Constructions in Rabinizer 2

Abstract. We provide the complete construction of automata and acceptance conditions of Rabinizer and show their correctness.

1 Linear Temporal Logic

This section recalls the notion of linear temporal logic (LTL). We consider a fragment with no occurrence of U inside any G:

Definition 1 (LTL Syntax). The formulae of the $LTL_{\backslash GU}$ -fragment of linear temporal logic are given by the following syntax for φ :

$$\varphi ::= a \mid \neg a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\varphi \mid \mathbf{F}\varphi \mid \mathbf{G}\xi$$
$$\xi ::= a \mid \neg a \mid \xi \land \xi \mid \xi \lor \xi \mid \mathbf{X}\xi \mid \mathbf{F}\xi \mid \mathbf{G}\xi$$

over a finite fixed set Ap of atomic propositions.

We use the standard abbreviations $\mathbf{tt} := a \vee \neg a$, $\mathbf{ff} := a \wedge \neg a$. We only have negations of atomic propositions, as negations can be pushed inside due to the equivalence of $\mathbf{F}\varphi$ and $\neg \mathbf{G}\neg \varphi$.

Definition 2 (LTL Semantics). Let $w \in (2^{Ap})^{\omega}$ be a word. The ith letter of w is denoted w[i], i.e. $w = w[0]w[1] \cdots$. Further, we define the ith suffix of w as $w_i = w[i]w[i+1] \cdots$. The semantics of a formula on w is then defined inductively as follows:

```
\begin{array}{lll} w \models a & \iff a \in w[0] \\ w \models \neg a & \iff a \notin w[0] \\ w \models \varphi \land \psi & \iff w \models \varphi \ and \ w \models \psi \\ w \models \varphi \lor \psi & \iff w \models \varphi \ or \ w \models \psi \\ w \models \mathbf{X}\varphi & \iff w_1 \models \varphi \\ w \models \mathbf{F}\varphi & \iff \exists \ k \in \mathbb{N} : w_k \models \varphi \\ w \models \mathbf{G}\varphi & \iff \forall \ k \in \mathbb{N} : w_k \models \varphi \\ w \models \varphi \mathbf{U}\psi & \iff \exists \ k \in \mathbb{N} : w_k \models \psi \ and \ \forall \ 0 \leq j < k : w_j \models \varphi \end{array}
```

2 Preliminaries

We define a symbolic one-step unfolding \mathfrak{U} nf of a formula inductively by the following rules:

$$\mathfrak{U}\mathrm{nf}(a) = a$$

$$\mathfrak{U}\mathrm{nf}(\neg a) = \neg a$$

$$\mathfrak{U}\mathrm{nf}(\varphi \wedge \psi) = \mathfrak{U}\mathrm{nf}(\varphi) \wedge \mathfrak{U}\mathrm{nf}(\psi)$$

$$\mathfrak{U}\mathrm{nf}(\varphi \vee \psi) = \mathfrak{U}\mathrm{nf}(\varphi) \vee \mathfrak{U}\mathrm{nf}(\psi)$$

$$\mathfrak{U}\mathrm{nf}(\mathbf{X}\varphi) = \mathbf{X}\varphi$$

$$\mathfrak{U}\mathrm{nf}(\mathbf{F}\varphi) = \mathfrak{U}\mathrm{nf}(\varphi) \vee \mathbf{X}\mathbf{F}\varphi$$

$$\mathfrak{U}\mathrm{nf}(\mathbf{G}\varphi) = \mathfrak{U}\mathrm{nf}(\varphi) \wedge \mathbf{X}\mathbf{G}\varphi$$

$$\mathfrak{U}\mathrm{nf}(\varphi) \vee \mathfrak{U}\psi = \mathfrak{U}\mathrm{nf}(\psi) \vee (\mathfrak{U}\mathrm{nf}(\varphi) \wedge \mathbf{X}(\varphi\mathbf{U}\psi))$$

