
Constructions in Rabinizer 2

Abstract. We provide the complete construction of automata and ac-
ceptance conditions of Rabinizer and show their correctness.

1 Linear Temporal Logic

This section recalls the notion of linear temporal logic (LTL). We consider a
fragment with no occurrence of U inside any G:

Definition 1 (LTL Syntax). The formulae of the LTL\GU -fragment of linear
temporal logic are given by the following syntax for ϕ:

ϕ ::=a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Fϕ | Gξ

ξ ::=a | ¬a | ξ ∧ ξ | ξ ∨ ξ | Xξ | Fξ | Gξ

over a finite fixed set Ap of atomic propositions.

We use the standard abbreviations tt := a ∨ ¬a, ff ; = a ∧ ¬a. We only have
negations of atomic propositions, as negations can be pushed inside due to the
equivalence of Fϕ and ¬G¬ϕ.

Definition 2 (LTL Semantics). Let w ∈ (2Ap)ω be a word. The ith letter of
w is denoted w[i], i.e. w = w[0]w[1] · · · . Further, we define the ith suffix of w as
wi = w[i]w[i+1] · · · . The semantics of a formula on w is then defined inductively
as follows:

w |= a ⇐⇒ a ∈ w[0]
w |= ¬a ⇐⇒ a /∈ w[0]
w |= ϕ ∧ ψ ⇐⇒ w |= ϕ and w |= ψ

w |= ϕ ∨ ψ ⇐⇒ w |= ϕ or w |= ψ

w |= Xϕ ⇐⇒ w1 |= ϕ

w |= Fϕ ⇐⇒ ∃ k ∈ N : wk |= ϕ

w |= Gϕ ⇐⇒ ∀ k ∈ N : wk |= ϕ

w |= ϕUψ ⇐⇒ ∃ k ∈ N : wk |= ψ and ∀ 0 ≤ j < k : wj |= ϕ

2 Preliminaries

We define a symbolic one-step unfolding Unf of a formula inductively by the
following rules:

Unf(a) = a

Unf(¬a) = ¬a
Unf(ϕ ∧ ψ) = Unf(ϕ) ∧ Unf(ψ)
Unf(ϕ ∨ ψ) = Unf(ϕ) ∨ Unf(ψ)

Unf(Xϕ) = Xϕ

Unf(Fϕ) = Unf(ϕ) ∨XFϕ

Unf(Gϕ) = Unf(ϕ) ∧XGϕ

Unf(ϕUψ) = Unf(ψ) ∨ (Unf(ϕ) ∧X(ϕUψ))

Further, we define the “next step” operator. This peels off one next operator
wherever possible. We define

X−1(ψ1 ∧ ψ2) = X−1(ψ1) ∧X−1(ψ2)

X−1(ψ1 ∨ ψ2) = X−1(ψ1) ∨X−1(ψ2)

X−1(Xψ) = ψ

X−1(ψ) = ψ for all other types of formulae

3 Algorithm

3.1 Construction of B(ξ)

We define a finite automaton B(ξ) = (Qξ, iξ, δξ, Fξ) over 2Ap by

– the set of states Qξ = B+(sf(ξ)), where B+(S) is the set of positive Boolean
functions over S and tt and ff ,

– the initial state iξ = ξ,
– the final states Fξ where each atomic proposition has F or G as an ancestor

in the syntactic tree (i.e. no atomic propositions are guarded by only X’s
and Boolean connectives),

– transition relation δξ is defined by transitions

χ
ν−→ X−1(χ[ν]) for every ν ⊆ Ap and χ /∈ F

i
ν−→ i for every ν ⊆ Ap

where χ[ν] is the function χ with tt and ff plugged in for atomic propositions
according to ν and X−1χ strips away the initial X (whenever there is one) from
each formula in the Boolean combination χ. Note that we do not unfold inner
F- and G-formulae. See an example for ξ = a ∨ b ∨X(b ∧Ga) below.

