→ (q, p′)[β, α] for every q ∈ Q and β ∈ Γ × Γ ∪ Γ ∪ {ε}
– Whenever pX

a−→ p′α then
• (q, p)(Y,X)

att−→ (q, p′)(Ya, α) for every q ∈ Q and Y ∈ Γ
• (p, q)(Xa, β)

def−→ (p′, q)[α, β] for every q ∈ Q and β ∈ Γ × Γ ∪ Γ ∪ {ε}
Note that [α, β] and [β, α] is always well defined as |α| = |β| is guaranteed (the
transition that created β has to have the same label as the transition that creates
α – this is guaranteed via Xa). We conclude by the following claim whose proof
can be found in [BK12].

Claim. Let ϕ denote an alternation-free µ-calculus formula νZ.[att]〈def 〉Z. Then
sA ≤m tB iff (s, t)(A,B) |= ϕ ut

The following theorem can be proved using complexity bounds for µ-calculus
model checking, as in [Srb06].

Theorem 5. The problem mvPDA≤mmvPDA is EXPTIME-complete, the prob-
lem mvBPA≤mmvBPA is PTIME-complete.

4.2 Birefinement

Since the refinement is often undecidable, the same holds for refinement equiva-
lence (≤m ∩ ≥m). Nevertheless, one can consider an even stronger relation that
is still useful. We define the notion of birefinement as the modification of refine-
ment where we require both conditions of Definition 2 to be satisfied in both
directions, similarly as bisimulation can be defined as a symmetric simulation.

Definition 5 (Birefinement). A birefinement is a symmetric refinement. We
say that α birefines β (α ∼m β) if there exists a birefinement containing (α, β).

This notion then naturally captures the bisimilarity of modal transition sys-
tems. Furthermore, the birefinement problem on MTS can be reduced to bisim-
ulation on LTS in the following straightforward way. Let (∆may, ∆must) and
(Γmay, Γmust) be two mPRS over the same action alphabet Act . We create a new
action a for every a ∈ Act . We then translate the mPRS into ordinary PRS as
follows. Let ∆ = ∆may ∪ {(α, a, β) | (α, a, β) ∈ ∆must} and similarly for Γ . It is
then clear that if we take two processes δ of (∆may, ∆must) and γ of (Γmay, Γmust)
then the following holds: δ birefines γ if and only if δ and γ are bisimilar when
taken as processes of ∆ and Γ , respectively.

The decidability and complexity of birefinement is thus identical to that
of bisimulation in the non-modal case. Therefore, we may apply the powerful
result that bisimilarity between any PRS and FSM is decidable [KŘS05] to get
the following theorem.

Theorem 6. Birefinement between an mFSM and any mPRS is decidable.

This is an important result since it allows us to check whether we can replace
an infinite MTS with a particular finite one, which in turn may allow for checking
further refinements.

156

Table 1. Summary of the decidability results

decidable mFSM Qm mPDA, mvPDA Qm mvPDA, mFSM ∼m mPRS

undecidable mFSM Qm mBPP, mBPA Qm mBPA

5 Conclusions

We have defined a generic framework for infinite-state modal transition sys-
tems generated by finite descriptions. We investigated the corresponding notion
of modal refinement on important subclasses and determined the decidability
border, see Table 1. Although in some classes it is possible to extend the de-
cidability of simulation to decidability of refinement, it is not possible always.
We have shown that somewhat surprisingly the parallelism is a great obstacle
for deciding the refinement relation. Therefore, the future work will concentrate
on identifying conditions leading to decidability. One of the best candidates is
imposing determinism, which has a remarkable effect on the complexity of the
problem in the finite case [BKLS09] as well as in the only infinite case consid-
ered so far, namely modal Petri nets [EBHH10]. Further, we leave the question
whether the problem becomes decidable in some cases when the refining system
is an implementation open, too. Finally, it remains open to what extent can
verification results on finite MTS, such as [BČK11], be extended to infinite-state
MTS.

References

[AFdFE+11] L. Aceto, I. Fábregas, D. de Frutos-Escrig, A. Ingólfsdóttir, and
M. Palomino. Graphical representation of covariant-contravariant modal
formulae. In EXPRESS, pages 1–15, 2011.

[AHKV98] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating
refinement relations. In CONCUR, pages 163–178, 1998.

[AM04] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC,
pages 202–211, 2004.

[BČK11] N. Beneš, I. Černá, and J. Křet́ınský. Modal transition systems: Compo-
sition and LTL model checking. In ATVA, pages 228–242, 2011.

[BFJ+11] S. S. Bauer, U. Fahrenberg, L. Juhl, K. G. Larsen, A. Legay, and C. R.
Thrane. Quantitative refinement for weighted modal transition systems.
In MFCS, volume 6907 of LNCS, pages 60–71. Springer, 2011.

[BG00] G. Bruns and P. Godefroid. Generalized model checking: Reasoning about
partial state spaces. In CONCUR, pages 168–182, 2000.

[BHJ10] S. S. Bauer, R. Hennicker, and S. Janisch. Interface theories for
(a)synchronously communicating modal I/O-transition systems. In FIT,
pages 1–8, 2010.

[BK10] N. Beneš and J. Křet́ınský. Process algebra for modal transition system-
ses. In MEMICS, pages 9–18, 2010.

[BK12] N. Beneš and J. Křet́ınský. Modal process rewrite systems. Techni-
cal report FIMU-RS-2012-02, Faculty of Informatics, Masaryk University,
Brno, 2012.

157

[BKL+11] N. Beneš, J. Křet́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Para-
metric modal transition systems. In ATVA, pages 275–289, 2011.

[BKL+12] N. Beneš, J. Křet́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Dual-
priced modal transition systems with time durations. In LPAR, pages
122–137, 2012.

[BKLS09] N. Beneš, J. Křet́ınský, K. G. Larsen, and J. Srba. On determinism in
modal transition systems. Theor. Comput. Sci., 410(41):4026–4043, 2009.

[BL90] G. Boudol and K. G. Larsen. Graphical versus logical specifications. In
CAAP, pages 57–71, 1990.

[BLPR11] N. Bertrand, A. Legay, S. Pinchinat, and J.-B. Raclet. Modal event-clock
specifications for timed component-based design. Science of Computer
Programming, To appear, 2011.

[BLS95] A. Børjesson, K. G. Larsen, and A. Skou. Generality in design and com-
positional verification using TAV. Formal Methods in System Design,
6(3):239–258, 1995.

[BML11] S. S. Bauer, P. Mayer, and A. Legay. MIO workbench: A tool for com-
positional design with modal input/output interfaces. In ATVA, pages
418–421, 2011.

[Bru97] G. Bruns. An industrial application of modal process logic. Sci. Comput.
Program., 29(1-2):3–22, 1997.

[CDL+10] B. Caillaud, B. Delahaye, K. G. Larsen, A. Legay, M. L. Pedersen, and
A. Wasowski. Compositional design methodology with constraint markov
chains. In QEST, pages 123–132, 2010.

[ČGL93] K. Čerāns, J. C. Godskesen, and K. G. Larsen. Timed modal specification
- theory and tools. In CAV, pages 253–267, 1993.

[CGLT09] A. Campetelli, A. Gruler, M. Leucker, and D. Thoma. Don’t Know for
multi-valued systems. In ATVA, pages 289–305, 2009.

[dAH01] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC / SIG-
SOFT FSE, pages 109–120, 2001.

[DFFU07] N. D’Ippolito, D. Fischbein, H. Foster, and S. Uchitel. MTSA: Eclipse
support for modal transition systems construction, analysis and elabora-
tion. In ETX, pages 6–10, 2007.

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[DLL+10] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. EC-
DAR: An environment for compositional design and analysis of real time
systems. In ATVA, pages 365–370, 2010.

[DN04] D. Dams and K. S. Namjoshi. The existence of finite abstractions for
branching time model checking. In LICS, pages 335–344, 2004.

[EBHH10] D. Elhog-Benzina, S. Haddad, and R. Hennicker. Process refinement and
asynchronous composition with modalities. In ACSD/Petri Nets Work-
shops, pages 385–401, 2010.

[FS08] H. Fecher and H. Schmidt. Comparing disjunctive modal transition sys-
tems with an one-selecting variant. J. Log. Algebr. Program., 77(1-2):20–
39, 2008.

[GH94] J. F. Groote and H. Hüttel. Undecidable equivalences for basic process
algebra. Inf. Comput., 115(2):354–371, 1994.

[GHJ01] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model
checking using modal transition systems. In CONCUR, pages 426–440,
2001.

158

[GNRT10] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Composi-
tional may-must program analysis: unleashing the power of alternation.
In POPL, pages 43–56, 2010.

[HJS01] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A
foundation for three-valued program analysis. In ESOP, pages 155–169,
2001.

[Hüt94] H. Hüttel. Undecidable equivalences for basic parallel processes. In TACS,
pages 454–464, 1994.

[JLS11] L. Juhl, K. G. Larsen, and J. Srba. Modal transition systems with weight
intervals. Journal of Logic and Algebraic programming, 2011. To appear.

[JM95] P. Jancar and F. Moller. Checking regular properties of petri nets. In
CONCUR, pages 348–362, 1995.

[JP01] B. Jacobs and E. Poll. A logic for the java modeling language JML. In
FASE, pages 284–299, 2001.

[KM99] A. Kučera and R. Mayr. Simulation preorder on simple process algebras.
In ICALP, pages 503–512, 1999.

[KM02a] A. Kučera and R. Mayr. On the complexity of semantic equivalences for
pushdown automata and BPA. In MFCS, volume 2420 of Lecture Notes
in Computer Science, pages 433–445. Springer, 2002.

[KM02b] A. Kučera and R. Mayr. Why is simulation harder than bisimulation? In
CONCUR, pages 594–610, 2002.

[KŘS05] M. Křet́ınský, V. Řehák, and J. Strejček. Reachability of hennessy-milner
properties for weakly extended PRS. In FSTTCS, pages 213–224, 2005.

[LNW07] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for
interface and product line theories. In ESOP, pages 64–79, 2007.

[LT88] K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages
203–210, 1988.

[LW94] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, 1994.

[LX90] K. G. Larsen and L. Xinxin. Equation solving using modal transition
systems. In LICS, pages 108–117, 1990.

[Lyn88] N. Lynch. I/O automata: A model for discrete event systems. In 22nd
Annual Conference on Information Sciences and Systems, pages 29–38.
Princeton University, 1988.

[May00] R. Mayr. Process rewrite systems. Inf. Comput., 156(1-2):264–286, 2000.
[Nam03] K. S. Namjoshi. Abstraction for branching time properties. In CAV,

pages 288–300, 2003.
[Nym08] U. Nyman. Modal Transition Systems as the Basis for Interface Theories

and Product Lines. PhD thesis, Institut for Datalogi, Aalborg Universitet,
2008.

[RBB+09] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone.
Why are modalities good for interface theories? In ACSD. IEEE Com-
puter Society Press, 2009.

[RBB+11] J.-B. Raclet, E. Badouel, A. Benveniste, B.Caillaud, A. Legay, and
R. Passerone. A modal interface theory for component-based design. Fun-
damenta Informaticae, 108(1-2):119–149, 2011.

[Srb06] J. Srba. Visibly pushdown automata: From language equivalence to sim-
ulation and bisimulation. In CSL, pages 89–103, 2006.

[UC04] S. Uchitel and M. Chechik. Merging partial behavioural models. In SIG-
SOFT FSE, pages 43–52, 2004.

159

160

Paper F:

On refinements of Boolean and parametric modal transition systems

Jan Křetı́nský and Salomon Sickert

This paper has been published in Zhiming Liu, Jim Woodcock, and Huibiao Zhu
(eds.): Theoretical Aspects of Computing - ICTAC 2013 - 10th International Collo-
quium, Shanghai, China, September 4-6, 2013. Proceedings, volume 8049 of Lec-
ture Notes in Computer Science, pages 213–23. Springer, 2013. Copyright c© by
Springer Verlag. [KS13b]

Summary

As previously advocated, BMTS and PMTS are more convenient and concise
modelling frameworks than MTS. Due to conciseness the refinement problems
become harder and their theoretical complexity suggests it is infeasible to check
them. Therefore, we reduce the problem of modal refinement over BMTS and
PMTS to a problem solvable by a QBF solver. We provide promising experimen-
tal results showing this solution scales well. Further, we extend the algorithm for
thorough refinement on MTS and DMTS to BMTS and PMTS providing better
complexity then via translation of these formalisms to DMTS. This also shows,
together with results on modal refinement, that we can make use of the more
compact representation used in the formalisms of BMTS and PMTS. Since the
complexity of the thorough refinement is still too high, we also investigate the re-
lationship between modal and thorough refinement on BMTS and PMTS and in-
troduce approximation methods for the thorough refinement on BMTS and PMTS
through the modal refinement.

Author’s contribution: 50 %

• participating in the discussions,

• contributing, in particular, to setting up the research direction, formulating
and proving claims on the thorough refinement and its relationship to the
modal refinement,

• writing the paper except the reduction of the modal refinement to QBF
queries.

161

162

On Refinements of Boolean and Parametric
Modal Transition Systems

Jan Křet́ınský1,2? and Salomon Sickert1??

1 Institut für Informatik, Technische Universität München, Germany
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. We consider the extensions of modal transition systems (MTS),
namely Boolean MTS and parametric MTS and we investigate the re-
finement problems over both classes. Firstly, we reduce the problem of
modal refinement over both classes to a problem solvable by a QBF solver
and provide experimental results showing our technique scales well. Sec-
ondly, we extend the algorithm for thorough refinement of MTS provid-
ing better complexity than via reductions to previously studied problems.
Finally, we investigate the relationship between modal and thorough re-
finement on the two classes and show how the thorough refinement can
be approximated by the modal refinement.

1 Introduction

Due to the ever increasing complexity of software systems and their re-use,
component-based design and verification have become crucial. Therefore, having
a specification formalism that supports component-based development and step-
wise refinement is very useful. In such a framework, one can start from an initial
specification, proceed with a series of small and successive refinements until even-
tually a specification is reached from which an implementation can be extracted
directly. In each refinement step, we can replace a single component of the cur-
rent specification with a more concrete/implementable one. The correctness of
such a step should follow from the correctness of the refinement of the replaced
component, so that the methodology supports compositional verification.

Modal transition systems (MTS) were introduced by Larsen and Thom-
sen [LT88] in order to obtain an operational, yet expressive and manageable
specification formalism meeting the above properties. Their success resides in
natural combination of two features. Firstly, the simplicity of labelled transition
systems, which have proved appropriate for behavioural description of systems as
well as their compositions; MTS as their extension inherit this appropriateness.
Secondly, as opposed to e.g. temporal logic specifications, MTS can be easily
gradually refined into implementations while preserving the desired behavioural

? The author is partially supported by the Czech Science Foundation, project No.
P202/10/1469

?? The author is partially funded by the DFG project “Polynomial Systems on Semir-
ings: Foundations, Algorithms, Applications”

163

properties. In this work, we focus on checking the refinement between MTS and
also their recent extensions.

The formalism of MTS has proven to be useful in practice. Industrial appli-
cations are as old as [Bru97] where MTS have found use for an air-traffic system
at Heathrow airport. Besides, MTS are advocated as an appropriate base for in-
terface theories in [RBB+09] and for product line theories in [Nym08]. Further,
MTS based software engineering methodology for design via merging partial
descriptions of behaviour has been established in [UC04]. Moreover, the tool
support is quite extensive, e.g. [BLS95,DFFU07,BML11,BČK11].

MTS consist of a set of states and two transition relations. The must tran-
sitions prescribe which behaviour has to be present in every refinement of the
system; the may transitions describe the behaviour that is allowed, but need not
be realized in the refinements. This allows for underspecification of non-critical
behaviour in the early stage of design, focusing on the main properties, verifying
them and sorting out the details of the yet unimplemented non-critical behaviour
later.

Over the years, many extensions of MTS have been proposed. While MTS
can only specify whether or not a particular transition is required, some ex-
tensions equip MTS with more general abilities to describe what combinations
of transitions are possible. Disjunctive MTS (DMTS) [LX90] can specify that
at least one of a given set of transitions is present. One selecting MTS [FS08]
allow to choose exactly one of them. Boolean MTS (BMTS) [BKL+11] cover
all Boolean combinations of transitions. The same holds for acceptance au-
tomata [Rac07] and Boolean formulae with states [BDF+], which both express
the requirement by listing all possible sets instead of a Boolean formula. Para-
metric MTS (PMTS) [BKL+11] add parameters on top of it, so that we can also
express persistent choices of transitions and relate possible choices in different
parts of a system. This way, one can model hardware dependencies of transitions
and systems with prices [BKL+12].

Our contribution In this paper, we investigate extensions of MTS with re-
spect to two notions of refinement. The modal refinement is a syntactically de-
fined notion extending on the one hand bisimulation and on the other hand
simulation. Similarly to bisimulation having a counterpart in trace equivalence,
here the counterpart of modal refinement is the thorough refinement. It is the
corresponding semantically defined notion relating (by inclusion) the sets of im-
plementations of the specifications.

We focus both on theoretical and practical complexity of the refinement prob-
lems. While modal refinement on MTS and disjunctive MTS can be decided in
polynomial time, on BMTS and PMTS it is higher in the polynomial hierarchy
(Π2 and Π4, respectively). The huge success of SAT and also QBF solvers in-
spired us to reduce these refinement problems to problems solvable by a QBF
solver. We have also performed experiments showing that this solution scales
well in the size of the system as well as in the number of parameters, while a
direct naive solution is infeasible.

164

Furthermore, we extend the decision algorithm for thorough refinement check-
ing over MTS [BKLS12] and DMTS [BČK10] to the setting of BMTS and PMTS.
We show how PMTS can be translated to BMTS and BMTS can then be trans-
formed to DMTS. As we can decide the problem on DMTS in EXPTIME, this
shows decidability for BMTS and PMTS, but each of the translations is in-
evitably exponential. However, we show better upper bounds than doubly and
triply exponential. To this end, we give also a direct algorithm for showing the
problem is in NEXPTIME for BMTS and 2-EXPTIME for PMTS.

Since the thorough refinement is EXPTIME-hard for already MTS, it is
harder than the modal refinement, which is in P for DMTS and in Π4 for PMTS.
Therefore, we also investigate how the thorough refinement can be approximated
by the modal refinement. While underapproximation is easy, as modal refine-
ment implies thorough refinement, overapproximation is more difficult. Here we
extend our method of the deterministic hull for MTS [BKLS09] to both BMTS
and PMTS. We prove that for BMTS modal and thorough refinements coincide
if the refined system is deterministic, which then yields an overapproximation
via the deterministic hull. Finally, in the case with PMTS, we need to overap-
proximate the behaviour dependent on the parameters, because the coincidence
of the refinements on deterministic systems fails for PMTS.

Our contribution can be summarized as follows:

– We reduce the problem of modal refinement over BMTS and PMTS to a
problem solvable by a QBF solver. We provide promising experimental re-
sults showing this solution scales well.

– We extend the algorithm for thorough refinement on MTS and DMTS to
BMTS and PMTS providing better complexity then via translation of these
formalisms to DMTS. This also shows (together with results on modal re-
finement) that we can make use of the more compact representation used in
the formalisms of BMTS and PMTS.

– We investigate the relationship between modal and thorough refinement on
BMTS and PMTS. We introduce approximation methods for the thorough
refinement on BMTS and PMTS through the modal refinement.

Related work There are various other approaches to deal with component re-
finements. They range from subtyping [LW94] over Java modelling language [JP01]
to interface theories close to MTS such as interface automata [dAH01]. Similarly
to MTS, interface automata are behavioural interfaces for components. However,
their composition works very differently. Furthermore, its notion of refinement is
based on alternating simulation [AHKV98], which has been proved strictly less
expressive than MTS refinement—actually coinciding on a subclass of MTS—in
the paper [LNW07], which combines MTS and interface automata based on I/O
automata [Lyn88]. The compositionality of this combination is further investi-
gated in [RBB+11].