Further, we define the "next step" operator. This peels off one next operator wherever possible. We define

$$\mathbf{X}^{-1}(\psi_1 \wedge \psi_2) = \mathbf{X}^{-1}(\psi_1) \wedge \mathbf{X}^{-1}(\psi_2)$$

$$\mathbf{X}^{-1}(\psi_1 \vee \psi_2) = \mathbf{X}^{-1}(\psi_1) \vee \mathbf{X}^{-1}(\psi_2)$$

$$\mathbf{X}^{-1}(\mathbf{X}\psi) = \psi$$

$$\mathbf{X}^{-1}(\psi) = \psi \text{ for all other types of formulae}$$

3 Algorithm

3.1 Construction of $\mathcal{B}(\xi)$

We define a finite automaton $\mathcal{B}(\xi) = (Q_{\xi}, i_{\xi}, \delta_{\xi}, F_{\xi})$ over 2^{Ap} by

- the set of states $Q_{\xi} = \mathsf{B}^+(\mathsf{sf}(\xi))$, where $\mathsf{B}^+(S)$ is the set of positive Boolean functions over S and tt and ff ,
- the initial state $i_{\xi} = \xi$,
- the final states F_{ξ} where each atomic proposition has **F** or **G** as an ancestor in the syntactic tree (i.e. no atomic propositions are guarded by only **X**'s and Boolean connectives),
- transition relation δ_{ξ} is defined by transitions

$$\begin{array}{ll} \chi \xrightarrow{\nu} \mathbf{X}^{-1}(\chi[\nu]) & \text{ for every } \nu \subseteq Ap \text{ and } \chi \not \in F \\ i \xrightarrow{\nu} i & \text{ for every } \nu \subseteq Ap \end{array}$$

where $\chi[\nu]$ is the function χ with **tt** and **ff** plugged in for atomic propositions according to ν and $\mathbf{X}^{-1}\chi$ strips away the initial **X** (whenever there is one) from each formula in the Boolean combination χ . Note that we do not unfold inner **F**- and **G**-formulae. See an example for $\xi = a \lor b \lor \mathbf{X}(b \land \mathbf{G}a)$ below.

3.2 Construction of $\mathcal{A}(\varphi)$

The state space has two components. Beside the component keeping track of the input formula, we also keep track of the history for every recurrent formula of \mathcal{R} ec. The second component is then a vector of length $|\mathcal{R}$ ec| keeping the current set of states of each $\mathcal{B}(\xi)$. Formally, we define $\mathcal{A}(\varphi) = (Q, i, \delta)$ to be a deterministic finite automaton over $\Sigma = 2^{Ap}$ given by

- set of states
$$Q = \mathbb{C} \times \prod_{\xi \in \mathcal{R}ec} 2^{Q_{\xi}}$$

where $\mathbb{C} = \mathsf{B}^+(\mathrm{sf}(\varphi) \cup \mathbf{X}\mathrm{sf}(\varphi))$ and $\mathbf{X}S = \{\mathbf{X}s \mid s \in S\}$,
- the initial state $i = \langle \mathfrak{U}\mathrm{nf}(\varphi), (\xi \mapsto \{i_{\xi}\})_{\xi \in \mathcal{R}ec} \rangle$;
- the transition function δ is defined by transitions
$$\langle \psi, (R_{\xi})_{\xi \in \mathcal{R}ec} \rangle \xrightarrow{\nu} \langle \mathfrak{U}\mathrm{nf}(\mathbf{X}^{-1}(\psi[\nu])), (\delta_{\xi}(R_{\xi}, \nu))_{\xi \in \mathcal{R}ec} \rangle$$

3.3 Construction of generalized Rabin pairs condition $\mathcal{C}(\varphi)$

We modify the construction of [KE12] and we provide a generalized Rabin condition of the form $\bigvee_i (F_i, \bigwedge_j I_{ij})$ which can be easily degeneralized to a Rabin condition, where the conjunction is a singleton. In essence, the acceptance condition is responsible for non-deterministically guessing a set I of subformulae that hold infinitely often and then checks that (1) they indeed hold infinitely often and (2) if they hold infinitely often then also φ was satisfied in the initial state.