a ∨ b ∨X(b ∧Ga)

ttb ∧ (Ga)

ffGa

{a}, {b}, {a, b}∅

2{a,b}

{b}, {a, b} ∅, {a}

3.2 Construction of A(ϕ)

The state space has two components. Beside the component keeping track of
the input formula, we also keep track of the history for every recurrent formula
of Rec. The second component is then a vector of length |Rec| keeping the
current set of states of each B(ξ). Formally, we define A(ϕ) = (Q, i, δ) to be a
deterministic finite automaton over Σ = 2Ap given by

– set of states Q = C×
∏
ξ∈Rec

2Qξ

where C = B+(sf(ϕ) ∪Xsf(ϕ)) and XS = {Xs | s ∈ S},
– the initial state i = 〈Unf(ϕ), (ξ 7→ {iξ})ξ∈Rec〉;
– the transition function δ is defined by transitions

〈ψ, (Rξ)ξ∈Rec〉
ν−→ 〈Unf(X−1(ψ[ν])),

(
δξ(Rξ, ν)

)
ξ∈Rec

〉

3.3 Construction of generalized Rabin pairs condition C(ϕ)

We modify the construction of [KE12] and we provide a generalized Rabin con-
dition of the form

∨
i(Fi,

∧
j Iij) which can be easily degeneralized to a Rabin

condition, where the conjunction is a singleton. In essence, the acceptance condi-
tion is responsible for non-deterministically guessing a set I of subformulae that
hold infinitely often and then checks that (1) they indeed hold infinitely often
and (2) if they hold infintiely often then also ϕ was satisfied in the initial state.

As for (1), whenever Fχ ∈ I, we need to visit

reachFχ := {〈ψ, (Rξ)ξ∈Rec(ψ)〉 ∈ Q | ∃q ∈ Rχ ∩ Fχ : X∗I |= q}}

infinitely often, where X∗S = {X · · ·X︸ ︷︷ ︸
n

s | s ∈ S, n ∈ N0}. Similarly, whenever

Gχ ∈ I, we need to visit

avoidGχ := {〈ψ, (Rξ)ξ∈Rec(ψ)〉 ∈ Q | ∃q ∈ Rχ ∩ Fχ : X∗I 6|= q}}

only finitely often. As for (2), we allow only finitely many visits of states

avoid := {〈ψ, (Rξ)ξ∈Rec(ψ)〉 ∈ Q | X∗I ∪
⋃

ξ∈Rec(ψ)
Gξ∈I

Rξ 6|= ψ}}

where the set I is insufficient to prove that ϕ holds. Altogether

C :=
∨

I⊆Gϕ∪Fϕ

(
avoid ∪

⋃
Gχ∈I

avoidGχ,
∧

Fχ∈I

reachFχ

)

4 Correctness

Given a formula ϕ, we have defined a Rabin automaton A(ϕ) and an acceptance
condition C :=

∨
I⊆Gϕ∪Fϕ PI . Every word w : N → 2Ap induces a run ρ =

A(ϕ)(w) : N → Q starting in i and following δ. The run is thus accepting
and the word is accepted if the set of states visited infinitely often Inf(ρ) is
Muller accepting for ϕ. Vice versa, a run ρ = i(χ1, α1)(χ2, α2) · · · induces a
word Ap(ρ) = α1α2 · · · . We now prove that this acceptance condition is sound
and complete.

Theorem 3. Let ϕ be a formula and w a word. Then w is accepted by the
deterministic automaton A(ϕ) with the generalilzed Rabin pairs condition C(ϕ)
if and only if w |= ϕ.

The second component of the state space takes care of identifying which
recurrent formulae hold infinitely often or eventually always. For a word w, let
I(w) = {ψ ∈ Gϕ | w |= Fψ} ∪ {ψ ∈ Fϕ | w |= Gψ}

Lemma 4 (Correctness of B(ξ)’s). For every word w and every ξ ∈ Rec,

1. w |= GFξ iff
∞
∃ i ∈ N : ∃χ ∈ B(ξ)(w)[i] ∩ Fξ : X∗I(w) |= χ,

2. w |= FGξ iff
∞
∀ i ∈ N : ∀χ ∈ B(ξ)(w)[i] ∩ Fξ : X∗I(w) |= χ.