Further, alternatively to the design of correct software where an abstract
verified MTS is transformed into a concrete implementation, one can consider
checking correctness of software through abstracting a concrete implementation

165

into a coarser system. The use of MTS as abstractions has been advocated
e.g. in [GHJ01]. While usually overapproximations (or underapproximations) of
systems are constructed and thus only purely universal (or existential) properties
can be checked, [GHJ01] shows that using MTS one can check mixed formulae
(arbitrarily combining universal and existential properties) and, moreover, at the
same cost as checking universal properties using traditional conservative abstrac-
tions. This advantage has been investigated also in the context of systems equiva-
lent or closely related to MTS [HJS01,DGG97,Nam03,DN04,CGLT09,GNRT10].

MTS can also be viewed as a fragment of mu-calculus that is “graphically
representable” [BL90,BDF+]. The graphical representability of a variant of al-
ternating simulation called covariant-contravariant simulation has been recently
studied in [AFdFE+11].

Outline of the paper In Section 2, we recall the formalism of MTS and the
extensions discussed and in Section 3 the modal refinement problem is restated.
We then reduce it to a QBF problem in Section 4. In Section 5, we give a solution
to the thorough refinement problems. Section 6 investigates the relationship of
the two refinements and how modal refinement can approximate the thorough
refinement. We conclude in Section 7.

2 Modal Transition Systems and Boolean and Parametric
Extensions

In this section, we introduce the studied formalisms of modal transition sys-
tems and their Boolean and parametric extensions. We first recall the standard
definition of MTS:

Definition 2.1. A modal transition system (MTS) over an action alphabet Σ
is a triple (S, 99K,−→), where S is a set of states and −→ ⊆ 99K ⊆ S ×Σ × S
are must and may transition relations, respectively.

The MTS are often drawn as follows. Unbroken arrows denote the must (and
underlying may) transitions while dashed arrows denote may transitions where
there is no must transition.

Example 2.2. The MTS on the right is adapted from [BKL+11] and models
commonly used types of traffic lights. In state green on

go

readygo

ready sto
p

the left there is a must transition under ready to state
yellow from which there is must transition to red . Here
transitions to yellowRed and back to green are may
transition. Intuitively, this means that any final im-
plementation may have either one, both or none of
the transitions. In contrast, the must transitions are
present in all implementations.

Note that using MTS, we cannot express the set of
implementations with exactly one of the transitions in

166

red . For that, we can use Boolean MTS [BKL+11] instead, which can express not
only arbitrary conjunctions and disjunctions, but also negations and thus also
exclusive-or. However, in Boolean MTS it may still happen that an implemen-
tation alternates transitions to green and yellowRed between two traffic lights
cycles. To make sure the choice will remain the same in the whole implementa-
tion, parametric MTS have been introduced [BKL+11] extending the Boolean
MTS.

Before we define the most general class - the parametric MTS - and derive
other classes as special cases, we first recall the standard propositional logic.
A Boolean formula over a set X of atomic propositions is given by the following
abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X. The set of all Boolean formulae over the set X is denoted
by B(X). Let ν ⊆ X be a valuation, i.e. a set of variables with value true, then
the satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and
the satisfaction of the remaining Boolean connectives is defined in the standard
way. We also use the standard derived operators like exclusive-or ϕ ⊕ ψ :=
(ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ), implication ϕ ⇒ ψ := ¬ϕ ∨ ψ and equivalence ϕ ⇔ ψ :=
(¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS. In essence, it is
a labelled transition system, in which we can specify which transitions can be
present depending on values of some fixed parameters.

Definition 2.3. A parametric modal transition system (PMTS) over an action
alphabet Σ is a tuple (S, T, P, Φ) where

– S is a set of states,
– T ⊆ S ×Σ × S is a transition relation,
– P is a finite set of parameters, and
– Φ : S → B((Σ × S) ∪ P) is an obligation function over the outgoing tran-

sitions and parameters. We assume that whenever (a, t) occurs in Φ(s) then
(s, a, t) ∈ T .

A Boolean modal transition system (BMTS) is a PMTS with the set of parame-
ters P being empty. A disjunctive MTS (DMTS) is a BMTS with the obligation
function in conjunctive normal form and using no negation. An implementation
(or labelled transition system) is a BMTS with Φ(s) =

∧
(s,a,t)∈T (a, t) for each

s ∈ S.

An MTS is then a BMTS with Φ(s) being a conjunction of positive literals
(some of the outgoing transitions), for each s ∈ S. More precisely, 99K is the
same as T , and (s, a, t) ∈ −→ if and only if (a, t) is one of the conjuncts of Φ(s).

Example 2.4. A PMTS which captures the traffic lights used in Europe for cars
and pedestrians is depicted below. Depending on the valuation of parameter
reqYellow , we either always use the yellow light between the red and green lights,
or we never do. The transition relation is depicted using unbroken arrows.

167

go

stop

readygo

ready sto
p

Parameters: P = {reqYellow}

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqYellow ⇔ (ready , yellow))
Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqYellow ⇔ (ready , yellowRed))
Φ(yellowRed) = (go, green)

3 Modal Refinement

A fundamental advantage of MTS-based formalisms is the presence of modal
refinement that allows for a step-wise system design (see e.g. [AHL+08]). We
start with the standard definition of modal refinement for MTS and then discuss
extensions to BMTS and PMTS.

Definition 3.1 (MTS Modal Refinement). For states s0 and t0 of MTS
(S1,−→1, 99K1) and (S2,−→2, 99K2), respectively, we say that s0 modally refines
t0, written s0 ≤m t0, if (s0, t0) is contained in a relation R ⊆ S1 × S2 satisfying
for every (s, t) ∈ R and every a ∈ Σ:

1. if s
a

99K1 s′ then there is a transition t
a

99K2 t′ with (s′, t′) ∈ R, and

2. if t
a−→2 t

′ then there is a transition s
a−→1 s

′ with (s′, t′) ∈ R.

Intuitively, s ≤m t iff whatever s can do is allowed by t and whatever t requires
can be done by s. Thus s is a refinement of t, or t is an abstraction of s. Fur-
thermore, an implementation of s is a state i of an implementation (labelled
transition system) with i ≤m s.

In [BKL+11], the modal refinement has been extended to PMTS (and thus
BMTS) so that it coincides with the standard definition in the MTS case. We
first recall the definition for BMTS. To this end, we set the following notation.
Let (S, T, P, Φ) be a PMTS and ν ⊆ P be a valuation. For s ∈ S, we write
T (s) = {(a, t) | (s, a, t) ∈ T} and denote by

Tranν(s) = {E ⊆ T (s) | E ∪ ν |= Φ(s)}

the set of all admissible sets of transitions from s under the fixed truth values
of the parameters. In the case of BMTS, we often write Tran instead of Tran∅.

Definition 3.2 (BMTS Modal Refinement). For states s0 and t0 of BMTS
(S1, T1, ∅, Φ1) and (S2, T2, ∅, Φ2), respectively, we say that s0 modally refines t0,
written s0 ≤m t0, if (s0, t0) is contained in a relation R ⊆ S1 × S2 satisfying for
every (s, t) ∈ R:

∀M ∈ Tran(s) : ∃N ∈ Tran(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

168

For PMTS, we propose here a slightly altered definition, which corresponds
more to the intuition, is closer to the semantically defined notion of thorough
refinement, but still keeps the same complexity as established in [BKL+11]. We
use the following notation. For a PMTS M = (S, T, P, Φ), a valuation ν ⊆ P
of parameters induces a BMTS Mν = (S, T, ∅, Φ′) where each occurrence of
p ∈ ν in Φ is replaced by tt and of p /∈ ν by ¬tt, i.e. Φ′(s) = Φ(s)[tt/p for p ∈
ν,ff/p for p /∈ ν] for each s ∈ S. We extend the notation to states and let sν

denote the state of Mν corresponding to the state s of M.

Definition 3.3 (PMTS Modal Refinement). For states s0 and t0 of PMTS
(S1, T1, P1, Φ1) and (S2, T2, P2, Φ2), we say that s0 modally refines t0, written
s0 ≤m t0, if for every µ ⊆ P1 there exists ν ⊆ P2 such that sµ0 ≤m tν0 .

Before we comment on the difference to the original definition, we illustrate
the refinement on an example of [BKL+11] where both definitions coincide.

Example 3.4. Consider the rightmost PMTS below. It has two parameters, namely
reqYfromG and reqYfromR whose values can be set independently and it can
be refined by the system in the middle of the figure having only one parameter
reqYellow . This single parameter simply binds the two original parameters to
the same value. The PMTS in the middle can be further refined into the im-
plementations where either yellow is always used in both cases, or never at all
as discussed in the previous example. Up to bisimilarity, the green state of this
system only has the two implementations on the left.

go

stop

readygo

ready sto
p

Parameters: P = {reqYfromR, reqYfromG}

Obligation function:

Φ(yellowRed) = (go, green)

Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqYfromG ⇔ (ready , yellow))

Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready , yellowRed))
∧(reqYfromR ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

Parameters: P = {reqYellow}

Obligation function:

Φ(yellowRed) = (go, green)

Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqYellow ⇔ (ready , yellow))

Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready , yellowRed))
∧(reqYellow ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

The original version of [BKL+11] requires for s0 ≤m t0 to hold that there be
a fixed R ⊆ S1 × S2 such that for every µ ⊆ P1 there exists ν ⊆ P2 satisfying
for each (s, t) ∈ R

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

169

Clearly, the original definition is stronger: For any two PMTS states, if s0 ≤m t0
holds according to [BKL+11] it also holds according to Definition 3.3. Indeed,
the relation for any sets of parameters can be chosen to be the fixed relation R.
On the other hand, the opposite does not hold.

Example 3.5. Consider the PMTS on the left with parameter set {p} and obli-
gation Φ(s0) = (a, s1), Φ(s1) = (b, s2) ⇔ p, Φ(s2) = tt and the PMTS on the
right with parameter set {q} and obligation Φ(t0) =

(
(a, t1) ⇔ q

)
∧
(
(a, t′1) ⇔

¬q
)
, Φ(t1) = (a, t2), Φ(t2) = Φ(t′1) = tt. On the one hand, according to our

definition s0 ≤m t0, we intuitively agree this should be the case (and note they
also have the same set of implementations). On the other hand, the original
definition does not allow to conclude modal refinement between s0 and t0. The
reason is that depending on the value of p, s1 is put in the relation either with t1
(for p being true and thus choosing q true, too) or with t′1 (for p being false and
thus choosing q false, too). In contrast to the original definition, our definition
allows us to pick different relations for different parameter valuations.

s0 s1 s2
a a

t0

t1 t2

t′1

a
a

a

We propose our modification of the definition since it is more intuitive and for
all considered fragments of PMTS has the same complexity as the original one.
Note that both definitions coincide on BMTS. Further, on MTS they coincide
with Definition 3.1 and on labelled transition systems with bisimulation.

4 Modal Refinement Checking

In this section, we show how to solve the modal refinement problem on BMTS
and PMTS using QBF solvers. Although modal refinement is Π2-complete (the
second level of the polynomial hierarchy) on BMTS and Π4-complete on PMTS
(see [BKL+11]), this way we obtain a solution method that is practically fast. We
have implemented the approach and document its scalability with experimental
results.

As mentioned, in order to decide whether modal refinement holds between
two states, a reduction to a quantified boolean formula will be used. First, we
recall the QBF decision problems.

Definition 4.1 (QBFQn). Let Ap be a set of atomic propositions, which is parti-
tioned into n sets with Ap =

⋃n
i=0Xi, and φ ∈ B(Ap) a boolean formula over this

set of atomic propositions. Let Q ∈ {∀,∃} be a quantifier and : {∀ 7→ ∃,∃ 7→ ∀}
a function. Then a formula

QX1QX2QX3 . . . Q̃Xnφ with Q̃ =

{
Q if n is odd

Q if n is even

is an instance of QBFQn if it is satisfiable.

170

Satisfiability means that if e.g. Q = ∃ there is some partial valuation for the
atomic propositions in X1, such that for all partial valuations for the elements
of X2, there is another partial valuation for the propositions of X3 and so on up
to Xn, such that φ is satisfied by the union of all partial valuations. It is well
known that these problems are complete for the polynomial hierarchy: For each
i ≥ 1, QBF ∃i is Σi-complete and QBF ∀i is Πi-complete.

4.1 Construction for BMTS

Due to the completeness of QBF problems and the results of [BKL+11], it is
possible to polynomially reduce modal refinement on BMTS to QBF ∀2 . How-
ever, we would then have to perform a fixpoint computation to compute the
refinement relation causing numerous invocations of the external QBF solver.
Additionally this approach is not applicable in the PMTS case, hence we reduce
modal refinement to QBF ∃3 .

Let s ∈ S1 and t ∈ S2 be processes of two arbitrary BMTSsM1 = (S1, T1, ∅, Φ1)
and M2 = (S2, T2, ∅, Φ2). Furthermore let

Ap = (S1 × S2)︸ ︷︷ ︸
XR

] T1︸︷︷︸
XT1

] (S1 × T2)︸ ︷︷ ︸
XT2

be a set of atomic propositions. The intended meaning is that (u, v) ∈ XR is
assigned tt if and only if it is also contained in the modal refinement relation R.
Further, XT1 and XT2 are used to talk about the transitions. The prefix S1 is
attached to the set T2 because N ∈ Tran(t) with t ∈ S2 must be chosen indepen-
dently for different states of S1. This enables us to move the ∃ quantification.

We now construct a formula Ψs,t ∈ B(Ap) satisfying

s ≤m t iff ∃XR∀XT1∃XT2Ψs,t ∈ QBF ∃3 (1)

To this end, we shall use a macro ψu,v capturing the condition which has
to be satisfied by any element (u, v) ∈ R. Furthermore, we ensure that (s, t) is
assigned tt by every satisfying assignment for the formula by placing it directly
in the conjunction:

Ψs,t = (s, t) ∧
∧

(u,v)∈XR

(
(u, v)⇒ ψu,v

)
(2)

It remains to define the macro ψu,v. We start with the modal refinement
condition as a blueprint:

∀M ∈ Tran(u) : ∃N ∈ Tran(v) : ∀(a, u′) ∈M : ∃(a, v′) ∈ N : (u′, v′) ∈ R ∧
∀(a, v′) ∈ N : ∃(a, u′) ∈M : (u′, v′) ∈ R .

As M and N are subsets of T1(u) and T2(v), respectively, and are finite, the
inner quantifiers can be expanded causing only a polynomial growth of the for-
mula size (see [KS13]). Further, Tran sets are replaced by the original definition

171

and the outer quantifiers are moved in front of Ψs,t. As the state obligations are
defined over a different set of atomic propositions (Φ(v) ∈ B((Σ × S) ∪ P) 6⊆
B(Ap)), a family of mapping functions πp is introduced.

πp : B(Σ × S)→ B(Ap)

tt 7→ tt

(a, x) 7→ (p, a, x) with a ∈ Σ, x ∈ S
¬ϕ 7→ ¬ πp(ϕ)

ϕ1 ∧ ϕ2 7→ πp(ϕ1) ∧ πp(ϕ2)

ϕ1 ∨ ϕ2 7→ πp(ϕ1) ∨ πp(ϕ2)

(3)

Applying these steps to the blueprint yields the following result:

ψu,v = πu (Φ1 (u))⇒ πu,v (Φ2 (v)) ∧ ϕu,v (4)

ϕu,v =
∧

u∗∈XT1

u∗=(u,a,u′)

(
u∗ ⇒

∨
v∗∈XT2

v∗=(u,v,a,v′)

(v∗ ∧ (u′, v′))
)

∧
∧

v∗∈XT2

v∗=(u,v,a,v′)

(
v∗ ⇒

∨
u∗∈XT1

u∗=(u,a,u′)

(u∗ ∧ (u′, v′))
) (5)

Theorem 4.2. For states s, t of a BMTS, we have

s ≤m t iff ∃XR∀XT1∃XT2Ψs,t ∈ QBF ∃3

Due to space constraints, the technical proof can be found in [KS13].

4.2 Construction for PMTS

We now reduce the modal refinement on PMTS to QBF ∀4 , which now corre-
sponds directly to the complexity established in [BKL+11]. Nevertheless, due
to the first existential quantification in ∀∃∀∃ alternation sequence, we can still
guess the refinement relation using the QBF solver rather than compute the
lengthy fixpoint computation.

In the PMTS case, we have to find for all parameter valuations for the system
of s a valuation for the system of t, such that there exists a modal refinement
relation containing (s, t). We simply choose universally a valuation for the param-
eters of the left system (the underlying system of s) and then existentially for the
right system (the underlying system of t). Prior to checking modal refinement,
the valuations are fixed, so the PMTS becomes a BMTS. This is accomplished
by extending Ap with P1 and P2 and adding the necessary quantifiers to the
formula. Thus we obtain the following:

Theorem 4.3. For states s, t of a PMTS, we have

s ≤m t iff ∀P1∃P2∃XR∀XT1∃XT2Ψs,t ∈ QBF ∀4

172

4.3 Experimental Results

We now show how our method performs in practice. We implemented the reduc-
tion and linked it to the QBF solver Quantor. In order to evaluate whether our
solution scales, we generate random samples of MTS, disjunctive MTS, Boolean
MTS and parametric MTS with different numbers of parameters (as displayed
in tables below in parenthesis). For each type of system and the number of
reachable states (25 to 200 as displayed in columns), we generate several pairs
of systems and compute the average time to check modal refinement between
them. While the systems in Table 1 are generated independently, the refining
systems in Table 2 are refinements of the abstract systems.

We show several sets of experiments. In Table 1, we consider (1) systems
with alphabet of size 2 and all states with branching degree 2, and (2) systems
with alphabet of size 10 and all states with branching degree 10. Further, in
Table 2, we consider systems with alphabet of size 2 and all states with branching
degree 5. Here we first consider the systems as above, i.e. with edges generated
randomly so that they create a tree and with some additional “noise” edges thus
making the branching degree constant. Second, we consider systems where we
have different “clusters”, each of which is interconnected with many edges. Each
of these clusters has a couple of “interface” states, which are used to connect to
other clusters. We use this class of systems to model system descriptions with
more organic structure.

The entries in the tables are average running times in seconds. The standard
deviation in our experiments was around 30-60%. The experiments were run on
an Intel Core 2 Duo CPU P9600 2.66GHz with 3.8 GB RAM using Java 1.7.
For more details, see [KS13].

Table 1. Experimental results: systems over alphabet of size 2 with branching degree
2 in the upper part, and systems over alphabet of size 10 with branching degree 10 in
the lower part

25 50 75 100 125 150 175 200

MTS 0.03 0.15 0.29 0.86 0.87 0.96 1.88 2.48
DMTS 0.04 0.22 0.39 0.91 1.13 1.34 2.61 3.19
BMTS 0.03 0.15 0.30 0.62 0.83 0.87 1.61 2.17
PMTS(1) 0.03 0.20 0.37 0.84 0.97 1.23 2.44 3.15
PMTS(5) 0.04 0.22 0.42 0.91 1.26 1.59 2.83 3.66

MTS 0.18 0.84 2.12 3.88 5.63 7.64 10.30 14.18
DMTS 0.44 2.23 5.31 8.59 10.13 14.14 13.96 66.92
BMTS 0.21 1.08 2.65 4.58 6.70 9.63 12.44 17.06
PMTS(1) 0.26 1.12 2.74 4.57 7.58 10.31 11.26 16.41
PMTS(5) 0.25 1.17 2.94 6.36 7.80 10.01 11.90 36.51

On the one hand, observe that the number of parameters does not play any
major role in the running time. The running times on PMTS with 5 parame-
ters are very close to BMTS, i.e. PMTS with zero parameters, as can be seen
in the graph. Therefore, the greatest theoretical complexity threat—the num-

173

Table 2. Experimental results: systems over alphabet of size 2 with branching degree 5;
systems with random structure in the upper part, and systems with organic structure
in the lower part; the refining system is identical to the abstract system, besides a
stronger obligation

25 50 75 100 125 150 175 200

BMTS 0.32 1.57 3.46 7.18 10.24 15.18 20.6 27.05
PMTS(1) 0.34 1.57 3.21 8.25 12.46 19.88 24.53 31.01
PMTS(5) 0.33 1.65 4.48 8.21 13.14 21.5 20.55 25.82

BMTS 0.01 0.03 0.18 0.22 0.3 0.48 0.73 1.02
PMTS(1) 0.01 0.07 0.14 0.22 0.43 0.43 0.72 0.83
PMTS(5) 0.01 0.05 0.1 0.17 0.31 0.43 0.88 1.39

ber of parameters allowing in general only for searching all exponentially many
combinations—is in practice eliminated by the use of QBF solvers.