Proof. Since for every n, w |= GFχ iff I |= GFXnχ, and similarly w |= FGχ
iff I |= FGXnχ, the lemma follows from the correctness of unfolding and B(ξ)
having the initial state self-loop as the only cycle. ut

The first component of the state space takes care of all progress or failure in
finite time.

Lemma 5 (Local (finitary) correctness of A(ϕ)). Let w be a word and
A(ϕ)(w) = i(χ0, α0)(χ1, α1) · · · the corresponding run. Then for all n ∈ N, we
have w |= ϕ if and only if wn |= χn.

Proof. The one-step unfold produces a temporally equivalent (w.r.t. LTL sat-
isfaction) formula. The unfold is a Boolean function over atomic propositions
and elements of Xsf(ϕ). Therefore, this unfold is satisfied if and only if the next
state satisfies X−1(ψ) where ψ is the result of partial application of the Boolean
function to the currently read letter of the word. We conclude by induction. ut

Further, each occurrence of satisfaction of F must happen in finite time. As
a consequence, a run with χi 6≡ ff is rejecting if and only if satisfaction of some
Fψ is always postponed.

Proposition 6 (Completeness). If w |= ϕ then Inf(A(ϕ)(w)) is accepting
w.r.t. C(ϕ).

Proof. Let us show that the pair PI(w) is satisfied.
Firstly, we show avoid is visited only finitely often, i.e. the first component ψ

is almost always (in states of Inf(A(ϕ)(w))) entailed by X∗I(w) and the current
states of B(ξ) for each Gξ ∈ I(w). Consider some sufficiently large i (for which
I(w) holds) and the corresponding wi and the current state si = 〈χi, (Rξ)ξ∈Rec.
By Lemma 5 we have wi |= χi. Notice that χi is a Boolean combination of XF-,
XU- and XG-formulae and formulae produced by their unfolding. Whenever
Fψ is satisfied whenever entering si, it is in I(w) and since in ψi we have a
disjunction of XFψ and the rest of the unfold, the entailment of this rest is
irrelevant as the disjunction is entailed directly by X∗I(w). Similarly, if ψ1Uψ2

holds, the unfold (again a disjunction) is entailed since eventually ψ2 holds and
we proceed by induction. Finally, if Gψ holds we need to show entailment of its
unfolds. This is a conjunction of XGψ and the unfolds of ψ and their successors.
The former is entailed by X∗I(w), the latter are the elements of Rξ (with F’s
and G’s unfolded), which are thus entailed by Rψ (and the unfolded F’s and
G’s are entailed recursively by the same argumentation).

Secondly, avoidGχ is visited only finitely often for each Gχ ∈ I(w). Indeed,
since w |= FGχ almost all wi |= χ. Thus almost all tokens generated in B(ξ)
end up in a final state that holds in the current position. Since there are only
finitely many of those and they are elements of B+(Gϕ ∪Fϕ), they are entailed
by X∗I(w) due to Lemma 4.

Thirdly, similarly reachFχ is visited infinitely often for each Fχ ∈ I(w).
Indeed, since w |= GFχ infinitely many wi |= χ. Thus infinitely many tokens
generated in B(ξ) end up in a final state that holds in the current position. Since
there are only finitely many of those and they are elements of B+(Gϕ ∪ Fϕ),
they are entailed by X∗I(w) due to Lemma 4. ut

Proposition 7 (Soundness). If Inf(A(ϕ)(w)) is accepting w.r.t. C(ϕ) then
w |= ϕ.

Proof. Let M := Inf(A(ϕ)(w)) be a accepting for pair PI . There is i ∈ N such
that after reading i letters we come to Inf(A(ϕ)(w)) and stay there from now
on and, moreover, wi |= ψ for all ψ ∈ I by Lemma 4 and definition of C. Denote
the ith state by 〈ψ,R〉. By the definition of avoid, we get wi |= ψ. By Lemma 5,
we thus get w |= ϕ. ut

5 Optimizations

We optimize the construction as follows. Instead of keeping track of states of each
B(ξ), only the currently relevant ones. E.g. after reading ∅ in GFa∨ (b∧GFc),
it is no more interesting to track if c occurs infinitely often. Formally, define
RelRec(ψ)(ξ) to be true iff ξ occurs in the Boolean combination ψ. When the
first component of a state is ψ, the second component is restricted to the vector
with coordinates in RelRec(ψ). The same holds for the definition of avoid.

Further, since only the infinite behaviour of B(ξ) is important and it has
acyclic structure (except for the initial states), instead of the initial state we can

start in any subset of states. Therefore, we start in a subset that is most likely to
occur repetitively and we thus omit unnecessary initial transient parts of A(ϕ).

Pseudocode

A Notation:

For LTL formula ϕ, sf(ϕ) denotes the set of all subformulae (any Boolean com-
bination is one formula). Further, we denote by T(ϕ) the set of all X-, F-,
G- and U-subformulae of ϕ. For a set S, B+(S) is the set of positive Boolean
functions over S. The closure of ϕ is then C(ϕ) := {tt,ff} ∪ Ap ∪ {¬a | a ∈
Ap} ∪ T(ϕ) ∪XT(ϕ) where XS = {Xs | s ∈ S} and further X∗S = {X · · ·X︸ ︷︷ ︸

n

s |

s ∈ S, n ∈ N0}.

B Main algorithm:

input: ϕ ∈ LTL

1. if ϕ not in LTL−GU then return “not in the LTL fragment”
2. compute type 2 formulae:

Gϕ := {Gψ ∈ sf(ϕ)}
Fϕ := {Fψ ∈ sf(ω) | for some ω ∈ Gω}
Rec := {ψ | Gψ ∈ Gϕ or Fψ ∈ Fϕ}
/*go down the tree and take every child of G, and further every child of F
if you already saw G on this branch*/
/* we can take progress formulae only */

3. foreach ξ ∈ Rec construct B(ξ)
4. construct A(ϕ)
5. construct GR acceptance condition C
6. if C empty then return “unsat”
7. else
8. ouput A(ϕ), C
9. perform Andreas’ degeneralization and ouput its result

C Auxiliary functions:

Unf : B+(C(ϕ))→ B+(C(ϕ)):

Unf(a) = a

Unf(¬a) = ¬a
Unf(ϕ ∧ ψ) = Unf(ϕ) ∧ Unf(ψ)
Unf(ϕ ∨ ψ) = Unf(ϕ) ∨ Unf(ψ)

Unf(Xϕ) = Xϕ

Unf(Fϕ) = Unf(ϕ) ∨XFϕ

Unf(Gϕ) = Unf(ϕ) ∧XGϕ

Unf(ϕUψ) = Unf(ψ) ∨ (Unf(ϕ) ∧X(ϕUψ))

X−1 : B+(C(ϕ))→ B+(C(ϕ)):

X−1(ψ1 ∧ ψ2) = X−1(ψ1) ∧X−1(ψ2)

X−1(ψ1 ∨ ψ2) = X−1(ψ1) ∨X−1(ψ2)

X−1(Xψ) = ψ

X−1(ψ) = ψ for all other types of formulae

(·)[ν] : B+(C(ϕ))→ B+(C(ϕ)) for ν ⊆ Ap:
Consider a formula χ ∈ B+(C(ϕ)). For a set S ⊆ C(ϕ), let χ[S 7→ tt] denote

the formula where tt is substituted for elements of S. As elements of C(ϕ) are
considered to be atomic expressions here, the substitution is only done on the
propositional level and does not go through the modality, e.g. (a∧XGa)[{a} →
tt] = tt∧XGa, which is equivalent to XGa in the propositional semantics. For
a valuation ν ⊆ Ap, we set χ[ν] := χ[ν ∪ {¬a | a ∈ Ap \ ν} 7→ tt].

RelRec : B+(C(ϕ))→ 2Rec:
RelRec(ψ)(ξ) iff ξ occurs in the Boolean combination ψ.