On the other hand, observe that the running time is more affected by the
level of non-determinism. For branching degree 10 over a 10-letter alphabet,
there are more likely to be more outgoing transitions under the same letter
than in the case with branching degree 2 over a 2-letter alphabet, but still less
than for branching degree 5 over a 2-letter alphabet. However, the level of non-
determinism is often quite low [BKLS09], hence this dependency does not pose a
serious problem in practice. Further, even this most difficult setting with a high
level of non-determinism allows for fast analysis if systems with natural organic
structure are considered, cf. upper and lower part of Table 2.

A more serious problem stems from our use of Java. With sizes around 200,
the running times often get considerably longer, as the automatic memory man-
agement takes its toll. However, this problem should diminish in a garbage-
collection-free setting.

5 Thorough Refinement Checking

While modal refinement has been defined syntactically, there is also a corre-
sponding notion defined semantically. The semantics of a state s of a PMTS is
the set of its implementations JsK := {i | i is an implementation and i ≤m s}.

Definition 5.1 (Thorough Refinement). For states s0 and t0 of PMTS, we
say that s0 thoroughly refines t0, written s0 ≤t t0, if Js0K ⊆ Jt0K.

5.1 Transforming PMTS to BMTS and DMTS

The thorough refinement problem is EXPTIME-complete for MTS [BKLS12]
and also for DMTS [BČK11] (for proof, see [BČK10]). First, we show how to
transform PMTS to BMTS and DMTS and thus reduce our problems to the
already solved one.

For a PMTS, we define a system where we can use any valuation of the
parameters:

174

Definition 5.2. For a PMTS M = (S, T, P, Φ) with initial state s0, we define
a BMTS called de-parameterizationMB = ({sB0 }∪S×2P , T ′, ∅, Φ′) with initial
state sB0 and

– T ′ = {(sB0 , a, (s, ν)) | (s0, a, s) ∈ T, ν ⊆ P} ∪ {((s, ν), a, (s′, ν) | (s, a, s′) ∈
T},

– Φ′(sB0) =
⊕
ν⊆P

Φ(s0)[tt/p for p ∈ ν,ff/p for p /∈ ν, (s, ν)/s],

– Φ′
(
(s, ν)

)
= Φ(s)[tt/p for p ∈ ν,ff/p for p /∈ ν, (s, ν)/s].

The de-parameterization is a BMTS having exactly all the implementations
of the PMTS and only one (trivial) valuation.

Proposition 5.3. Let s0 be a PMTS state. Then Js0K = JsB0 K and s0 ≤m sB0 .

Proof. For any parameter valuation ν we match it with ∅ and the modal refine-
ment is achieved in the copy with ν fixed in the second component. Clearly, any
implementation of sB0 corresponds to a particular parameter valuation and thus
also to an implementation of s0. ut

Remark 5.4. The price we have to pay is a blowup exponential in |P |. This is,
however, inevitable. Indeed, consider a PMTS ({s0, s1, s2}, {(s0, p, s1), (s1, p, s2) |
p ∈ P}, P, {s0, s1 7→

∧
p∈P (p, s)⇔ p, s2 7→ tt}). Then in every equivalent BMTS

we need to remember the transitions of the first step so that we can repeat ex-
actly these in the following step. Since there are exponentially many possibilities,
the result follows.

Further, similarly to Boolean formulae with states in [BDF+], we can trans-
form every BMTS to a DMTS.

Definition 5.5. For a BMTS M = (S, T, ∅, Φ) with initial state s0, we define
a DMTS called de-negation MD = (S′, T ′, ∅, Φ′)

– S′ = {M ∈ Tran(s) | s ∈ S},
– Φ′(M) =

∧
(a,s′)∈M

∨
M ′∈Tran(s′)(a,M

′),

and T ′ minimal such that for each M ∈ S′ and each occurrence of (a,M ′) in
Φ(M), we have (M,a,M ′) ∈ T ′.

However, this DMTS needs to have more initial states in order to be equiv-
alent to the original BMTS:

Lemma 5.6. For a state s0 of a BMTS, Js0K =
⋃
M∈Tran(s0)JMK (where M are

taken as states of the de-negation).

Note that both transformations are exponential. The first one in |P | and the
second one in the branching degree. Therefore, their composition is still only
singly exponential, yielding a state space where each state has two components:
a valuation of original parameters and Tran of the original state under this
valuation.

175

Theorem 5.7. Thorough refinement on PMTS is in 2-EXPTIME.

Proof. Recall that thorough refinement on DMTS is in EXPTIME. Further, note
that we have reduced the PMTS and BMTS thorough refinement problems to the
one on DMTS with more initial states. However, this does not pose a problem.
Indeed, let s0 and t0 be states of a BMTS. We want to check whether s0 ≤t t0.
According to [BČK10] where DMTS only have one initial state, we only need to
check whether for each M ∈ Tran(s0) we have (M,Tran(t0)) /∈ Avoid (defined
in [BČK10]), which can clearly still be done in exponential time. ut

5.2 Direct algorithm

We now extend the approach for MTS and DMTS to the BMTS case. Before
proceeding, one needs to prune all inconsistent states, i.e. those with unsatisfiable
obligation. This is standard and the details can be found in [KS13].

We define a set Avoid, which contains pairs consisting of one process and one
set of processes. A pair is contained in the relation if there exists an implemen-
tation refining the single process, but none of the other processes. This approach
is very similar to [BKLS12], but the rules for generating Avoid are much more
complex.

Definition 5.8. (Avoid) Let (S, T, ∅, Φ) be a globally consistent BMTS over the
action alphabet Σ. The set of avoiding states of the form (s, T), where s ∈ S and
T ⊆ S, is the smallest set Avoid such that (s, T) ∈ Avoid whenever T = ∅ or
there exists an admissible set of transitions M ∈ Tran(s) and sets latera,u,f ⊆ S
for every a ∈ Σ, u ∈ S, f ∈

⋃
t∈T Tran(t) such that

∀t ∈ T : ∀Nt ∈ Tran(t) : ∃a ∈ Σ :

∃ta ∈ Nt(a) : ∀sa ∈M(a) : ∀f ∈
⋃
t∈T

Tran(t) : ta ∈ latera,sa,f

∨ ∃sa ∈M(a) : ∀ta ∈ Nt(a) : ta ∈ latera,sa,Nt

and
∀f ∈

⋃
t∈T

Tran(t) : ∀(a, sa) ∈M : (sa, latera,sa,f) ∈ Avoid

hold.

Lemma 5.9. Given processes s, t1, t2 . . . tn of some finite, global-consistent BMTS,
there exists an implementation I such that I ≤m s and I 6≤m ti for all i ∈ [1, n]
if (s, {t1, t2 . . . tn}) ∈ Avoid.

Theorem 5.10. Thorough refinement checking on BMTS is in NEXPTIME.

Proof. For deciding s ≤t t the Avoid relation has to be computed, whose size
grows exponentially with the size of the underlying system. Moreover, in each
step of adding a new element is added to Avoid, the sets latera,s,f need to be
guessed. ut

176

6 Thorough vs. Modal Refinement

In this section, we discuss the relationship of the two refinements. This missing
proofs can be found in [KS13]. Firstly, the modal refinement is a sound approx-
imation to the thorough refinement.

Proposition 6.1. Let s0 and t0 be states of PMTS. If s0 ≤m t0 then s0 ≤t t0.

Proof. For any i ∈ Js0K, we have i ≤m s0 and due to transitivity of ≤m, i ≤m

s0 ≤m t0 implies i ≤m t0, hence i ∈ Jt0K. ut

The converse does not hold even for MTS as shown in the following classical
example ([BKLS09]) where s0 ≤t t0, but s0 6≤m t0.

s0 s1 s2
a a

t0

t1 t2

t′1

a
a

a

However, provided the refined MTS is deterministic, the approximation is
also complete [BKLS09]. This holds also for BMTS and is very useful as deter-
ministic system often appear in practice [BKLS09] and checking modal refine-
ment is computationally easier than the thorough refinement. Formally, a PMTS
(S, T, P, Φ) is called deterministic if for every (s, a, t), (s, a, t′) ∈ T we have t = t′.

Proposition 6.2. Let s0 be a PMTS state and t0 a deterministic BMTS state.
If s0 ≤t t0 then s0 ≤m t0.

However, the completeness fails if the refined system is deterministic but with
parameters:

Example 6.3. Consider a BMTS ({s0, s1}, {s0, a, s1}, ∅, {s0 7→ tt, s1 7→ tt}) and
a deterministic PMTS ({t0, t1}, {(t0, a, t1)}, {p}, {t0 7→ a ⇔ p, t 7→ tt}) below.
Obviously Js0K = Jt0K contains the implementations with no transitions or one
step a-transitions. Although s0 ≤t t0, we do not have s0 ≤m t0 as we cannot
match with any valuation of p.

s0 s1
a

t0 t1
a

Φ(t0) = a⇔ p

Corollary 6.4. There is a state s0 of a PMTS and a state t0 of a deterministic
PMTS such that s0 ≤t t0 but s0 6≤m t0.

In the previous example, we lacked the option to match a system with differ-
ent parameter valuations at once. However, the de-parameterization introduced
earlier is non-deterministic even if the original system was deterministic. Hence
the modal refinement is not guaranteed to coincide with the thorough refinement.
In [BKLS09], we defined the notion of deterministic hull, the best deterministic
overapproximation of a system. The construction on may transitions was the
standard powerset construction and a must transition was created if all states
of a macrostate had one. Here we extend this notion to PMTS, which allows to
over- and under-approximate the thorough refinement by the modal refinement.

177

Definition 6.5. For a PMTS M = (S, T, P, Φ) with initial state s0, we define
a PMTS called deterministic hull D(M) = (2S \ ∅, T ′, P, Φ′) with initial state
D(s0) := {s0} and

– T ′ = {(X, a,Xa)} where Xa denotes all a-successors of elements of X, i.e.
Xa = {s′ | ∃s ∈ X : (s, a, s′) ∈ T)},

– Φ′(X) is such that Tran(X) =
⋃
s∈X Tran(s)[(a,Xa)/(a, s) for every a, s].

Proposition 6.6. For a PMTS state s0, D(s0) is deterministic and s0 ≤m

D(s0).

We now show the minimality of the deterministic hull.

Proposition 6.7. Let s0 be a PMTS state. Then

– for every deterministic PMTS state t0, if s0 ≤m t0 then D(s0) ≤m t0;

– for every deterministic BMTS state t0, if s0 ≤t t0 then D(s0) ≤m t0.

The next transformation allows for removing the parameters without introducing
non-determinism.

Definition 6.8. For a PMTSM = (S, T, P, Φ) with initial state s0, we define a
BMTS called parameter-free hull P(M) = (S, T, ∅, Φ′) with initial state P(s0) :=
s0 and

Φ′(s) =
∨
ν⊆P

Φ(s)[tt/p for p ∈ ν,ff/p for p /∈ ν]

Lemma 6.9. For a PMTS state s0, s0 ≤m sB0 ≤m P(s0).

The parameter-free deterministic hull now plays the rôle of the deterministic
hull for MTS.

Corollary 6.10. For PMTS states s0 and t0, if s0 ≤t t0 then s0 ≤m P(D(t0)).

Proof. Since s0 ≤t t0, we also have s0 ≤t D(t0) by Propositions 6.6 and 6.1.
Therefore, s0 ≤t P(D(t0)) by Proposition 6.9 and thus s0 ≤m P(D(t0)) by
Proposition 6.2. ut

7 Conclusions

We have investigated both modal and thorough refinement on boolean and para-
metric extension of modal transition systems. Apart from results summarized in
the table below, we have shown a practical way to compute modal refinement
and use it for approximating thorough refinement. Closing the complexity gap
for thorough refinement, i.e. obtaining matching lower bounds or improving our
algorithm remains as an open question.

178

MTS BMTS PMTS

≤t ∈ EXPTIME NEXPTIME 2-EXPTIME
s ≤t t, t deterministic ≤m = ≤t ≤m = ≤t ≤m 6= ≤t

References

[AFdFE+11] L. Aceto, I. Fábregas, D. de Frutos-Escrig, A. Ingólfsdóttir, and
M. Palomino. Graphical representation of covariant-contravariant modal
formulae. In EXPRESS, pages 1–15, 2011.

[AHKV98] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating
refinement relations. In CONCUR, pages 163–178, 1998.

[AHL+08] A. Antonik, M. Huth, K. G. Larsen, U. Nyman, and A. Wasowski. 20
years of modal and mixed specifications. Bulletin of the EATCS no. 95,
pages 94–129, 2008.

[BČK10] N. Beneš, I. Černá, and J. Křet́ınský. Disjunctive modal transition sys-
tems and generalized LTL model checking. Technical report FIMU-RS-
2010-12, Faculty of Informatics, Masaryk University, Brno, 2010.

[BČK11] N. Beneš, I. Černá, and J. Křet́ınský. Modal transition systems: Compo-
sition and LTL model checking. In ATVA, pages 228–242, 2011.

[BDF+] N. Beneš, B. Delahaye, U. Fahrenberg, J. Křet́ınský, and A. Legay.
Hennessy-milner logic with maximal fixed points as a specification theory.
Submitted.

[BKL+11] N. Beneš, J. Křet́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Para-
metric modal transition systems. In ATVA, pages 275–289, 2011.

[BKL+12] N. Beneš, J. Křet́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Dual-
priced modal transition systems with time durations. In LPAR, pages
122–137, 2012.

[BKLS09] N. Beneš, J. Křet́ınský, K. G. Larsen, and J. Srba. On determinism in
modal transition systems. Theor. Comput. Sci., 410(41):4026–4043, 2009.

[BKLS12] N. Beneš, J. Křet́ınský, K. G. Larsen, and J. Srba. Exptime-completeness
of thorough refinement on modal transition systems. Inf. Comput.,
218:54–68, 2012.

[BL90] G. Boudol and K. G. Larsen. Graphical versus logical specifications. In
CAAP, pages 57–71, 1990.

[BLS95] A. Børjesson, K. G. Larsen, and A. Skou. Generality in design and com-
positional verification using TAV. Formal Methods in System Design,
6(3):239–258, 1995.

[BML11] S. S. Bauer, P. Mayer, and A. Legay. MIO workbench: A tool for com-
positional design with modal input/output interfaces. In ATVA, pages
418–421, 2011.

[Bru97] G. Bruns. An industrial application of modal process logic. Sci. Comput.
Program., 29(1-2):3–22, 1997.

[CGLT09] A. Campetelli, A. Gruler, M. Leucker, and D. Thoma. Don’t Know for
multi-valued systems. In ATVA, pages 289–305, 2009.

[dAH01] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC / SIG-
SOFT FSE, pages 109–120, 2001.

[DFFU07] N. D’Ippolito, D. Fischbein, H. Foster, and S. Uchitel. MTSA: Eclipse
support for modal transition systems construction, analysis and elabora-
tion. In ETX, pages 6–10, 2007.

179

[DGG97] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[DN04] D. Dams and K. S. Namjoshi. The existence of finite abstractions for
branching time model checking. In LICS, pages 335–344, 2004.

[FS08] H. Fecher and H. Schmidt. Comparing disjunctive modal transition sys-
tems with an one-selecting variant. J. Log. Algebr. Program., 77(1-2):20–
39, 2008.

[GHJ01] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model
checking using modal transition systems. In CONCUR, pages 426–440,
2001.

[GNRT10] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Composi-
tional may-must program analysis: unleashing the power of alternation.
In POPL, pages 43–56, 2010.

[HJS01] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A
foundation for three-valued program analysis. In ESOP, pages 155–169,
2001.

[JP01] B. Jacobs and E. Poll. A logic for the java modeling language JML. In
FASE, pages 284–299, 2001.

[KS13] J. Křet́ınský and S. Sickert. On refinements of boolean and parametric
modal transition systems. CoRR, abs/1304.5278, 2013.

[LNW07] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for
interface and product line theories. In ESOP, pages 64–79, 2007.

[LT88] K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages
203–210, 1988.

[LW94] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, 1994.

[LX90] K. G. Larsen and L. Xinxin. Equation solving using modal transition
systems. In LICS, pages 108–117, 1990.

[Lyn88] N. Lynch. I/O automata: A model for discrete event systems. In 22nd
Annual Conference on Information Sciences and Systems, pages 29–38.
Princeton University, 1988.

[Nam03] K. S. Namjoshi. Abstraction for branching time properties. In CAV,
pages 288–300, 2003.

[Nym08] U. Nyman. Modal Transition Systems as the Basis for Interface Theories
and Product Lines. PhD thesis, Aalborg Universitet, 2008.

[Rac07] J.-B. Raclet. Quotient de spécifications pour la réutilisation de com-
posants. PhD thesis, Université de Rennes I, december 2007. (In French).

[RBB+09] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone.
Why are modalities good for interface theories? In ACSD. IEEE Com-
puter Society Press, 2009.

[RBB+11] J.-B. Raclet, E. Badouel, A. Benveniste, B.Caillaud, A. Legay, and
R. Passerone. A modal interface theory for component-based design. Fun-
damenta Informaticae, 108(1-2):119–149, 2011.

[UC04] S. Uchitel and M. Chechik. Merging partial behavioural models. In SIG-
SOFT FSE, pages 43–52, 2004.

180

Paper G:

Hennessy-Milner logic with greatest fixed points as a complete
behavioural specification theory

Nikola Beneš, Benoı̂t Delahaye, Uli Fahrenberg, Jan Křetı́nský, and Axel Legay

This paper has been published in Pedro R. D’Argenio and Hernán Melgratti (eds.):
Proceedings of Concurrency Theory, 24th International Conference, CONCUR
2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings, volume 8052 of
Lecture Notes in Computer Science, pages 76–90. Springer, 2013. Copyright c© by
Springer-Verlag. [BDF+13]

Some of the results have been published in a Bachelor’s thesis [Sic12] super-
vised by the author.

Summary

We unify the behavioural and logical approach to specification and verification in
the setting of MTS extensions and Hennessy-Milner logic with recursion. To this
end, we provide translations between BMTS (or DMTS with more initial states)
and ν-calculus (or Hennessy-Milner logic with greatest fix-points). Further, we
also show this formalism is a complete specification theory equipped with all nec-
essary operations, which, moreover, exhibit nice algebraic properties. The techni-
cal core is the construction of the quotient for (generally non-deterministic) BMTS.
This is the first quotient for non-deterministic modal specifications. Moreover, we
also give a construction of the quotient for MTS, which is exponentially more ef-
ficient. This is a vast improvement on the previous construction for deterministic
MTS defined using simple syntactic rules.

Author’s contribution: 30 %

• participating in the discussions,

• contributing, in particular, to the translations and the construction of the
quotient,

• writing parts of the paper.

181

182

Hennessy-Milner Logic with Greatest Fixed Points
as a Complete Behavioural Specification Theory

Nikola Beneš1?, Benôıt Delahaye2, Uli Fahrenberg2,
Jan Křet́ınský1,3??, and Axel Legay2

1 Masaryk University, Brno, Czech Republic
2 Irisa / INRIA Rennes, France

3 Technische Universität München, Germany

Abstract. There are two fundamentally different approaches to speci-
fying and verifying properties of systems. The logical approach makes
use of specifications given as formulae of temporal or modal logics and
relies on efficient model checking algorithms; the behavioural approach
exploits various equivalence or refinement checking methods, provided
the specifications are given in the same formalism as implementations.

In this paper we provide translations between the logical formalism of
Hennessy-Milner logic with greatest fixed points and the behavioural
formalism of disjunctive modal transition systems. We also introduce a
new operation of quotient for the above equivalent formalisms, which is
adjoint to structural composition and allows synthesis of missing specifica-
tions from partial implementations. This is a substantial generalisation of
the quotient for deterministic modal transition systems defined in earlier
papers.

1 Introduction

There are two fundamentally different approaches to specifying and verifying
properties of systems. Firstly, the logical approach makes use of specifications
given as formulae of temporal or modal logics and relies on efficient model checking
algorithms. Secondly, the behavioural approach exploits various equivalence or
refinement checking methods, provided the specifications are given in the same
formalism as implementations.

In this paper, we discuss different formalisms and their relationship. As an
example, let us consider labelled transition systems and the property that “at all
time points after executing request, no idle nor further requests but only work is
allowed until grant is executed”. The property can be written in e.g. CTL [14] as

AG(request⇒ AX(work AW grant))

? The author has been supported by the Czech Science Foundation grant No.
GAP202/11/0312.

?? The author is partially supported by the Czech Science Foundation, project No.
P202/10/1469.

183

request

grant,work, idle

workgrant

request grant request
work

idle
idle

Fig. 1. DMTS specification corresponding to AG(request⇒ AX(work AW grant)), and
its implementation

or as a recursive system of equations in Hennessy-Milner logic [29] as

X = [grant, idle,work]X ∧ [request]Y

Y = (〈work〉Y ∨ 〈grant〉X) ∧ [idle, request]ff

where the solution is given by the greatest fixed point.
As formulae of modal logics can be difficult to read, some people prefer

automata-based behavioural specifications to logical ones. One such behavioural
specification formalism is the one of disjunctive modal transition systems (DMTS)
[26]. Fig. 1 (left) displays a specification of our example property as a DMTS.
Here the dashed arrows indicate that the transitions may or may not be present,
while branching of the solid arrow indicates that at least one of the branches
must be present. An example of a labelled transition system that satisfies our
logical specifications and implements the behavioural one is also given in Fig. 1.

The alternative between logical and behavioural specifications is not only
a question of preference. Logical specification formalisms put a powerful logical
language at the disposal of the user, and the logical approach to model check-
ing [14,34] has seen a lot of success and tool implementations. Automata-based
specifications [12, 27], on the other hand, have a focus on compositional and
incremental design in which logical specifications are somewhat lacking, with the
trade-off of generally being less expressive than logics.

To be more precise, automata-based specifications are, by design, composi-
tional in the sense that they support structural composition of specifications and,
in most cases, its adjoint, quotient. This is useful, even necessary, in practical
verification, as it means that (1) it is possible to infer properties of a system
from the specifications of its components, and (2) the problem of correctness for
a system can be decomposed into verification problems for its components. We
refer to [28] for a detailed account on composition and decomposition.

It is thus desirable to be able to translate specifications from the logical
realm into behavioural formalisms, and vice versa from behavioural formalisms
to logic-based specifications. This is, then, the first contribution of this paper: we
show that Hennessy-Milner logic with greatest fixed points (νHML) and DMTS
(with several initial states) are equally expressive, and we provide translations
forth and back. For doing this, we introduce an auxiliary intermediate formalism
NAA (a nondeterministic extension of acceptance automata [22, 35]) which is
equivalent in expressiveness to both νHML and DMTS.

We also discuss other desirable features of specification formalisms, namely
structural composition and quotient. As an example, consider a specification S

184

of the final system to be constructed and T either an already implemented
component or a specification of a service to be used. The task is to construct the
most general specification of the rest of the system to be implemented, in such
a way that when composed with any implementation of T , it conforms with the
specification S. This specification is exactly the quotient S/T .

Contribution Firstly, we show that the formalisms of νHML, NAA and DMTS
have the same expressive power, and provide the respective translations. As
a result, the established connection allows for a graphical representation of νHML
as DMTS. This extends the graphical representability of HML without fixed
points as modal transition systems [10,27]. In some sense this is optimal, as due
to the alternation of least and greatest fixed points, there seems to be no hope
that the whole µ-calculus could be drawn in a similarly simple way.

Secondly, we show that there are natural operations of conjunction and
disjunction for NAA which mimic the ones of νHML. As we work with multiple
initial states, disjunction is readily defined, and conjunction extends the one for
DMTS [6]. Thirdly, we introduce structural composition on NAA. For simplicity
we assume CSP-style synchronisation of labels, but the construction can easily
be generalised to other types of label synchronisation.

Finally, we provide a solution to the open problem of the general quotient.
We extend the quotient constructions for deterministic modal transition systems
(MTS) and acceptance automata [35] to define the quotient for the full class of
(possibly nondeterministic) NAA. We also provide a more efficient procedure for
(possibly nondeterministic) MTS. These constructions are the technically most
demanding parts of the paper.

With the operations of structural composition and quotient, NAA, and hence
also DMTS and νHML, are fully compositional behavioural specification theories
and form a commutative residuated lattice [21, 39] up to equivalence. This makes
a rich algebraic theory available for compositional reasoning about specifications.
Most of the constructions we introduce are implemented in a prototype tool [8].
Due to space constraints, some of the proofs had to be omitted from the paper
and can be found in [3].

Related work Hennessy-Milner logic with recursion [29] is a popular logical
specification formalism which has the same expressive power as µ-calculus [25]. It
is obtained from Hennessy-Milner logic (HML) [23] by introducing variables and
greatest and least fixed points. Hennessy-Milner logic with greatest fixed points
(νHML) is equivalent to ν-calculus, i.e. µ-calculus with greatest fixed points only.

DMTS have been proposed as solutions to algebraic process equations in [26]
and further investigated also as a specification formalism [6, 28]. The DMTS
formalism is a member of the modal transition systems (MTS) family and as
such has also received attention recently. The MTS formalisms have proven to be
useful in practice. Industrial applications started as early as [11] where MTS have
been used for an air-traffic system at Heathrow airport. Besides, MTS classes are
advocated as an appropriate base for interface theories in [36] and for product

185

line theories in [31]. Further, an MTS based software engineering methodology
for design via merging partial descriptions of behaviour has been established
in [38] and methods for supervisory control of MTS shown in [15]. Tool support
is quite extensive, e.g. [2, 6, 9, 16].

Over the years, many extensions of MTS have been proposed. While MTS
can only specify whether or not a particular transition is required, some ex-
tensions equip MTS with more general abilities to describe what combinations
of transitions are possible. These include DMTS [26], 1-MTS [17] allowing to
express exclusive disjunction, OTS [4] capable of expressing positive Boolean
combinations, and Boolean MTS [5] covering all Boolean combinations. The last
one is closely related to our NAA, the acceptance automata of [22,35], as well as
hybrid modal logic [7, 33].

Larsen has shown in [27] that any finite MTS is equivalent to a HML formula
(without recursion or fixed points), the characteristic formula of the given MTS.
Conversely, Boudol and Larsen show in [10] that any consistent and prime HML
formula is equivalent to a MTS. Here we extend these results to νHML formulae,
and show that any such formula is equivalent to a DMTS, solving a problem left
open in [26]. Hence νHML supports full compositionality and decomposition in
the sense of [28]. This finishes some of the work started in [10,27,28].

Quotients are related to decomposition of processes and properties, an issue
which has received considerable attention through the years. In [26], a solution
to bisimulation C(X) ∼ P for a given process P and context C is provided (as
a DMTS). This solves the quotienting problem P/C for the special case where both
P and C are processes. This is extended in [30] to the setting where the context
C can have several holes and C(X1, . . . , Xn) must satisfy a property Q of νHML.
However, C remains to be a process context, not a specification context. Our
specification context allows for arbitrary specifications, representing infinite sets of
processes and process equations. Another extension uses infinite conjunctions [19],
but similarly to the other approaches, generates partial specifications from an
overall specification and a given set of processes. This is subsumed by a general
quotient.

Quotient operators, or guarantee or multiplicative implication as they are
called there, are also well-known from various logical formalisms. Indeed, the
algebraic properties of our parallel composition ‖ and quotient / resemble closely
those of multiplicative conjunction & and implication (in linear logic [20],
and of spatial conjunction and implication in spatial logic [13] and separation
logic [32,37]. For these and other logics, proof systems have been developed which
allow one to reason about expressions containing these operators.

In spatial and separation logic, & and ((or the operators corresponding to
these linear-logic symbols) are first-class operators on par with the other logical
operators, and their semantics are defined as certain sets of processes. In contrast,
for NAA and hence, via the translations, also for νHML, ‖ and / are derived
operators, and we provide constructions to reduce any expression which contains
them, to one which does not. This is important from the perspective of reuse of
components and useful in industrial applications.

186

2 Specification Formalisms

In this section, we define the specification formalisms νHML, DMTS and NAA
and show that they are equivalent.

For the rest of the paper, we fix a finite alphabet Σ. In each of the formalisms,
the semantics of a specification is a set of implementations, in our case always
a set of labelled transition systems (LTS) over Σ, i.e. structures (S, s0,−→)
consisting of a set S of states, an initial state s0 ∈ S, and a transition relation
−→ ⊆ S × Σ × S. We assume that the transition relation of LTS is always
image-finite, i.e. that for every a ∈ Σ and s ∈ S the set {s′ ∈ S | s a−→ s′} is
finite.

2.1 Hennessy-Milner Logic with Greatest Fixed Points

We recap the syntax and semantics of HML with variables developed in [29].
A HML formula φ over a set X of variables is given by the abstract syntax
φ ::= tt | ff | x | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ, where x ranges over X and a over Σ.
The set of such formulae is denoted H(X). Notice that instead of including fixed
point operators in the logic, we choose to use declarations with a greatest fixed
point semantics, as explained below.

A declaration is a mapping ∆ : X → H(X). We shall give a greatest fixed
point semantics to declarations. Let (S, s0,−→) be an LTS, then an assignment
is a mapping σ : X → 2S . The set of assignments forms a complete lattice with
σ1 v σ2 iff σ1(x) ⊆ σ2(x) for all x ∈ X and

(⊔
i∈I σi

)
(x) =

⋃
i∈I σi(x).

The semantics of a formula is a subset of S, given relative to an assignment σ,
defined as follows: LttMσ = S, LffMσ = ∅, LxMσ = σ(x), Lφ ∧ ψMσ = LφMσ ∩ LψMσ,

Lφ ∨ ψMσ = LφMσ ∪ LψMσ, L〈a〉φMσ = {s ∈ S | ∃s a−→ s′ : s′ ∈ LφMσ}, and

L[a]φMσ = {s ∈ S | ∀s a−→ s′ : s′ ∈ LφMσ}. The semantics of a declaration ∆ is then
the assignment defined by L∆M =

⊔
{σ : X → 2S | ∀x ∈ X : σ(x) ⊆ L∆(x)Mσ}:

the greatest (pre)fixed point of ∆.
An initialised HML declaration, or νHML formula, is a structure (X,X0, ∆),

with X0 ⊆ X finite sets of variables and ∆ : X → H(X) a declaration. We say
that an LTS (S, s0,−→) implements (or models) the formula, and write S |= ∆,
if it holds that there is x0 ∈ X0 such that s0 ∈ L∆M(x0). We write J∆K for the
set of implementations (models) of a νHML formula ∆.

2.2 Disjunctive Modal Transition Systems

A DMTS is essentially a labelled transition system (LTS) with two types of
transitions, may transitions which indicate that implementations are permitted
to implement the specified behaviour, and must transitions which proclaim that
any implementation is required to implement the specified behaviour. Additionally,
must transitions may be disjunctive, in the sense that they can require that at
least one out of a number of specified behaviours must be implemented. We
now recall the syntax and semantics of DMTS as introduced in [26]. We modify

187

the syntax slightly to permit multiple initial states and, in the spirit of later
work [6, 18], ensure that all required behaviour is also allowed:

A disjunctive modal transition system (DMTS) over the alphabet Σ is a struc-
ture (S, S0, 99K,−→) consisting of a set of states S, a finite subset S0 ⊆ S of
initial states, a may-transition relation 99K ⊆ S ×Σ × S, and a disjunctive must-
transition relation −→ ⊆ S×2Σ×S . It is assumed that for all (s,N) ∈ −→ and all

(a, t) ∈ N , (s, a, t) ∈ 99K. We usually write s
a

99K t instead of (s, a, t) ∈ 99K and
s −→ N instead of (s,N) ∈ −→. We also assume that the may transition relation
is image-finite. Note that the two assumptions imply that −→ ⊆ S× 2Σ×SFin where
2XFin denotes the set of all finite subsets of X.

A DMTS (S, S0, 99K,−→) is an implementation if S0 = {s0} is a singleton

and −→ = {(s, {(a, t)} | s a
99K t}, hence if N is a singleton for each s −→ N

and there are no superfluous may-transitions. Thus DMTS implementations are
precisely LTS.

We proceed to define the semantics of DMTS. First, a relation R ⊆ S1×S2 is
a modal refinement between DMTS (S1, S

0
1 , 99K1,−→1) and (S2, S

0
2 , 99K2,−→2)

if it holds for all (s1, s2) ∈ R that

– for all s1
a

99K t1 there is s2
a

99K t2 for some t2 ∈ S2 with (t1, t2) ∈ R, and
– for all s2 −→ N2 there is s1 −→ N1 such that for each (a, t1) ∈ N1 there is

(a, t2) ∈ N2 with (t1, t2) ∈ R.

Such a modal refinement is initialised if it is the case that, for each s01 ∈ S0
1 ,

there is s02 ∈ S0
2 for which (s01, s

0
2) ∈ R. In that case, we say that S1 refines S2

and write S1 ≤m S2. We write S1 ≡m S2 if S1 ≤m S2 and S2 ≤m S1.
We say that an LTS I implements a DMTS S if I ≤m S and write JSK for

the set of implementations of S. Notice that the notions of implementation and
modal refinement agree, capturing the essence of DMTS as a specification theory :
A DMTS may be gradually refined, until an LTS, in which all behaviour is fully
specified, is obtained.

For DMTS S1, S2 we say that S1 thoroughly refines S2, and write S1 ≤t S2,
if JS1K ⊆ JS2K. We write S1 ≡t S2 if S1 ≤t S2 and S2 ≤t S1. By transitivity,
S1 ≤m S2 implies S1 ≤t S2.

Example 1. Figs. 2 and 3 show examples of important basic properties expressed
both as νHML formulae, NAA (see below) and DMTS. For DMTS, may transitions
are drawn as dashed arrows and disjunctive must transitions as branching arrows.
States with a short incoming arrow are initial (the DMTS in Fig. 3 has two initial
states).

X = 〈a〉tt ∧ [a]X ∧ [b]X

({s0}, {s0},Tran)
Tran(s0) =

{
{(a, s0)}, {(a, s0), (b, s0)}

}
a

b

Fig. 2. νHML formula, NAA and DMTS for the invariance property “there is always
an ‘a’ transition available”, with Σ = {a, b}

188

X = 〈b〉tt ∨
(
〈a〉tt ∧ [a]X ∧ [b]X ∧ [c]X

)
({s0, s1}, {s0},Tran)
Tran(s0) =

{
{(b, s1)}, {(b, s1), (a, s1)}, {(b, s1), (c, s1)},
{(b, s1), (a, s1), (c, s1))}, {(a, s0)}, {(a, s0), (c, s0)}

}
Tran(s1) = 2{s1}×{a,b,c}

a

a

b
a, c

b, c

b, c

a, b, c

Fig. 3. νHML formula, NAA and DMTS for the (“weak until”) property “there is always
an ‘a’ transition available, until a ‘b’ transition becomes enabled”, with Σ = {a, b, c}

a

b

Modal Transition Systems An interesting subclass
of DMTS are modal transition systems (MTS) [27]. A
DMTS (S, S0, 99K,−→) is said to be a MTS if (1)
S0 = {s0} is a singleton, (2) for every s −→ N , the set N is a singleton. Hence,
for each transition, we specify whether it must, may, or must not be present; no
disjunctions can be expressed. It is easy to see that MTS are less expressive than
DMTS, i.e. there are DMTS S for which no MTS S′ exists so that JSK = JS′K.
One example is provided on the right. Here any implementation must have an a
or a b transition from the initial state, but then any MTS which permits all such
implementations will also allow implementations without any transition from the
initial state.

2.3 NAA

We now define NAA, the nondeterministic extension to the formalism of accep-
tance automata [35]. We shall use this formalism to bridge the gap between
νHML and DMTS. A nondeterministic acceptance automaton over the alphabet
Σ is a structure (S, S0,Tran) where S and S0 are the states and initial states as

previously, and Tran : S → 22
Σ×S
Fin assigns admissible transition sets.

A NAA (S, S0,Tran) is an implementation if S0 = {s0} is a singleton and
Tran(s) = {M} is a singleton for every s ∈ S; clearly, NAA implementations are
precisely LTS. We also define the inconsistent NAA to be ⊥ = (∅, ∅, ∅) and the

universal NAA by > = ({s}, {s}, 22Σ×{s}).
A relation R ⊆ S1 × S2 is a modal refinement between NAA (S1, S

0
1 ,Tran1),

(S2, S
0
2 ,Tran2) if it holds for all (s1, s2) ∈ R and all M1 ∈ Tran1(s1) that there

exists M2 ∈ Tran2(s2) such that

– ∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
– ∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R.

We define and use the notions of initialised modal refinement, ≤m, ≡m, imple-
mentation, ≤t, and ≡t the same way as for DMTS.

Proposition 2. The class of NAA is preordered by modal refinement ≤m, with
bottom element ⊥ and top element >.

189

Note that as implementations of all our three formalisms νHML, DMTS and
NAA are LTS, it makes sense to use thorough refinement ≤t and equivalence ≡t

across formalisms, so that we e.g. can write S ≤t ∆ for a NAA S and a νHML
formula ∆.

2.4 Equivalences

We proceed to show that νHML, DMTS and NAA are equally expressive:

Theorem 3. For any set S of LTS, the following are equivalent:

1. There exists a νHML formula ∆ with J∆K = S.
2. There exists a finite NAA S with JSK = S.
3. There exists a finite DMTS S with JSK = S.

Furthermore, the latter two statements are equivalent even if we drop the finiteness
constraints.

Note that we could drop the finiteness assumption about the set of variables
of νHML formulae, while retaining the fact that ∆(x) is a finite HML formula.
The result of Theorem 3 could then be extended with the statement that these
possibly infinite νHML formulae are equivalent to general DMTS/NAA.

For a DMTS S = (S, S0, 99K,−→), let Tran(s) = {M ⊆ Σ × S | ∃N : s −→
N,N ⊆M ;∀(a, t) ∈M : s

a
99K t} and define the NAA dn(S) = (S, S0,Tran).

Conversely, for an NAA (S, S0,Tran), define the DMTS nd(S) = (T, T 0, 99K,
−→) as follows:

– T = {M ∈ Tran(s) | s ∈ S}, T 0 = {M ∈ Tran(s0) | s0 ∈ S0},
– −→ = {(M, {(a,M ′) |M ′ ∈ Tran(s′)} | (a, s′) ∈M},
– 99K = {(t, a, t′) | t ∈ T, ∃(t,N) ∈ −→ : (a, t′) ∈ N}.

Note that both nd and dn preserve finiteness. Both translation are exponential
in their respective arguments.

Lemma 4. For every DMTS S, S ≡t dn(S). For every NAA S, S ≡t nd(S).

For a set of pairs of actions and states M we use Ma to denote the set
{s | (a, s) ∈M}. Let (S, S0,Tran) be a finite NAA and let s ∈ S, we then define

∆Tran(s) =
∨

M∈Tran(s)

(∧
(a,t)∈M

〈a〉t ∧
∧
a∈Σ

[a]
(∨
u∈Ma

u
))

We then define the νHML formula nh(S) = (S, S0, ∆Tran). Notice that vari-
ables in nh(S) are states of S.

Lemma 5. For all NAA S, S ≡t nh(S).

Our translation from νHML to DMTS is based on the constructions in [10].
First, we need a variant of a disjunctive normal form for HML formulae:

190

Lemma 6. For any νHML formula (X1, X
0
1 , ∆1), there exists another formula

(X2, X
0
2 , ∆2) with J∆1K = J∆2K and such that any formula ∆2(x), for x ∈ X2, is

tt or of the form ∆2(x) =
∨
i∈I
(∧

j∈Ji〈aij〉xij ∧
∧
a∈Σ [a]yi,a

)
for finite (possibly

empty) index sets I and Ji, i ∈ I, and all xij , yi,a ∈ X2. Additionally we can
assume that for all i ∈ I, j ∈ Ji, a ∈ Σ, aij = a implies JxijK ⊆ Jyi,aK.