D Automaton B(ξ) construction:

input: ξ ∈ Rec
output: B(ξ) = (Qξ, iξ, δξ, Fξ) over 2Ap

1. the initial state iξ := ξ
2. worklist := {iξ}
3. while worklist 6= ∅

(a) pop q ∈ worklist
(b) if q /∈ Fξ then foreach ν ⊆ Ap

new := X−1(χ[ν])
add (q, ν, new) to δξ
if new /∈ Q then add new to worklist and Qξ
if (each atomic proposition has F or G as an ancestor in the syntactic
tree of new) then add q to Fξ /*i.e. no atomic propositions are guarded
by only X∗ and Boolean operators*/

4. foreach ν ⊆ Ap add (i, ν, i) to δξ

E Automaton A(ϕ) construction:

output: A(ϕ) = (Q, i, δ) over Σ = 2Ap

1. for each Gξ ∈ Gϕ,
pick fξ to be (1) tt if tt ∈ Fξ else (2) any ψ 6= ff if ψ ∈ Fξ else (3) ff

2. for each Fξ ∈ Fϕ,
pick fξ to be (1) ff if ff ∈ Fξ else (2) any ψ 6= tt if ψ ∈ Fξ else (3) tt

3. for each ξ ∈ Rec,
Sξ := states on an arbitrary path from iξ to fξ including both

4. the initial state i := 〈Unf(ϕ), (Sξ)ξ∈Rec〉
5. worklist := {i}
6. while worklist 6= ∅

(a) pop q := 〈ψ, (Rξ)ξ∈RelRec(ψ)〉 ∈ worklist
(b) foreach ν ⊆ Ap

i. newψ := Unf(X−1(ψ[ν])) /*and search for the label */
ii. foreach ξ ∈ RelRec(ψ) do newξ :=

⋃
q∈Rξ δξ(q, ν)

iii. new := 〈newψ, (newξ)ξ∈RelRec(newψ)〉 /*new vector can be smaller*/
iv. add (q, ν, new) to δ
v. if new /∈ Q then add new to worklist and Q

F GR acceptance condition C construction:

1. foreach I ⊆ Gϕ ∪ Fϕ
(a) avoid := {〈ψ, (Rξ)ξ∈RelRec(ψ)〉 ∈ Q | X∗I ∪

⋃
ξ∈I:

Gξ∈sf(ϕ)

Rξ 6|= ψ}}

(b) foreach Gχ ∈ I

avoidGχ := {〈ψ, (Rξ)ξ∈RelRec(ψ)〉 ∈ Q | ∃q ∈ Rχ ∩ Fχ : X∗I 6|= q}}

/* e.g. states where the segment automaton for χ is in ff */
(c) foreach Fχ ∈ I

reachFχ := {〈ψ, (Rξ)ξ∈RelRec(ψ)〉 ∈ Q | ∃q ∈ Rχ ∩ Fχ : X∗I |= q}}

/* e.g. states where the segment automaton for χ is in tt or in some
element of I */

(d) add
(
avoid ∪

⋃
Gχ∈I

avoidGχ, {reachFχ | Fχ ∈ I}
)

to C

2. perform redundancy removals on C described on the webpage of Rabinizer
(version 1) and return the result
/* such as ({1, 2}, {{2}, {3}}) is redundant w.r.t. ({1}, {{2, 3}}) */

References

[CGK13] Krishnendu Chatterjee, Andreas Gaiser, and Jan Křet́ınský. Automata with
generalized Rabin pairs for probabilistic model checking and LTL synthesis.
In CAV, 2013. To appear, accessible at http://arxiv.org/abs/1304.5281.

[GKE12] Andreas Gaiser, Jan Křet́ınský, and Javier Esparza. Rabinizer: Small deter-
ministic automata for LTL(F,G). In ATVA, pages 72–76, 2012.

[KB06] Joachim Klein and Christel Baier. Experiments with deterministic omega-
automata for formulas of linear temporal logic. Theor. Comput. Sci.,
363(2):182–195, 2006.

[KE12] Jan Křet́ınský and Javier Esparza. Deterministic automata for the (F,G)-
fragment of LTL. In CAV, pages 7–22, 2012.