Let now (X,X0, ∆) be a νHML formula in the form introduced above, then
we define a DMTS hd(∆) = (S, S0, 99K,−→) as follows:

– S = {(x, k) | x ∈ X,∆(x) =
∨
i∈I φi, k ∈ I 6= ∅} ∪ {⊥,>},

– S0 = {(x0, k) | x0 ∈ X0}.
– For each (x, k) ∈ S with ∆(x) =

∨
i∈I(

∧
j∈Ji〈aij〉xij ∧

∧
a∈Σ [a]yi,a) and

I 6= ∅,
• for each j ∈ Ji, let Mustj(x, k) = {(aij , (xij , i′)) ∈ Σ × S},
• for each a ∈ Σ, let Maya(x, k) = {(x′, i′) ∈ S | Jx′K ⊆ Jyi,aK}.

– Let 99K = {(s, a, s′) | s ∈ S, a ∈ Σ, s′ ∈ Maya(s)} ∪ {(>, a,>) | a ∈ Σ} and
−→ = {(s,Mustj(s)) | s = (x, i) ∈ S, j ∈ Ji} ∪ {(⊥, ∅)}.

Lemma 7. For all νHML formulae ∆, ∆ ≡t hd(∆).

Further, we remark that the overall translation from DMTS to νHML is
quadratic and in the other direction inevitably exponential.

Example 8. Consider the νHML formula X = (〈a〉(〈b〉X ∧ [a]ff) ∧ [b]ff) ∨ [a]ff .
Changing the formula into the normal form of Lemma 6 introduces a new variable
Y as illustrated below; X remains the sole initial variable. The translation hd
then gives a DMTS with two initial states (the inconsistent state ⊥ and redundant

may transitions such as x1
a

99K x2, x2
b

99K x1, etc. have been omitted):

X = (

x1︷ ︸︸ ︷
〈a〉Y ∧ [a]tt ∧ [b]ff)

∨ ([a]ff ∧ [b]tt︸ ︷︷ ︸
x2

)

Y = 〈b〉X ∧ [a]ff ∧ [b]tt︸ ︷︷ ︸
y1

x1

>x2

y1

a
a

b

b

b

b

a, b

3 Specification Theory

In this section, we introduce operations of conjunction, disjunction, structural
composition and quotient for NAA, DMTS and νHML. Together, these opera-
tions yield a complete specification theory in the sense of [1], which allows for
compositional design and verification using both logical and structural operations.
We remark that conjunction and disjunction are straightforward for logical for-
malisms such as νHML, whereas structural composition is more readily defined
on behavioural formalisms such as (D)MTS. For the mixed formalism of NAA,
disjunction is trivial as we permit multiple initial states, but conjunction requires
some work. Note that our construction of conjunction works for nondeterministic
systems in contrast to all the work in this area except for [6, 26].

191

3.1 Disjunction

The disjunction of NAA S1 = (S1, S
0
1 ,Tran1) and S2 = (S2, S

0
2 ,Tran2) is S1 ∨

S2 = (S1 ∪ S2, S
0
1 ∪ S0

2 ,Tran1 ∪ Tran2). Similarly, the disjunction of two DMTS
S1 = (S1, S

0
1 , 99K1,−→1) and S2 = (S2, S

0
2 , 99K2,−→2) is S1∨S2 = (S1∪S2, S

0
1 ∪

S0
2 , 99K1 ∪ 99K2,−→1 ∪−→2). It follows that disjunction respects the translation

mappings dn and nd from the previous section.

Theorem 9. Let S1, S2, S3 be NAA or DMTS. Then JS1 ∨ S2K = JS1K ∪ JS2K.
Further, S1 ∨ S2 ≤m S3 iff S1 ≤m S3 and S2 ≤m S3.

s01 s02

a a

b bWe point out one important distinction
between NAA and DMTS: NAA with a single
initial state are equally expressive as general
NAA, while for DMTS, this is not the case. The
example on the right shows a DMTS (S, S0, 99K,−→), with S = S0 = {s01, s02},
s01 −→ {(a, s01), (a, s02)} and s01 −→ {(b, s01), (b, s02)} (and the corresponding may-
transitions). Two initial states are necessary for capturing JSK.

Lemma 10. For any NAA S there is a NAA T = (T, T 0, Ψ) with T 0 = {t0}
a singleton and S ≡m T .

3.2 Conjunction

Conjunction for DMTS is an extension of the construction from [6] for multiple
initial states. Given two DMTS (S1, S

0
1 , 99K1,−→1), (S2, S

0
2 , 99K2,−→2), we define

S1 ∧ S2 = (S, S0, 99K,−→) with S = S1 × S2, S0 = S0
1 × S0

2 , and

– (s1, s2)
a

99K (t1, t2) iff s1
a

99K1 t1 and s2
a

99K2 t2,

– for all s1 −→ N1, (s1, s2) −→ {(a, (t1, t2)) | (a, t1) ∈ N1, (s1, s2)
a

99K (t1, t2)},
– for all s2 −→ N2, (s1, s2) −→ {(a, (t1, t2)) | (a, t2) ∈ N2, (s1, s2)

a
99K (t1, t2)}.

To define conjunction for NAA, we need auxiliary projection functions πi :
Σ × S1 × S2 → Σ × Si. These are defined by

π1(M) ={(a, s1) | ∃s2 ∈ S2 : (a, s1, s2) ∈M}
π2(M) ={(a, s2) | ∃s1 ∈ S1 : (a, s1, s2) ∈M}

Given NAA (S1, S
0
1 ,Tran1), (S2, S

0
2 ,Tran2), define S1 ∧ S2 = (S, S0,Tran), with

S = S1 × S2, S0 = S0
1 × S0

2 and Tran((s1, s2)) = {M ⊆ Σ × S1 × S2 | π1(M) ∈
Tran1(s1), π2(M) ∈ Tran2(s2)}.
Lemma 11. For DMTS S1, S2, dn(S1 ∧ S2) = dn(S1) ∧ dn(S2).

For the translation from NAA to DMTS, nd(S1 ∧ S2) = nd(S1) ∧ nd(S2)
does not necessarily hold, as the translation changes the state space. However,
Theorem 12 below will ensure that nd(S1 ∧ S2) ≡t nd(S1) ∧ nd(S2).

Theorem 12. Let S1, S2, S3 be NAA or DMTS. Then JS1 ∧ S2K = JS1K ∩ JS2K.
Further, S1 ≤m S2 ∧ S3 iff S1 ≤m S2 and S1 ≤m S3.

Theorem 13. With operations ∧ and ∨, the sets of DMTS and NAA form
bounded distributive lattices up to ≡m.

192

3.3 Structural Composition

We define structural composition for NAA. For NAA S1 = (S1, S
0
1 ,Tran1), S2 =

(S2, S
0
2 ,Tran2), we define S1‖S2 = (S, S0,Tran) with S = S1×S2, S0 = S0

1 ×S0
2 ,

and for all (s1, s2) ∈ S, Tran((s1, s2)) = {M1‖M2 | M1 ∈ Tran1(s1),M2 ∈
Tran2(s2)}, where M1‖M2 = {(a, (t1, t2)) | (a, t1) ∈M1, (a, t2) ∈M2}.

Lemma 14. Up to ≡m, the operator ‖ on NAA is associative and commutative,

distributes over ∨, and has unit U, where U is the LTS ({s}, s,−→) with s
a−→ s

for all a ∈ Σ.

Theorem 15. For all NAA S1, S2, S3, S4, S1 ≤m S3 and S2 ≤m S4 imply
S1‖S2 ≤m S3‖S4.

We remark that structural composition on MTS [27] coincides with our
NAA composition, so that for MTS S1, S2, dn(S1)‖dn(S2) = dn(S1‖S2). On
the other hand, structural composition for DMTS (with single initial states)
as defined in [6] is weaker than NAA composition, i.e. for DMTS S1, S2, and
denoting by ‖′ the composition from [6], only dn(S1)‖dn(S2) ≤t dn(S1‖′S2)
holds. Consider for example the DMTS S and S′ in the figure below. When
considering their NAA composition, the initial state is the pair (s0, t0) with
Tran((s0, t0)) = {∅, {(a, (s2, t1)), (a, (s2, t2))}. Since this constraint cannot be
represented as a disjunctive must, there is no DMTS with a single initial state
which can represent the NAA composition precisely.

s0

s1

s2a

b

t0

t1

t2a

a

Hence the DMTS composition of [6] is a DMTS over-approximation of the
NAA composition, and translating from DMTS to NAA before composing (and
back again) will generally give a tighter specification. However, as noted already
in [24], MTS composition itself is an over-approximation, in the sense that there
will generally be implementations I ∈ JS1‖S2K which cannot be written I = I1‖I2
for I1 ∈ JS1K and I2 ∈ JS2K; the same is the case for NAA and DMTS.

3.4 Quotient

We now present one of the central contributions of this paper, the construction
of quotient. The quotient S/T is to be the most general specification that, when
composed with T , refines S. In other words, it must satisfy the property that
for all specifications X, X ≤m S/T iff X ‖ T ≤m S. Quotient has been defined
for deterministic MTS and for deterministic acceptance automata in [35]; here
we extend it to the nondeterministic case (i.e. NAA). The construction incurs
an exponential blow-up, which however is local and depends on the degree of
nondeterminism. We also provide a quotient construction for nondeterministic
MTS; this is useful because MTS encodings for NAA can be very compact.

193

Let (S, S0,TranS), (T, T 0,TranT) be two NAA. We define the quotient S/T =
(Q, {q0},TranQ). Let Q = 2S×TFin and q0 = {(s0, t0) | s0 ∈ S0, t0 ∈ T 0}. States in
Q will be written {s1/t1, . . . , sn/tn} instead of {(s1, t1), . . . , (sn, tn)}.

In the following, we use the notation x ∈∈ z as a shortcut for the fact that there
exists y with x ∈ y ∈ z. We first define TranQ(∅) = 2Σ×{∅}. This means that the
empty set of pairs is the universal state>. Now let q = {s1/t1, . . . , sn/tn} ∈ Q. We
first define the auxiliary set of possible transitions pt(q) as follows. For x ∈ S ∪T ,
let α(x) = {a ∈ Σ | ∃y : (a, y) ∈∈ Tran(x)} and γ(q) =

⋂
i

(
α(si) ∪ (Σ \ α(ti))

)
.

Let further πa(X) = {x | (a, x) ∈ X}.
Let now a ∈ γ(q). For all i ∈ {1, . . . , n}, let {ti,1, . . . , ti,mi} = πa(

⋃
TranT (ti))

be the possible next states from ti after an a-transition, and define

pta(q) =
{
{si,j/ti,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}} |

∀i ∈ {1, . . . , n} : ∀j ∈ {1, . . . ,mi} : (a, si,j) ∈∈ TranS(si)
}

and pt(q) =
⋃
a∈Σ({a} × pta(q)). Hence pta(q) contains sets of possible next

quotient states after an a-transition, each obtained by combining the ti,j with
some permutation of possible next a-states in S. We then define

TranQ(q) = {X ⊆ pt(q) | ∀i : ∀Y ∈ TranT (ti) : X . Y ∈ TranS(si)},

where the operator . is defined by {s1/t1, . . . , sk/tk} . t` = s` and X . Y =
{(a, x . y) | (a, x) ∈ X, (a, y) ∈ Y }. Hence TranQ(q) contains all sets of (possible)
transitions which are compatible with all ti in the sense that (the projection of)
their parallel composition with any set Y ∈ TranT (ti) is in TranS(si).

Theorem 16. For all NAA S, T and X, X‖T ≤m S iff X ≤m S/T .

Theorem 17. With operations ∧, ∨, ‖ and /, the set of NAA forms a commu-
tative residuated lattice up to ≡m.

This theorem makes clear the relation of NAA to linear logic [20]: except for
completeness of the lattice induced by ∧ and ∨ (cf. Theorem 13), NAA form
a commutative unital Girard quantale [40], the standard algebraic setting for
linear logic. Completeness of the lattice can be obtained by allowing infinite
conjunctions and disjunctions (and infinite NAA).

3.5 Quotient for MTS

We now give a quotient algorithm for the important special case of MTS, which
results in a much more compact quotient than the NAA construction in the
previous section. However, MTS are not closed under quotient; cf. [28, Thm. 5.5].
We show that the quotient of two MTS will generally be a DMTS.

Let (S, s0, 99KS ,−→S) and (T, t0, 99KT ,−→T) be nondeterministic MTS. We
define the quotient S/T = (Q, {q0}, 99KQ,−→Q). We let Q = 2S×TFin as before,

and q0 = {(s0, t0)}. The state ∅ ∈ Q is again universal, so we define ∅ a
99K ∅ for

all a ∈ Σ. There are no must transitions from ∅.

194

s0
s1a

s2a

•b

t0
t1a

t2a

•b

•
c s0/t0

{s1/t1, s2/t2}
a

{s2/t1, s2/t2}
a

>

b

a

a
b, c

a, b, c

Fig. 4. Two nondeterministic MTS and their quotient

Let α(s), γ(q) be as in the previous section. For convenience, we work with
sets Maya(s), for a ∈ Σ and states s, instead of may transitions, i.e. we have

Maya(s) = {t | s a
99K t}.

Let q = {s1/t1, . . . , sn/tn} ∈ Q and a ∈ Σ. First we define the may transitions.
If a ∈ γ(q) then for each i ∈ {1, . . . , n}, write Maya(ti) = {ti,1, . . . , ti,mi}, and
define

Maya(q) =
{
{si,j/ti,j | i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}} |

∀i ∈ {1, . . . , n} : ∀j ∈ {1, . . . ,mi} : si,j ∈ Maya(si)
}
.

For the (disjunctive) must-transitions, we let, for every si
a−→ s′,

q −→ {(a,M) ∈ {a} ×Maya(q) | ∃t′ : s′/t′ ∈M, ti
a−→ t′}.

Example 18. We illustrate the construction on an example. Let S and T be the
MTS in the left part of Fig. 4. We construct S/T ; the end result is displayed in
the right part of the figure.

First we construct the may-successors of s0/t0. Under b and c there are
no constraints, hence we go to >. For a, we have all permutations of assign-
ments of successors of s to successors of t, namely {s1/t1, s1/t2}, {s1/t1, s2/t2},
{s2/t1, s1/t2} and {s2/t1, s2/t2}. Since there is a must-transition from s (to s1),
we create a disjunctive must-transition to all successors that can be used to
yield a must-transition when composed with the must-transition from t to t1.
These are all successors where t1 is mapped to s1, hence the first two. However,
{s1/t1, s1/t2} will turn out inconsistent, as it requires to refine s1 by a composi-
tion with t2. As t2 has no must under b, the composition has none either, hence
the must of s1 can never be matched. As a result, after pruning, the disjunctive
must from {s0/t0} leads only to {s1/t1, s2/t2}. Further, {s2/t1, s1/t2} is incon-
sistent for the same reason, so that we only have one other may-transition under
a from {s0/t0}.

Now {s1/t1, s2/t2} is obliged to have a must under b so that it refines s1 when
composed with t1, but cannot have any c in order to match s2 when composed
with t2. Similarly, {s2/t1, s2/t2} has neither c nor b. One can easily verify that
T‖(S/T) ≡m S in this case.

Note that the constructions may create inconsistent states, which have no
implementation. In order to get a consistent system, it needs to be pruned. This
is standard and the details can be found in [3]. The pruning can be done in
polynomial time.

195

Theorem 19. For all MTS S, T and X, X ≤m S/T iff T‖X ≤m S.

4 Conclusion and Future Work

In this paper we have introduced a general specification framework whose basis
consists of three different but equally expressive formalisms: one of a graphical
behavioural kind (DMTS), one logic-based (νHML) and one an intermediate
language between the former two (NAA). We have shown that the framework
possesses a rich algebraic structure that includes logical (conjunction, disjunction)
and structural operations (parallel composition and quotient). Moreover, the
construction of the quotient solves an open problem in the area of MTS. As
for future work, we hope to establish the exact complexity of the quotient
constructions. We conjecture that the exponential blow-up of the construction is
in general unavoidable.

References

1. S.S. Bauer, A. David, R. Hennicker, K.G. Larsen, A. Legay, U. Nyman, and
A. Wasowski. Moving from specifications to contracts in component-based design.
In FASE, pages 43–58, 2012.

2. S.S. Bauer, P. Mayer, and A. Legay. MIO workbench: A tool for compositional
design with modal input/output interfaces. In ATVA, pages 418–421, 2011.

3. N. Beneš, B. Delahaye, U. Fahrenberg, J. Křet́ınský, and A. Legay. Hennessy-
Milner logic with greatest fixed points as a complete behavioural specification
theory. CoRR, abs/1306.0741, 2013.

4. N. Beneš and J. Křet́ınský. Process algebra for modal transition systemses. In
MEMICS, pages 9–18, 2010.

5. N. Beneš, J. Křet́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Parametric modal
transition systems. In ATVA, pages 275–289, 2011.

6. N. Beneš, I. Černá, and J. Křet́ınský. Modal transition systems: Composition and
LTL model checking. In ATVA, pages 228–242, 2011.

7. P. Blackburn. Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic J. IGPL, 8(3):339–365, 2000.

8. BMoTras. http://delahaye.benoit.free.fr/BMoTraS.tar.
9. A. Børjesson, K.G. Larsen, and A. Skou. Generality in design and compositional

verification using TAV. Formal Meth. Syst. Design, 6(3):239–258, 1995.
10. G. Boudol and K.G. Larsen. Graphical versus logical specifications. Theor. Comput.

Sci., 106(1):3–20, 1992.
11. G. Bruns. An industrial application of modal process logic. Sci. Comput. Program.,

29(1-2):3–22, 1997.
12. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued

temporal logics. In CAV, pages 274–287, 1999.
13. L. Caires and L. Cardelli. A spatial logic for concurrency (part I). Inf. Comput.,

186(2):194–235, 2003.
14. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In Logic of Programs, pages 52–71, 1981.
15. P. Darondeau, J. Dubreil, and H. Marchand. Supervisory control for modal specifi-

cations of services. In WODES, pages 428–435, 2010.

196

16. N. D’Ippolito, D. Fischbein, H. Foster, and S. Uchitel. MTSA: Eclipse support for
modal transition systems construction, analysis and elaboration. In ETX, pages
6–10, 2007.

17. H. Fecher and H. Schmidt. Comparing disjunctive modal transition systems with
an one-selecting variant. J. Logic Algebr. Program., 77(1-2):20–39, 2008.

18. H. Fecher and M. Steffen. Characteristic mu-calculus formulas for underspecified
transition systems. Electr. Notes Theor. Comput. Sci., 128(2):103–116, 2005.

19. W. Fokkink, R.J. van Glabbeek, and P. de Wind. Compositionality of Hennessy-
Milner logic by structural operational semantics. Theor. Comput. Sci., 354(3):421–
440, 2006.

20. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
21. J.B. Hart, L. Rafter, and C. Tsinakis. The structure of commutative residuated

lattices. Internat. J. Algebra Comput., 12(4):509–524, 2002.
22. M. Hennessy. Acceptance trees. J. ACM, 32(4):896–928, 1985.
23. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.

J. ACM, 32(1):137–161, 1985.
24. H. Hüttel and K.G. Larsen. The use of static constructs in a modal process logic.

In Logic at Botik, pages 163–180, 1989.
25. D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–

354, 1983.
26. K. G. Larsen and Liu X. Equation solving using modal transition systems. In LICS,

pages 108–117, 1990.
27. K.G. Larsen. Modal specifications. In Automatic Verification Methods for Finite

State Systems, pages 232–246, 1989.
28. K.G. Larsen. Ideal specification formalism = expressivity + compositionality +

decidability + testability + ... In CONCUR, pages 33–56, 1990.
29. K.G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with recursion.

Theor. Comput. Sci., 72:265–288, 1990.
30. K.G. Larsen and Liu X. Compositionality through an operational semantics of

contexts. In ICALP, pages 526–539, 1990.
31. U. Nyman. Modal Transition Systems as the Basis for Interface Theories and

Product Lines. PhD thesis, Institut for Datalogi, Aalborg Universitet, 2008.
32. P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning about programs that

alter data structures. In CSL, pages 1–19, 2001.
33. A.N. Prior. Papers on Time and Tense. Oxford: Clarendon Press, 1968.
34. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Symp. Program., pages 337–351, 1982.
35. J.-B. Raclet. Residual for component specifications. Electr. Notes Theor. Comput.

Sci., 215:93–110, 2008.
36. J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone. Why are

modalities good for interface theories? In ACSD, pages 119–127, 2009.
37. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, pages 55–74, 2002.
38. S. Uchitel and M. Chechik. Merging partial behavioural models. In SIGSOFT FSE,

pages 43–52, 2004.
39. M. Ward and R.P. Dilworth. Residuated lattices. Trans. AMS, 45(3):335–354, 1939.
40. D.N. Yetter. Quantales and (noncommutative) linear logic. J. Symb. Log., 55(1):41–

64, 1990.

197

198

Paper H:

MoTraS: A tool for modal transition systems and their extensions

Jan Křetı́nský and Salomon Sickert

This tool paper has been published in Dang Van Hung and Mizuhito Ogawa,
editors. Automated Technology for Verification and Analysis - 11th International
Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, vol-
ume 8172 of Lecture Notes in Computer Science, pages 487–491. Springer, 2013.
Copyright c© by Springer-Verlag. [KS13a]

Summary

We present a tool called
−→=⇒99K
MoTraS for MTS and DMTS and partially BMTS and

PMTS extensions. It implements the operations supporting non-deterministic sys-
tems. We also implement various refinement decision procedures (fix-point com-
putation as well as reduction to QBF queries), hull operations (deterministic,
parameter-free) and model checking (for LTL). The functionality is accessible both
in graphical and command-line interface.

Author’s contribution: 50 %

• participating in the discussions,

• contributing, in particular, to setting up the research direction and design-
ing the functionality of the tool,

• writing the paper.

199

200

MoTraS: A Tool for Modal Transition Systems
and Their Extensions?

Jan Křet́ınský1,2 and Salomon Sickert1

1 Institut für Informatik, Technische Universität München, Germany
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract. We present a tool for modal transition systems (MTS), dis-
junctive MTS and further extensions of MTS supporting also non-determi-
nistic systems. We provide the operations required from specification the-
ories as well as some additional support such as deterministic hull, LTL
model checking etc. The tool comes with both graphical and command
line interface.

1 Introduction

Due to the ever increasing complexity of software systems and their reuse,
component-based design and verification have become crucial. Therefore, hav-
ing a specification formalism that supports component-based development and
stepwise refinement is very useful. In such a framework, one can start from an
initial specification, proceed with a series of small and successive refinements
until eventually a specification is reached from which an implementation can be
extracted directly. Modal transition systems (MTS) [11] is a successful specifi-
cation formalism satisfying the above requirements.

The formalism of MTS has proven to be useful in practice. Industrial appli-
cations are as old as [5] where MTS have been used for an air-traffic system at
Heathrow airport. Besides, MTS are advocated as an appropriate base for inter-
face theories in [16] and for product line theories in [13]. Further, MTS based
software engineering methodology for design via merging partial descriptions of
behaviour has been established in [17].

MTS consist of a set of states and two transition relations. The must tran-
sitions prescribe which behaviour has to be present in every refinement of the
system; the may transitions describe the behaviour that is allowed, but need not
be realized in the refinements. Over the years, many extensions of MTS have been
proposed. While MTS can only specify whether or not a particular transition
is required, some extensions equip MTS with more general abilities to describe
what combinations of transitions are possible. Disjunctive MTS (DMTS) [12, 3]
can specify that at least one of a given set of transitions is present. One selecting

? Jan Křet́ınský is partially supported by the Czech Science Foundation, project
No. P202/12/G061, and Salomon Sickert is partially supported by the DFG project
“Polynomial Systems on Semirings: Foundations, Algorithms, Applications”

201

MTS [8] allow to choose exactly one of them. Boolean MTS (BMTS) [4] and ex-
pressively equivalent acceptance automata [14] cover all Boolean combinations
of transitions. Parametric MTS (PMTS) [4] add parameters on top of it, so that
we can also express persistent choices of transitions and relate possible choices in
different parts of a system. This way, one can also model hardware dependencies
of transitions and systems with prices.

The tool support is so far limited to basic MTS and, moreover, partially
limited to deterministic systems. The currently available tools are MTSA (Modal
transition system analyzer) [7] and MIO (MIO Workbench) [1]. While MTSA is
a tool for MTS, MIO is a tool for modal I/O automata (MIOA) [10, 15], which
combine MTS and interface automata based on I/O automata. Although MIOA
have three types of may and must transitions (input, output, and internal), if we
restrict to say only input transitions, the refinement works the same as for MTS,
and some other operations, too. Further, there are also tools for loosely related
formalisms of I/O automata (with no modalities) such as ECDAR (Environment for
Compositional Design and Analysis of Real Time Systems) [6], which supports
their timed extension.

In this paper, we present a tool for MTS and DMTS together with par-
tial support of BMTS and PMTS as described below. In the following sections,
we describe MoTraS and compare it to the existing tools both with respect to
functionality and experimentally. The tool can be downloaded and additional
materials found at http://www.model.in.tum.de/~kretinsk/motras.html

2 Functionality

MoTraS comes not only with a graphical user interface, but as opposed to other
mentioned tools also with a command line interface, which allows for batch
processing. The Netbeans-based GUI offers all the standard components such as
a canvas for drawing systems, windows for editing their properties, algorithms
menu, possibility to view more systems at once etc. Both the GUI and the
independent algorithms package, which contains all data-structures, algorithms
and the CLI, are written in Java.

As to the available algorithms, MoTraS supports all operations required for
complete specification theories [2] and more. This includes modal refinement
checking, parallel composition (for quotient see below), conjunction (or merge)
and the related consistency checking and maximal implementation generation,
deterministic hull and generalized LTL model checking. This functionality comes
for MTS as well as more general DMTS and in all cases also non-deterministic
systems are supported (in particular, the algorithm for conjunction is now con-
siderably more complex [3]). In contrast, MTSA supports only modal refinement,
parallel composition and consistency. It also offers a model checking procedure,
which is, unfortunately, fundamentally flawed. This has been shown in [3] from
where we adopt the corrected implementation. MIO offers modal refinement, the
MIOA parallel composition and conjunction for deterministic systems. On the
top, it also offers quotient for deterministic systems. As there are no algorithms

202

for the quotient of non-deterministic MTS, DMTS and BMTS and this question
is a subject of current research, we only implement the quotient for deterministic
systems as MIO does. Note that both MTSA and MIO can only handle modal sys-
tems, not their disjunctive extension. MoTraS supports DMTS as they have more
expressive power, and as opposed to (non-deterministic) MTS are rich enough
to express solutions to process equations [12] (hence a specification of a missing
component in a system can be computed) and are closed under all operations,
in particular conjunction (which is necessary for merging views on a system).

Further, on the top of this functionality for MTS and DMTS, we also provide
an implementation of a new method for modal refinement checking of BMTS
and PMTS [9]. While modal refinement on MTS and DMTS can be decided in
polynomial time, on BMTS and PMTS it is higher in the polynomial hierarchy
(Π2 and Π4, respectively). The new method, however, reduces the refinement
problem to a problem directly and efficiently solvable by a QBF solver. Already
the preliminary results of [9] show that this solution scales well in the size of the
system as well as in the number of parameters, while a direct naive solution is
infeasible.

Moreover, we also implement the deterministic hull and the parameter-free
hull for BMTS and PMTS, which we recently proposed [9]. This allows to both
over- and under-approximate the EXPTIME-complete thorough refinement us-
ing the fast modal refinement, now even for the most general class of PMTS.

In order to make the tool easily extensible, we introduced a file format xmts,
which facilitates textual representation of different extensions of modal transi-
tion systems. The description of the format can be found on the web page of the
tool. The table below summarizes the functionality: Xindicates a MoTraS im-
plementation; for the other tools, the name indicates an implementation; “det.”
denotes a functionality limited to deterministic systems.

Operation MTS DMTS BMTS PMTS
Parallel composition MTSA MIO(MIAO) X X
Consistency MTSA(of 2 systems) MIO(det.) X X
Conjunction MIO(det.) X X
Quotient (det.) MIO X Ö

Generalized LTL MTSA(incorrect) X X
Det./Par. hull X X X X
Refinement MTSA MIO X X X X

3 Experimental Results
Size Structure: MTSA MoTraS

Alphabet 2, Monolithic: 4.57 2.23
branching 5 Clustered: 0.34 0.04
Alphabet 2, Monolithic: 6.62 8.75
branching 10 Clustered: 5.99 6.73
Alphabet 10, Monolithic: 1.46 0.50
branching 5 Clustered: 1.54 0.01

We briefly compare the performance
of the MTS tools on the algorithm
that each of them implements, namely
modal refinement of MTS. We com-
pare MoTraS and MTSA on systems
with 500 states, see the table on the
right (computational times in seconds). We consider systems with different sizes

203

of alphabet and branching degrees. We further consider monolithic systems
where the transitions are evenly distributed, and systems with several clusters
mutually connected with only a few edges. We do not include results for MIO here
as there are stack overflows already for systems with <150 states, and for systems
with 100 states the time is—despite MIO statistics reporting 0 seconds—actually
more than 3 seconds. See the webpage for more details and more experiments.

Although our results are already more than competitive, there are several
ways how to further optimize them. The algorithms are implemented using
fixed-point-iteration and waiting-queue skeleton classes, which allows for an easy
introduction of multi-threading to all algorithms. Due to the independence of
elements processing we conjecture the speed up factor will be very close to the
number of cores used.

For the QBF-based modal refinement some additional steps were taken to
reduce the memory footprint, such as storing the generated formulae in negation-
normal-form and using the Tseitin encoding to limit the growth of the formulae
while transforming it into CNF, which is required for the QBF solver. An in-
teresting task for the future work is to introduce combined modal refinement
checker, which uses the standard modal refinement checker to prune the initial
relation before the QBF-based checker is called.

References

1. S. S. Bauer, P. Mayer, and A. Legay. MIO workbench: A tool for compositional
design with modal input/output interfaces. In ATVA, pages 418–421, 2011.

2. S.S. Bauer, A. David, R. Hennicker, K.G. Larsen, A. Legay, U. Nyman, and A. Wa-
sowski. Moving from specifications to contracts in component-based design. In
FASE, pages 43–58, 2012.

3. N. Beneš, I. Cerná, and J. Křet́ınský. Modal transition systems: Composition and
LTL model checking. In ATVA, pages 228–242, 2011.

4. N. Beneš, J. Křet́ınský, K. G. Larsen, M. H. Møller, and J. Srba. Parametric modal
transition systems. In ATVA, pages 275–289, 2011.

5. G. Bruns. An industrial application of modal process logic. Sci. Comput. Program.,
29(1-2):3–22, 1997.

6. A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. ECDAR: An
environment for compositional design and analysis of real time systems. In ATVA,
pages 365–370, 2010.

7. N. D’Ippolito, D. Fischbein, H. Foster, and S. Uchitel. MTSA: Eclipse support for
modal transition systems construction, analysis and elaboration. In ETX, pages
6–10, 2007.

8. H. Fecher and H. Schmidt. Comparing disjunctive modal transition systems with
an one-selecting variant. J. Log. Algebr. Program., 77(1-2):20–39, 2008.

9. J. Křet́ınský and S. Sickert. On refinements of Boolean and parametric modal
transition systems. In ICTAC, pages 213–230, 2013.

10. K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for interface
and product line theories. In ESOP, pages 64–79, 2007.

11. K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages 203–210,
1988.

204

12. K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In
LICS, pages 108–117, 1990.

13. U. Nyman. Modal Transition Systems as the Basis for Interface Theories and
Product Lines. PhD thesis, Institut for Datalogi, Aalborg Universitet, 2008.

14. J.-B. Raclet. Quotient de spécifications pour la réutilisation de composants. PhD
thesis, Université de Rennes I, december 2007. (In French).

15. J.-B. Raclet, E. Badouel, A. Benveniste, B.Caillaud, A. Legay, and R. Passerone.
A modal interface theory for component-based design. Fundamenta Informaticae,
108(1-2):119–149, 2011.

16. J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, and R. Passerone. Why are
modalities good for interface theories? In ACSD, 2009.

17. S. Uchitel and M. Chechik. Merging partial behavioural models. In SIGSOFT
FSE, pages 43–52, 2004.

205

206

Paper I:

From LTL to deterministic automata: A Safraless compositional
approach

Javier Esparza and Jan Křetı́nský

This paper has been accepted at CAV 2014. [EK14]

Summary

As opposed to our previous work on translating fragments of LTL to determin-
istic automata [KE12, GKE12, KLG13, Kře13], here we provide a translation for
the whole LTL. As the target formalism we use deterministic generalized Rabin
automata, which allow not only for more efficient probabilistic model checking,
but also for more efficient LTL game solving [CGK13] and thus also DMTS imple-
mentation synthesis. The resulting automaton is composed of automata for each
G-subformula, which can be separately optimized allowing for compositional
optimization. According to the experimental results, the resulting automata are
smaller than those produced by standard methods. The differences are in orders
of magnitude for more complex, but even still short formulae. Moreover, although
the translation works for the whole LTL, the results achieved are as good as of the
previous direct translations for fragments of LTL.

Author’s contribution: 50 %

• participating in the discussions,

• designing the translation,

• writing the translation procedure and minor parts of the paper.

207

208

From LTL to Deterministic Automata:
A Safraless Compositional Approach

Javier Esparza and Jan Křet́ınský*

Institut für Informatik, Technische Universität München, Germany
IST Austria

Abstract. We present a new algorithm to construct a (generalized) de-
terministic Rabin automaton for an LTL formula ϕ. The automaton is
the product of a master automaton and an array of slave automata, one
for each G-subformula of ϕ. The slave automaton for Gψ is in charge of
recognizing whether FGψ holds. As opposed to standard determiniza-
tion procedures, the states of all our automata have a clear logical struc-
ture, which allows for various optimizations. Our construction subsumes
former algorithms for fragments of LTL. Experimental results show im-
provement in the sizes of the resulting automata compared to existing
methods.

1 Introduction

Linear temporal logic (LTL) is the most popular specification language for linear-
time properties. In the automata-theoretic approach to LTL verification, formu-
lae are translated into ω-automata, and the product of these automata with the
system is analyzed. Therefore, generating small ω-automata is crucial for the
efficiency of the approach.

In quantitative probabilistic verification, LTL formulae need to be translated
into deterministic ω-automata [BK08,CGK13]. Until recently, this required to
proceed in two steps: first translate the formula into a non-deterministic Büchi
automaton (NBA), and then apply Safra’s construction [Saf88], or improve-
ments on it [Pit06,Sch09] to transform the NBA into a deterministic automaton
(usually a Rabin automaton, or DRA). This is also the approach adopted in
PRISM [KNP11], a leading probabilistic model checker, which reimplements the
optimized Safra’s construction of ltl2dstar [Kle].

In [KE12] we presented an algorithm that directly constructs a generalized
DRA (GDRA) for the fragment of LTL containing only the temporal operators
F and G. The GDRA can be either (1) degeneralized into a standard DRA, or
(2) used directly in the probabilistic verification process [CGK13]. In both cases
we get much smaller automata for many formulae. For instance, the standard

* This research was funded in part by the European Research Council (ERC) under
grant agreement 267989 (QUAREM) and by the Austrian Science Fund (FWF)
project S11402-N23 (RiSE). The author is on leave from Faculty of Informatics,
Masaryk University, Czech Republic, and partially supported by the Czech Science
Foundation, grant No. P202/12/G061.

209

approach translates a conjunction of three fairness constraints into an automaton
with over a million states, while the algorithm of [KE12] yields a GDRA with
one single state (when acceptance is defined on transitions), and a DRA with
462 states. In [GKE12,KLG13] our approach was extended to larger fragments
of LTL containing the X operator and restricted appearances of U, but a general
algorithm remained elusive.

In this paper we present a novel approach able to handle full LTL, and even
the alternation-free linear-time µ-calculus. The approach is compositional: the
automaton is obtained as a parallel composition of automata for different parts of
the formula, running in lockstep1. More specifically, the automaton is the parallel
composition of a master automaton and an array of slave automata, one for each
G-subformula of the original formula, say ϕ. Intuitively, the master monitors the
formula that remains to be fulfilled (for example, if ϕ = (¬a∧Xa)∨XXGa, then
the remaining formula after ∅{a} is tt, and after {a} it is XGa), and takes care
of checking safety and reachability properties. The slave for a subformula Gψ of
ϕ checks whether Gψ eventually holds, i.e., whether FGψ holds. It also monitors
the formula that remains to be fulfilled, but only partially: more precisely, it does
not monitor any G-subformula of ψ, as other slaves are responsible for them. For
instance, if ψ = a∧Gb∧Gc, then the slave for Gψ only checks that eventually a
always holds, and “delegates” checking FGb and FGc to other slaves. Further,
and crucially, the slave may provide the information that not only FGψ, but a
stronger formula holds; the master needs this to decide that, for instance, not
only FGϕ but even XGϕ holds.

The acceptance condition of the parallel composition of master and slaves is
a disjunction over all possible subsets of G-subformulas, and all possible stronger
formulas the slaves can check. The parallel composition accepts a word with the
disjunct corresponding to the subset of formulas which hold in it.

The paper is organized incrementally. In Section 3 we show how to construct
a DRA for a formula FGϕ, where ϕ has no occurrence of G. This gives the DRA
for a bottom-level slave. Section 4 constructs a DRA for an arbitrary formula
FGϕ, which gives the DRA for a general slave, in charge of a formula that
possible has G-subformulas. Finally, Section 5 constructs a DRA for arbitrary
formulas by introducing the master and its parallel composition with the slaves.
Full proofs can be found in [EK14].

Related work A comparison of LTL translators into deterministic ω-automata
can be found in [BKS13]. Safra’s construction with optimizations described in
[KB07] is implemented in the tool ltl2dstar [Kle], and reimplemenetd in the prob-
abilistic model checker PRISM [KNP11]. There are many constructions translat-
ing LTL to NBA [Cou99,DGV99,EH00,SB00,GO01,GL02,Fri03,BKRS12,DL13].
The one recommended by ltl2dstar and used in PRISM is LTL2BA [GO01].

1 We could also speak of a product of automata, but the operational view behind the
term parallel composition helps to convey the intuition.

210

2 Linear Temporal Logic

In this paper, N denotes the set of natural numbers including zero. “For almost
every i ∈ N” means for all but finitely many i ∈ N.

This section recalls the notion of linear temporal logic (LTL). We consider the
negation normal form and we have the future operator explicitly in the syntax:

Definition 1 (LTL Syntax). The formulae of the linear temporal logic (LTL)
are given by the following syntax:

ϕ ::=tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

over a finite fixed set Ap of atomic propositions.

Definition 2 (Words and LTL Semantics). Let w ∈ (2Ap)ω be a word. The
ith letter of w is denoted w[i], i.e. w = w[0]w[1] · · · . We write wij for the finite
word w[i]w[i+ 1] · · ·w[j], and wi∞ or just wi for the suffix w[i]w[i+ 1] · · · .

The semantics of a formula on a word w is defined inductively as follows:

w |= tt
w 6|= ff
w |= a ⇐⇒ a ∈ w[0]
w |= ¬a ⇐⇒ a /∈ w[0]
w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ
w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ

w |= Xϕ ⇐⇒ w1 |= ϕ
w |= Fϕ ⇐⇒ ∃ k ∈ N : wk |= ϕ
w |= Gϕ ⇐⇒ ∀ k ∈ N : wk |= ϕ
w |= ϕUψ ⇐⇒ ∃ k ∈ N : wk |= ψ and

∀ 0 ≤ j < k : wj |= ϕ

Definition 3 (Propositional implication). Given two formulae ϕ and ψ,
we say that ϕ propositionally implies ψ, denoted by ϕ |=p ψ, if we can prove
ϕ |= ψ using only the axioms of propositional logic. We say that ϕ and ψ are
propositionally equivalent, denoted by ϕ ≡p ψ, if ϕ and ψ propositionally imply
each other.

Remark 4. We consider formulae up to propositional equivalence, i.e., ϕ = ψ
means that ϕ and ψ are propositionally equivalent. Sometimes (when there is
risk of confusion) we explicitly write ≡p instead of =.

2.1 The formula af (ϕ,w)

Given a formula ϕ and a finite word w, we define a formula af (ϕ,w), read “ϕ
after w”. Intuitively, it is the formula that any infinite continuation w′ must
satisfy for ww′ to satisfy ϕ.

Definition 5. Let ϕ be a formula and ν ∈ 2Ap. We define the formula af (ϕ, ν)
as follows:

af (tt, ν) = tt
af (ff , ν) = ff

af (a, ν) =

{
tt if a ∈ ν
ff if a /∈ ν

af (¬a, ν) = ¬af (a, ν)
af (ϕ ∧ ψ, ν) = af (ϕ, ν) ∧ af (ψ, ν)
af (ϕ ∨ ψ, ν) = af (ϕ, ν) ∨ af (ψ, ν)

af (Xϕ, ν) = ϕ
af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ
af (Fϕ, ν) = af (ϕ, ν) ∨ Fϕ
af (ϕUψ, ν) = af (ψ, ν) ∨ (af (ϕ, ν) ∧ ϕUψ)

211

We extend the definition to finite words as follows: af (ϕ, ε) = ϕ and af (ϕ, νw) =
af (af (ϕ, ν), w). Finally, we define Reach(ϕ) = {af (ϕ,w) | w ∈ (2Ap)∗}.

Example 6. Let Ap = {a}, and, for the sake of readability, let α = {a} and
β = ∅ be the two letters of 2Ap . Consider the formula ϕ = (Xα) U (β ∧Xβ).
We have af (ϕ, α) = α ∧ ϕ, af (ϕ, β) = β ∨ (α ∧ ϕ) ≡p β ∨ ϕ, and Reach(ϕ) =
{ϕ, α ∧ ϕ, β ∨ ϕ, tt,ff}.

Lemma 7. Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an arbitrary word.
Then ww′ |= ϕ iff w′ |= af (ϕ,w).

Proof. Straightforward induction on the length of w. ut

3 DRAs for simple FG-formulae

We start with formulae FGϕ where ϕ is G-free, i.e., contains no occurrence of
G. The main building block of our paper is a procedure to construct a DRA rec-
ognizing L(FGϕ). (Notice that even the formula FGa has no deterministic Büchi
automaton.) We proceed in two steps. First we introduce Mojmir automata and
construct a Mojmir automaton that clearly recognizes L(FGϕ). We then show
how to transform Mojmir automata into equivalent DRAs.

A Mojmir automaton2 is a deterministic automaton that, at each step, puts a
fresh token in the initial state, and moves all older tokens according to the tran-
sition function. The automaton accepts if all but finitely many tokens eventually
reach an accepting state.

Definition 8. A Mojmir automatonM over an alphabet Σ is a tuple (Q, i, δ, F),
where Q is a set of states, i ∈ Q is the initial state, δ : Q×Σ → Q is a transition
function, and F ⊆ Q is a set of accepting states satisfying δ(F,Σ) ⊆ F , i.e.,
states reachable from final states are also final.

The run of M over a word w[0]w[1] · · · ∈ (2Ap)ω is the infinite sequence
(q00)(q10 , q

1
1)(q20 , q

2
1 , q

2
2) · · · such that

qsteptoken =

{
i if token = step,

δ(qstep−1token , w[step − 1]) if token < step

A run is accepting if for almost every token ∈ N there exists step ≥ token such
that qsteptoken ∈ F .

Notice that if two tokens reach the same state at the same time point, then
from this moment on they “travel together”.

The Mojmir automaton for a formula ϕ has formulae as states. The automa-
ton is constructed so that, when running on a word w, the i-th token “tracks”
the formula that must hold for wi to satisfy ϕ. That is, after j steps the i-th to-
ken is on the formula af (ϕ,wij). There is only one accepting state here, namely
the one propositionally equivalent to tt. Therefore, if the i-th token reaches an
accepting state, then wi satisfies ϕ.

2 Named in honour of Mojmı́r Křet́ınský, father of one of the authors

212

Definition 9. Let ϕ be a G-free formula. The Mojmir automaton for ϕ is
M(ϕ) = (Reach(ϕ), ϕ, af , {tt}).

Example 10. Figure 1 on the left shows the Mojmir automaton for the formula
ϕ = (Xα) U (β ∧Xβ) of Example 6.

qa : ϕ

qb : α ∧ ϕ qc : β ∨ ϕ

qd : ff qe : tt

α β

β

α

β

α

α, β α, β

(1,⊥,⊥)

(2,1,⊥) (2,⊥,1)

t1 : α t2 : β
t4 : β

t5 : α

t3 : α t6 : β

Fig. 1. A Mojmir automaton for ϕ = (Xα) U (β ∧Xβ) and its corresponding DRA.

Since M(ϕ) accepts iff almost every token eventually reaches an accepting
state, M(ϕ) accepts a word w iff w |= FGϕ.

Lemma 11. Let ϕ be a G-free formula and let w be a word. Then w |= ϕ iff
af (ϕ,w0i) = tt for some i ∈ N.

Theorem 12. Let ϕ be a G-free formula. Then L(M(ϕ)) = L(FGϕ).

3.1 From Mojmir automata to DRAs

Given a Mojmir automaton M = (Q, i, δ, F) we construct an equivalent DRA.
We illustrate all steps on the Mojmir automaton on the left of Figure 1. It is
convenient to use shorthands qa to qe for state names as shown in the figure.

We label tokens with their dates of birth (token i is the token born at “day”
i). Initially there is only one token, token 0, placed on the initial state i. If, say,
δ(i, ν) = q, then after M reads ν token 0 moves to q, and token 1 appears on i.

A state of a Mojmir automaton is called a sink if it is not the initial state
and all its outgoing transitions are self-loops. For instance, states qd and qe are
the sinks of the automaton on the left of Figure 1. We define a configuration of
M as a mapping C : Q \ S → 2N, where S is the set of sinks and C(q) is the set
of (dates of birth of the) tokens that are currently at state q. Notice that we do
not keep track of tokens in sinks.

We extend the transition function to configurations: δ(C) is the configuration
obtained by moving all tokens of C according to δ. Let us represent a configura-
tion C of our example by the vector (C(qa), C(qb), C(qc)). For instance, we have
δ(({1}, ∅, {0}), α)) = ({2}, {0, 1}, ∅). We represent a run as an infinite sequence
of configurations starting at ({0}, ∅, . . . , ∅). Then the run

(qa)
β−→ (qc, qa)

α−→ (qb, qb, qa)
β−→ (qd, qd, qc, qa) · · ·

213

is represented by

(0, ∅, ∅) β−→ (1, ∅, 0)
α−→ (2, {0, 1}, ∅) β−→ (3, ∅, 2) · · ·

where for readability we identify the singleton {n} and the number n.
We now provide a finite abstraction of configurations. A ranking of Q is a

partial function r : Q → {1, . . . , |Q|} that assigns to some states q a rank, and
and satisfies the following conditions: (1) the initial state is ranked (i.e., r(i) is
defined), and sinks are unranked (i.e., if q is a sink, then r(q) is undefined); (2)
distinct ranked states have distinct ranks; and (3) if some state has rank j, then
some state has rank k for every 1 ≤ k ≤ j. For i < j, we say that i is older than
j. The abstraction of a configuration C is the ranking α[C] defined as follows for
every non-sink q:

– If C(q) = ∅, then q is unranked.
– If C(q) 6= ∅, then let xq = min{C(q)} be the oldest token in C(q) (remember

that tokens are labeled by their date of birth; older tokens have smaller dates
of birth). We call xq the senior token of state q, and {xq ∈ N | q ∈ Q} the
set of senior tokens. We define α[C](q) as the seniority rank of xq: if xq is
the oldest senior token, then α[C](q) = 1; if it is the second oldest, then
α[C](q) = 2, and so on.

For instance, the senior tokens of (2, {0, 1}, ∅) are 2 and 0, and so α(2, {0, 1}, ∅) =
(2,1,⊥) (recall that sinks are unranked). Notice that there are only finitely
many rankings, and so only finitely many abstract configurations. The transition
function δ can be lifted to a transition function δ′ on abstract configurations
by defining δ′(α[C], ν) = α[δ(C, ν)]. It is easy to see that δ′(α[C], ν) can be
computed directly from α[C] (even if C is not known). We describe how, and at
the same time illustrate the construction on the abstract configuration (3,2,1)
of our running example and ν = α.

(i) Move the senior tokens according to δ. (Tokens with ranks 1,2,3 all move
to qb.)

(ii) If a state holds more than one token, keep only the most senior token. (Only
the token with rank 1 survives.)

(iii) Recompute the seniority ranks of the remaining tokens. (In this case unnec-
essary; if after step (ii) we also had a token with rank 3 on state, say qc,
then its rank would be upgraded to 2.)

(iv) If there is no token on the initial state, add one with the next lowest seniority
rank. (Add a token to qa of rank 2.)

Example 13. Figure 1 shows on the right the transition system generated by the
function δ′ starting at the abstract configuration (1,⊥,⊥).

It is useful to think of tokens as companies that can buy other companies:
at step (2), the senior company buys all junior companies; they all get the rank
of the senior company, and from this moment on travel around the automaton
together with the senior company. So, at every moment in time, every token in a

214

non-sink state has a rank (the rank of its senior token). The rank of a token can
age as it moves along the run, for two different reasons: its senior token can be
bought by another senior token of an older rank, or all tokens of an older rank
reach a sink. However, ranks can never get younger.

Further, observe that in any run, the tokens that never reach any sink even-
tually get the oldest ranks, i.e., ranks 1 to i− 1 for some i ≥ 1. We call these
tokens squatters. Each squatter either enters the set of accepting states (and
stays there by assumption on Mojmir automata) or never visits any accepting
state. Now, consider a run in which almost every token succeeds. Squatters that
never visit accepting states eventually stop buying other tokens, because oth-
erwise infinitely many tokens would travel with them, and thus infinitely many
tokens would never reach final states. So the run satisfies these conditions:

(1) Only finitely many tokens reach a non-accepting sink (“fail”).
(2) There is a rank i such that

(2.1) tokens of rank older than i buy other tokens in non-accepting states only
finitely often, and

(2.2) infinitely many tokens of rank i reach an accepting state (“succeed”).

Conversely, we prove that if infinitely many tokens never succeed, then (1) or (2)
does not hold. If infinitely many tokens fail, then (1) does not hold. If only finitely
many tokens fail, but infinitely many tokens squat in non-accepting non-sinks,
then (2) does not hold. Indeed, since the number of states is finite, infinitely
many squatters get bought in non-accepting states and, since ranks can only
improve, their ranks eventually stabilize. Let j− 1 be the youngest rank such
that infinitely many tokens stabilize with that rank. Then the squatters are
exactly the tokens of ranks 1, . . . , j− 1, and infinitely many tokens of rank j
reach (accepting) sinks. But then (2.2) is violated for every i < j, and (2.1) is
violated for every i ≥ j as, by the pigeonhole principle, there is a squatter (with
rank older than j) residing in non-accepting states and buying infintely many
tokens.

So the runs in which almost every token succeeds are exactly those satisfy-
ing (1) and (2). We define a Rabin automaton having rankings as states, and
accepting exactly these runs. We use a Rabin condition with pairs of sets of tran-
sitions, instead of states.3 Let fail be the set of transitions that move a token
into a non-accepting sink. Further, for every rank j let succeed(j) be the set of
transitions that move a token of rank j into an accepting state, and buy(j) the
set of transitions that move a token of rank older than j and another token into
the same non-accepting state, causing one of the two to buy the other.

Example 14. Let us determine the accepting pairs of the DRA on the right of
Figure 1. Since the Mojmir automaton has three non-sink states, states can
have ranks 1,2,3, and so we there are three Rabin pairs. We have fail =
{t4}, buy(1) = ∅, succeed(1) = {t6}, and buy(2) = buy(3) = {t3, t5}, succeed(2) =
succeed(3) = ∅.
3 It is straightforward to give an equivalent automaton with a condition on states, but

transitions are better for us.

215

Definition 15. Let M = (Q, i, δ, F) be a Mojmir automaton with a set S of

sinks. The deterministic Rabin automaton R(M) = (QR, iR, δR,
∨|Q|
i=1 Pi) is de-

fined as follows:

– QR is the set of rankings r : Q→ {1, . . . , |Q|};
– iR is the ranking defined only at the initial state i (and so iR(i) = 1);
– δR(r, ν) = α[δ(r, ν)] for every ranking r and letter ν;
– Pj = (fail ∪ buy(j), succeed(j)), where

fail = {(r, ν, s) ∈ δR | ∃q ∈ Q : r(q) ∈ N ∧ δ(q, ν) ∈ S \ F}
succeed(j) = {(r, ν, s) ∈ δR | ∃q ∈ Q : r(q) = j ∧ δ(q, ν) ∈ F}

buy(j) = {(r, ν, s) ∈ δR | ∃q, q′ ∈ Q : r(q) < j ∧ r(q′) ∈ N
∧ δ(q, ν) = δ(q′, ν) /∈ F}

We say that a word w ∈ L(R(M)) is accepted at rank j if Pj is the accepting pair
in the run of R(M) on w with smallest index. The rank at which w is accepted
is denoted by rk(w).

By the discussion above, we have

Theorem 16. For every Mojmir automaton M: L(M) = L(R(M)).

3.2 The Automaton R(ϕ)

Given a G-free formula ϕ, we define R(ϕ) = R(M(ϕ)). By Theorem 12 and
Theorem 16, we have L(R(ϕ)) = L(FGϕ).

If w is accepted byR(ϕ) at rank rk(w), then we not only know that w satisfies
FGϕ. In order to explain exactly what else we know, we need the following
definition.

Definition 17. Let δR be the transition function of the DRA R(ϕ) and let
w ∈ L(ϕ) be a word. For every j ∈ N, we denote by F(w0j) the conjunction of
the formulae of rank younger than or equal to rk(w) at the state δR(iR, w0j).

Intuitively, we also know that wj satisfies F(w0j) for almost every index
j ∈ N. We set out to prove this. If w |= FGϕ, there is a smallest index ind(w,ϕ)
at which ϕ “starts to hold”. For every index j ≥ ind(w,ϕ), we have wj |=∧j
k=ind(w,ϕ) af (ϕ,wkj) . Intuitively, this formula is the conjunction of the formu-

lae “tracked” by the tokens ofM(ϕ) born on days ind(w,ϕ), ind(w,ϕ)+1, . . . , j.
These are the “true” tokens ofM(ϕ), that is, those that eventually reach an ac-
cepting state. We get:

Lemma 18. Let ϕ be a G-free formula and let w ∈ L(R(ϕ)). Then

(1) F(w0j) ≡
∧j
k=ind(w,ϕ) af (ϕ,wkj) for almost every j ∈ N; and

(2) wj |= F(w0j) for almost every j ∈ N.

216

4 DRAs for arbitrary FG-formulae

We construct a DRA for an arbitrary formula FG-formula FGϕ. It suffices
to construct a Mojmir automaton, and then apply the construction of Section
3.1. We show that the Mojmir automaton can be defined compositionally, as a
parallel composition of Mojmir automata, one for each G-subformula.

Definition 19. Given a formula ϕ, we denote by G(ϕ) the set of G-subformulae
of ϕ, i.e., the subformulae of ϕ of the form Gψ.

More precisely, for every G ⊆ G(FGϕ) and every Gψ ∈ G, we construct a Mo-
jmir automatonM(ψ,G). AutomataM(ψ,G) andM(ψ,G′) for two different sets
G,G′ have the same transition system, i.e., they differ only on the accepting con-
dition. The automaton M(ψ,G) checks that FGψ holds, under the assumption
that FGψ′ holds for all the subformulae Gψ′ of ψ that belong to G. Circularity
is avoided, because automata for ψ only rely on assumptions about proper sub-
formulae of ψ. Loosely speaking, the Rabin automaton for FGϕ is the parallel
composition (or product) of the Rabin automata for the M(ψ,G) (which are
independent of G), with an acceptance condition obtained from the acceptance
conditions of the M(ψ,G).

We only need to define the automatonM(ϕ,G), because the automataM(ψ,G)
are defined inductively in exactly the same way. Intuitively, the automaton for
M(ϕ,G) does not “track” G-subformulae of ϕ, it delegates that task to the
automata for its subformulae. This is formalized with the help of the following
definition.

Definition 20. Let ϕ be a formula and ν ∈ 2Ap. The formula af G(ϕ, ν) is
inductively defined as af (ϕ, ν), with only this difference:

af G(Gϕ, ν) = Gϕ (instead of af (Gϕ, ν) = af (ϕ, ν) ∧Gϕ).

We define ReachG(ϕ) = {af G(ϕ,w) | w ∈ (2Ap)∗} (up to ≡p).

Example 21. Let ϕ = ψUβ, where ψ = G(α ∧Xβ). We have

af G(ϕ, α) = af G(ψ, α) ∧ ϕ ≡p ψ ∧ ϕ
af (ϕ, α) = af (ψ, α) ∧ ϕ ≡p β ∧ ψ ∧ ϕ

Definition 22. Let ϕ be a formula and let G ⊆ G(ϕ). The Mojmir automaton of
ϕ with respect to G is the quadruple M(ϕ,G) = (ReachG(ϕ), ϕ, af G, FG), where
FG contains the formulae ϕ′ ∈ ReachG(ϕ) propositionally implied by G, i.e. the
formulae satisfying

∧
Gψ∈GGψ |=p ϕ

′.

Observe that only the set of accepting states of M(ϕ,G) depends on G. The
following lemma shows that states reachable from final states are also final.

Lemma 23. Let ϕ be a formula and let G ⊆ G(ϕ). For every ϕ′ ∈ ReachG(ϕ),
if
∧

Gψ∈GGψ |=p ϕ
′ then

∧
Gψ∈GGψ |=p af G(ϕ′, ν) for every ν ∈ 2Ap.

217

Proof. Follows easily from the definition of |=p and af G(Gψ) = Gψ.

Example 24. Let ϕ = (Gψ)Uβ, where ψ = α∧Xβ. We have G(ϕ) = {Gψ}, and
so two automataM(ϕ, ∅) andM(ϕ, {Gψ}), whose common transition system is
shown on the left of Figure 2. We have one single automatonM(ψ, ∅), shown on
the right of the figure. A formula ϕ′ is an accepting state ofM(ϕ, ∅) if tt |=p ϕ

′;
and so the only accepting state of the automaton on the right is tt. On the
other hand, M(ϕ, {Gψ}) has both Gψ and tt as accepting states, but the only
accepting state of M(ϕ, ∅) is tt.

ϕ

Gψ ∧ ϕ tt

Gψ

α β

β

α α, β

α, β

ψ

β ff

tt

α β

α

β

α, β

α, β

Fig. 2. Mojmir automata for ϕ = (Gψ) Uβ, where ψ = α ∧Xβ.

Theorem 25. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff
there is G ⊆ G(ϕ) such that (1) w ∈ L(M(ϕ,G)), and (2) w |= FGψ for every
Gψ ∈ G.

Using induction on the structure of G-subformulae we obtain:

Theorem 26. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff there
is G ⊆ G(FGϕ) such that w ∈ L(M(ψ,G)) for every Gψ ∈ G.

4.1 The Product Automaton

Theorem 26 allows us to construct a Rabin automaton for an arbitrary formula of
the form FGϕ. For every Gψ ∈ G(FGϕ) and every G ⊆ G(FGϕ) let R(ψ,G) =
(Qψ, iψ, δψ,AccGψ) be the Rabin automaton obtained by applying Definition 15
to the Mojmir automaton M(ψ,G). Since Qψ, iψ, δψ do not depend on G, we
define the product automaton P(ϕ) as

P(ϕ) =

 ∏
Gψ∈G(ϕ)

Qψ,
∏

Gψ∈G(ϕ)

{iψ},
∏

Gψ∈G(ϕ)

δψ,
∨
G⊆Gϕ

∧
Gψ∈G(ϕ)

AccGψ


Since each of the AccGψ is a Rabin condition, we obtain a generalized Rabin

condition. This automaton can then be transformed into an equivalent Rabin
automaton [KE12]. However, as shown in [CGK13], for many applications it is
better to keep it in this form. By Theorem 26 we immediately get:

Theorem 27. Let ϕ be a formula and let w be a word. Then w |= FGϕ iff there
is G ⊆ G(FGϕ) such that w ∈ L(P(ϕ)).

218

5 DRAs for Arbitrary Formulae

In order to explain the last step of our procedure, consider the following example.

Example 28. Let ϕ = b∧Xb∧Gψ, where ψ = a∧X(bUc) and let Ap = {a, b, c}.
The Mojmir automatonM(ψ) is shown in the middle of Figure 3. Its correspond-
ing Rabin automaton R(ψ) is shown on the right, where the state (i, j) indicates
that ψ has rank i and bUc has rank j. We have fail = {t1, t5, t6, t7, t8}, buy(1) =
∅, succeed(1) = {t4, t7} and buy(2) = {t3}, succeed(2) = ∅.

Both M(ψ) and R(ψ) recognize L(FGψ), but not L(Gψ). In particular,
even though any word whose first letter does not contain a can be immediately
rejected, M(ψ) fails to capture this. This is a general problem of Mojmir au-
tomata: they can never “reject (or accept) in finite time” because the acceptance
condition refers to an infinite number of tokens.

ϕ

b ∧ (bUc) ∧Gψ

(bUc) ∧Gψ

ff

a ∧ b
ā ∨ b̄

a ∧ b
ā ∨ b̄

a ∧ (b ∨ c)

ā ∨ (b̄ ∧ c̄)

true

ψ

bUc ff

tt

a ā

b̄c̄
c

bc̄

true

true

(1,⊥)

(2,1)

t2 : a t7 : āct8 : āb̄c̄

t1 : ā

t4 : ac t5 : ab̄c̄

t3 : abc̄ t6 : ābc̄

Fig. 3. Automata T (ϕ), M(ψ), and R(ψ) for ϕ = b ∧Xb ∧Gψ and ψ = a ∧X(bUc).

5.1 Master Transition System

The “accept/reject in finite time” problem can be solved with the help of the
master transition system (an automaton without an accepting condition).

Definition 29. Let ϕ be a formula. The master transition system for ϕ is the
tuple T (ϕ) = (Reach(ϕ), ϕ, af).

The master transition system for the formula of Example 28 is shown on the left
of Figure 3. Whenever we enter state ff , we have af (ϕ,w) = ff for the word w
read so far, and so the run is not accepting.

Consider now the word w = {a, b, c}ω, which clearly satisfies ϕ. How do
master T (ϕ) and slave M(ψ) decide together that w |= ϕ holds? Intuitively,
M(ψ) accepts, and tells the master that w |= FGψ holds. The master reaches

219

the state (bU c)∧Gψ and stays there forever. Since she knows that FGψ holds,
the master deduces that w |= ϕ holds if w |= FG(bU c). But where can it get
this information from?

At this point the master resorts to Lemma 18: the slave M(ψ) (or, more
precisely, its Rabin automaton R(ψ)) not only tells the master that w satisfies
FGψ, but also at which rank, and so that wj satisfies F(w0j) for almost every
j ∈ N. In our example, during the run w = {a, b, c}ω, all tokens flow down the

path a ∧ X(bU c)
a−→ bU c

c−→ tt “in lockstep”. No token buys any other,
and all tokens of rank 1 succeed. The corresponding run of R(ψ) executes the
sequence t2t

ω
4 of transitions, stays in (2,1) forever, and accepts at rank 1. So

we have F(w0j) = (bU c) ∧ ψ for every j ≥ 0, and therefore the slave tells the
master that wj |= (bU c) for almost every j ∈ N.

So in this example the information required by the master is precisely the
additional information supplied byM(ψ). The next theorem shows that this is
always the case.

Theorem 30. Let ϕ be a formula and let w be a word. Let G be the set of
formulae Gψ ∈ G(ϕ) such that w |= FGψ. We have w |= ϕ iff for almost every
i ∈ N: ∧

Gψ∈G

(
Gψ ∧ F(ψ,w0i)

)
|=p af (ϕ,w0i) .

The automaton recognizing ϕ is a product of the automaton P(ϕ) defined in
Section 4.1, and T (ϕ). The run of P(ϕ) of a word w determines the set G ⊆ G(ϕ)
such that w |= FGψ iff ψ ∈ G. Moreover, each component of P(ϕ) accepts at
a certain rank, and this determines the formula F(ψ,w0i) for every i ≥ 0 (it
suffices to look at the state reached by the component of P(ϕ) in charge of the
formula ψ). By Theorem 30, it remains to check whether eventually∧

Gψ∈G

(
Gψ ∧ F(ψ,w0i)

)
|=p af (ϕ,w0i)

holds. This is done with the help of T (ϕ), which “tracks” af (ϕ,w0i). To check
the property, we turn the accepting condition into a disjunction not only on
the possible G ⊆ G(ϕ), but also on the possible rankings that assign to each
formula Gψ ∈ G a rank. This corresponds to letting the product guess which G-
subformulae will hold, and at which rank they will be accepted. The slaves check
the guess, and the master checks that it eventually only visits states implied by
the guess.

5.2 The GDRA A(ϕ)

We can now formally define the final automaton A(ϕ) recognizing ϕ. Let P(ϕ) =
(QP , iP , δP ,AccP) be the product automaton described in Section 4.1, and let
T (ϕ) = (Reach(ϕ), ϕ, af). We let

A(ϕ) = (Reach(ϕ)×QP , (ϕ, iP), af × δP ,Acc)

where the accepting condition Acc is defined top-down as follows:

220

– Acc is a disjunction containing a disjunct AccGπ for each pair (G, π), where
G ⊆ G(ϕ) and π is a mapping assigning to each ψ ∈ G a rank, i.e., a number
between 1 and the number of Rabin pairs of R(ϕ,G).

– The disjunct AccGπ is a conjunction of the form AccGπ = M G
π ∧

∧
ψ∈G

Accπ(ψ) .

– Condition Accπ(ψ) states that R(ψ,G) accepts with rank π(ψ) for every
ψ ∈ G. It is therefore a Rabin condition with only one Rabin pair.

– Condition M G
π states that A(ϕ) eventually stays within a subset F of states

defined as follows. Let (ϕ′, rψ1
, . . . , rψk

) ∈ Reach(ϕ) × QP , where rψ is a
ranking of the formulae of ReachG(ψ) for every Gψ ∈ G(ϕ), and let F(rψ)
be the conjunction of the states of R(ψ) to which rψ assigns rank π(ψ) or
higher. Then

(ϕ′, rψ1
, . . . , rψk

) ∈ F iff
∧

Gψ∈G

Gψ ∧ F(rψ) |=p ϕ
′ .

Notice that M G
π is a co-Büchi condition, and so a Rabin condition with only

one pair.

Theorem 31. For any LTL formula ϕ, L(A(ϕ)) = L(ϕ).

6 The Alternation-Free Linear-Time µ-calculus

The linear-time µ-calculus is a linear-time logic with the same expressive power
as Büchi automata and DRAs (see e.g. [Var88,Dam92]. It extends propositional
logic with the next operator X, and least and greatest fixpoints. This section is
addressed to readers familiar with this logic. We take as syntax

ϕ ::= tt | ff | a | ¬a | y | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | µx.ϕ | νx.ϕ

where y ranges over a set of variables. We assume that if σy.ϕ and σz.ψ are
distinct subformulae of a formula, then y and z are also distinct. A formula is
alternation-free if for every subformula µy.ϕ (νy.ϕ) no path of the syntax tree
leading from µy (νy) to y contains an occurrence of νz (µz) for some variable z.
For instance, µy.(a∨µz.(y∨Xz) is alternation-free, but νy.µz((a∧y)∨Xz) is not.
It is well known that the alternation-free fragment is strictly more expressive
than LTL and strictly less expressive than the full linear-time µ-calculus. In
particular, the property “a holds at every even moment” is not expressible in
LTL, but corresponds to νy.(a ∧XXy).

Our technique extends to the alternation-free linear-time µ-calculus. We have
refrained from presenting it for this more general logic because it is less well
known and formulae are more difficult to read. We only need to change the
definition of the functions af and af G. For the common part of the syntax
(everything but the fixpoint formulae) the definition is identical. For the rest we
define

af (µy.ϕ, ν) = af (ϕ, ν) ∨ µy.ϕ
af (νy.ϕ, ν) = af (ϕ, ν) ∧ νy.ϕ

af G(µy.ϕ, ν) = af G(ϕ, ν) ∨ µy.ϕ
af G(νy.ϕ, ν) = νy.ϕ

221

The automaton A(ϕ) is a product of automata, one for every ν-subformula of ϕ,
and a master transition system. Our constructions can be reused, and the proofs
require only technical changes in the structural inductions.

7 Experimental results

We compare the performance of the following tools and methods:

(T1) ltl2dstar [Kle] implements and optimizes [KB07] Safra’s construction [Saf88].
It uses LTL2BA [GO01] to obtain the non-deterministic Büchi automata
(NBA) first. Other translators to NBA may also be used, such as Spot
[DL13] or LTL3BA [BKRS12] and in some cases may yield better results (see
[BKS13] for comparison thereof), but LTL2BA is recommended by ltl2dstar
and is used this way in PRISM [KNP11].

(T2) Rabinizer [GKE12] and Rabinizer 2 [KLG13] implement a direct construction
based on [KE12] for fragments LTL(F,G) and LTL\GU, respectively. The
latter is used only on formulae not in LTL(F,G).

(T3) LTL3DRA [BBKS13] which implements a construction via alternating au-
tomata, which is “inspired by [KE12]” (quoted from [BBKS13]) and performs
several optimizations.

(T4) Our new construction. Notice that we produce a state space with a logical
structure, which permits many optimizations; for instance, one could incor-
porate the suspension optimization of LTL3BA [BBDL+13]. However, in our
prototype implementation we use only the following optimization: In each
state we only keep track of the slaves for formulae ψ that are still “relevant”
for the master’s state ϕ, i.e. ϕ[ψ/tt] 6≡p ϕ[ψ/ff]. For instance, after reading
∅ in GFa∨ (b∧GFc), it is no longer interesting to track if c occurs infinitely
often.

Table 1 compares these four tools. For T1 and T2 we produce DRAs (al-
though Rabinizer 2 can also produce GDRAs). For T3 and T4 we produce
GDRAs with transition acceptance (tGDRAs), which can be directly used for
probabilistic model checking without blow-up [CGK13]. The table shows exper-
imental results on four sets of formulae (see the four parts of the table)

1. Formulae of the LTL(F,G) fragment taken from (i) BEEM (BEnchmarks
for Explicit Model checkers) [Pel07] and from [SB00] on which ltl2dstar was
originally tested [KB06] (see [EK14]); and (ii) fairness-like formulae. All the
formulae were used already in [KE12,BBKS13]. Our method usually achieves
the same results as the optimized LTL3DRA, outperforming the first two
approaches.

2. Formulae of LTL\GU taken from [KLG13] and [EH00]. They illustrate the
problems of the standard approach to handle (i) X operators inside the scope
of other temporal operators and (ii) conjunctions of liveness properties.

3. Some further formulae illustrating teh same phenomenon.
4. Some complex LTL formulae expressing “after Q until R” properties, taken

from Spec Pattern [DAC99] (available at [spe]) .

222

Formula T1 T2 T3 T4

FGa ∨GFb 4 4 1 1
(FGa ∨GFb) ∧ (FGc ∨GFd) 11324 18 1 1∧3

i=1(GFai → GFbi) 1 304 706 462 1 1

(
∧5

i=1 GFai)→ GFb ? 64 1 1∧2
i=1(GFai → GFai+1) 572 11 1 1∧3
i=1(GFai → GFai+1) 290 046 52 1 1

(X(Gr ∨ rU(r ∧ sUp)))U(Gr ∨ rU(r ∧ s)) 18 9 8 8
pU(q ∧X(r ∧ (F(s ∧X(F(t ∧X(F(u ∧XFv)))))))) 9 13 13 13
(GF(a ∧XXb) ∨ FGb) ∧ FG(c ∨ (Xa ∧XXb)) 353 73 − 12
GF(XXXa ∧XXXXb) ∧GF(b ∨Xc) ∧GF(c ∧XXa) 2127 169 − 16
(GFa ∨ FGb) ∧ (GFc ∨ FG(d ∨Xe)) 18176 80 − 2
(GF(a ∧XXc) ∨ FGb) ∧ (GFc ∨ FG(d ∨Xa ∧XXb)) ? 142 − 12
aUb ∧ (GFa ∨ FGb) ∧ (GFc ∨ FGd)∨ ? 210 8 7

∨aUc ∧ (GFa ∨ FGd) ∧ (GFc ∨ FGb)

FG((a ∧XXb ∧GFb)U(G(XX!c ∨XX(a ∧ b)))) 2053 − − 11
G(F!a ∧ F(b ∧X!c) ∧GF(aUd)) ∧GF((Xd)U(b ∨Gc)) 283 − − 7

ϕ35 : 2 cause-1 effect precedence chain 6 − − 6
ϕ40 : 1 cause-2 effect precedence chain 314 − − 32
ϕ45 : 2 stimulus-1 response chain 1450 − − 78
ϕ50 : 1 stimulus-2 response chain 28 − − 23

Table 1. Some experimental results

All automata were constructed within a few seconds, with the exception of
the larger automata generated by ltl2dstar: the automata over ten thousand
states took several minutes each, and the automaton for

∧3
i=1(GFai → GFbi)

more than a day. Except for this formula, the timeout was set to five minutes
and denoted by ?; not applicability of the tool to the formula is denoted by −.
Additional details and more experimental results can be found in [EK14].

8 Conclusions

We have presented the first direct translation from LTL formulae to determinis-
tic Rabin automata able to handle arbitrary formulae. We exploit the structure
of the formula to compute the automaton in a compositional way, as a paral-
lel composition of a master automaton and a number of slaves, one for each
G-subformula. The construction generalizes previous ones for LTL fragments
[KE12,GKE12,KLG13].

We have conducted a detailed experimental comparison. Our construction
outperforms two-step approaches that first translate the formula into a Büchi
automaton and then apply Safra’s construction. Moreover, despite handling full
LTL, it is at least as efficient as previous constructions for fragments. Finally,
we produce a (often much smaller) generalized Rabin automaton, which can be

223

directly used for verification, without a further translation into a standard Rabin
automaton.

The compositional approach opens the door to many possible optimizations.
Since slave automata are typically very small, we can aggressively try to opti-
mize them, knowing that each reduced state in one slave potentially leads to
large savings in the final number of states of the product. So far we have only
implemented the simplest optimizations, and we think there is still much room
for improvement.

References

[BBDL+13] Tomáš Babiak, Thomas Badie, Alexandre Duret-Lutz, Mojmı́r Křet́ınský,
and Jan Strejček. Compositional approach to suspension and other im-
provements to LTL translation. In SPIN, pages 81–98, 2013.

[BBKS13] Tomáš Babiak, Frantǐsek Blahoudek, Mojmı́r Křet́ınský, and Jan Strejček.
Effective translation of ltl to deterministic rabin automata: Beyond the (F,
G)-fragment. In ATVA, pages 24–39, 2013.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[BKRS12] Tomáš Babiak, Mojmı́r Křet́ınský, Vojtěch Rehák, and Jan Strejček. LTL
to Büchi automata translation: Fast and more deterministic. In TACAS,
pages 95–109, 2012.

[BKS13] Frantǐsek Blahoudek, Mojmı́r Křet́ınský, and Jan Strejček. Comparison of
LTL to deterministic rabin automata translators. In LPAR, pages 164–172,
2013.

[CGK13] Krishnendu Chatterjee, Andreas Gaiser, and Jan Křet́ınský. Automata
with generalized Rabin pairs for probabilistic model checking and LTL
synthesis. In CAV, pages 559–575, 2013.

[Cou99] Jean-Michel Couvreur. On-the-fly verification of linear temporal logic. In
World Congress on Formal Methods, pages 253–271, 1999.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in
property specifications for finite-state verification. In ICSE, pages 411–420,
1999.

[Dam92] Mads Dam. Fixed points of büchi automata. In FSTTCS, pages 39–50,
1992.

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved au-
tomata generation for linear temporal logic. In CAV, pages 249–260, 1999.

[DL13] Alexandre Duret-Lutz. Manipulating ltl formulas using spot 1.0. In ATVA,
pages 442–445, 2013.

[EH00] Kousha Etessami and Gerard J. Holzmann. Optimizing büchi automata.
In CONCUR, pages 153–167, 2000.

[EK14] Javier Esparza and Jan Kret́ınský. From LTL to deterministic automata:
A Safraless compositional approach. Technical Report abs/1402.3388,
arXiv.org, 2014.

[Fri03] Carsten Fritz. Constructing Büchi automata from linear temporal logic
using simulation relations for alternating büchi automata. In CIAA, pages
35–48, 2003.

[GKE12] Andreas Gaiser, Jan Křet́ınský, and Javier Esparza. Rabinizer: Small de-
terministic automata for LTL(F,G). In ATVA, pages 72–76, 2012.

224

[GL02] Dimitra Giannakopoulou and Flavio Lerda. From states to transitions:
Improving translation of LTL formulae to Büchi automata. In FORTE,
pages 308–326, 2002.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation.
In CAV, volume 2102 of LNCS, pages 53–65. Springer, 2001. Tool accessible
at http://www.lsv.ens-cachan.fr/ gastin/ltl2ba/.

[KB06] Joachim Klein and Christel Baier. Experiments with deterministic omega-
automata for formulas of linear temporal logic. Theor. Comput. Sci.,
363(2):182–195, 2006.

[KB07] Joachim Klein and Christel Baier. On-the-fly stuttering in the construction
of deterministic omega -automata. In CIAA, volume 4783 of LNCS, pages
51–61. Springer, 2007.

[KE12] Jan Křet́ınský and Javier Esparza. Deterministic automata for the (F,G)-
fragment of LTL. In CAV, pages 7–22, 2012.

[Kle] Joachim Klein. ltl2dstar - LTL to deterministic Streett and Rabin au-
tomata. http://www.ltl2dstar.de/.

[KLG13] Jan Křet́ınský and Ruslán Ledesma-Garza. Rabinizer 2: Small determin-
istic automata for LTL\GU. In ATVA, pages 446–450, 2013.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV, pages 585–591,
2011.

[Pel07] Radek Pelánek. Beem: Benchmarks for explicit model checkers. In Proc.
of SPIN Workshop, volume 4595 of LNCS, pages 263–267. Springer, 2007.

[Pit06] Nir Piterman. From nondeterministic Buchi and Streett automata to de-
terministic parity automata. In LICS, pages 255–264, 2006.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In FOCS, pages 319–327.
IEEE Computer Society, 1988.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from LTL
formulae. In CAV, volume 1855 of LNCS, pages 248–263. Springer, 2000.

[Sch09] Sven Schewe. Tighter bounds for the determinisation of büchi automata.
In FOSSACS, pages 167–181, 2009.

[spe] Spec Patterns. Available at http://patterns.projects.cis.ksu.edu/

documentation/patterns/ltl.shtml.
[Var88] Moshe Y. Vardi. A temporal fixpoint calculus. In POPL, pages 250–259,

1988.

225

226

Note on copyrights

According to the rules for publishing in LIPIcs (Leibniz International Proceedings
in Informatics) with Schloss Dagstuhl Leibniz-Zentrum für Informatik GmbH, the
author of the thesis is allowed to include Paper A in the thesis:

All publication series follow the concept of OpenAccess, i.e., the
articles are freely available online for the reader and the rights are
retained by the author.

For more information, please see http://www.dagstuhl.de/publikationen/

According to the Consent to Publish in Lecture Notes in Computer Science with
Springer-Verlag GmbH, the author of the thesis is allowed to include Papers B-I
in the thesis:

Author retains the right to use his/her Contribution for his/her
further scientific career by including the final published paper in
his/her dissertation or doctoral thesis provided acknowledgement
is given to the original source of publication.

For more information, please see the copyright form electronically accessible at
ftp.springer.de/pub/tex/latex/llncs/LNCS-Springer_Copyright_
Form.pdf

227

http://www.dagstuhl.de/publikationen/
ftp.springer.de/pub/tex/latex/llncs/LNCS-Springer_Copyright_Form.pdf
ftp.springer.de/pub/tex/latex/llncs/LNCS-Springer_Copyright_Form.pdf