As for (1), whenever $\mathbf{F}\chi \in I$, we need to visit

$$reach_{\mathbf{F}\chi} := \{ \langle \psi, (R_{\xi})_{\xi \in \mathcal{R}ec(\psi)} \rangle \in Q \mid \exists q \in R_{\chi} \cap F_{\chi} : \mathbf{X}^*I \models q \} \}$$

infinitely often, where $\mathbf{X}^*S = \{\underbrace{\mathbf{X} \cdots \mathbf{X}}_n s \mid s \in S, n \in \mathbb{N}_0\}$. Similarly, whenever

 $\mathbf{G}\chi \in I$, we need to visit

$$avoid_{\mathbf{G}\chi} := \{ \langle \psi, (R_{\xi})_{\xi \in \mathcal{R}ec(\psi)} \rangle \in Q \mid \exists q \in R_{\chi} \cap F_{\chi} : \mathbf{X}^*I \not\models q \} \}$$

only finitely often. As for (2), we allow only finitely many visits of states

$$avoid := \{ \langle \psi, (R_{\xi})_{\xi \in \mathcal{R}ec(\psi)} \rangle \in Q \mid \mathbf{X}^*I \cup \bigcup_{\substack{\xi \in \mathcal{R}ec(\psi) \\ G\xi \in I}} R_{\xi} \not\models \psi \} \}$$

where the set I is insufficient to prove that φ holds. Altogether

$$\mathcal{C} := \bigvee_{I \subseteq \mathbf{G}_{\varphi} \cup \mathbf{F}_{\varphi}} \left(avoid \cup \bigcup_{\mathbf{G}\chi \in I} avoid_{\mathbf{G}\chi}, \bigwedge_{\mathbf{F}\chi \in I} reach_{\mathbf{F}\chi} \right)$$

4 Correctness

Given a formula φ , we have defined a Rabin automaton $\mathcal{A}(\varphi)$ and an acceptance condition $\mathcal{C} := \bigvee_{I \subseteq \mathbf{G}_{\varphi} \cup \mathbf{F}_{\varphi}} \mathcal{P}_{I}$. Every word $w : \mathbb{N} \to 2^{Ap}$ induces a run $\rho = \mathcal{A}(\varphi)(w) : \mathbb{N} \to Q$ starting in i and following δ . The run is thus accepting and the word is accepted if the set of states visited infinitely often $\mathrm{Inf}(\rho)$ is Muller accepting for φ . Vice versa, a run $\rho = i(\chi_{1}, \alpha_{1})(\chi_{2}, \alpha_{2}) \cdots$ induces a word $Ap(\rho) = \alpha_{1}\alpha_{2}\cdots$. We now prove that this acceptance condition is sound and complete.

Theorem 3. Let φ be a formula and w a word. Then w is accepted by the deterministic automaton $\mathcal{A}(\varphi)$ with the generalized Rabin pairs condition $\mathcal{C}(\varphi)$ if and only if $w \models \varphi$.

The second component of the state space takes care of identifying which recurrent formulae hold infinitely often or eventually always. For a word w, let $I(w) = \{ \psi \in \mathbf{G}_{\varphi} \mid w \models \mathbf{F}\psi \} \cup \{ \psi \in \mathbf{F}_{\varphi} \mid w \models \mathbf{G}\psi \}$

Lemma 4 (Correctness of $\mathcal{B}(\xi)$'s). For every word w and every $\xi \in \mathcal{R}ec$,

1.
$$w \models \mathbf{GF}\xi \text{ iff } \overset{\infty}{\exists} i \in \mathbb{N} : \exists \chi \in \mathcal{B}(\xi)(w)[i] \cap F_{\xi} : X^*I(w) \models \chi,$$

2. $w \models \mathbf{FG}\xi \text{ iff } \overset{\infty}{\forall} i \in \mathbb{N} : \forall \chi \in \mathcal{B}(\xi)(w)[i] \cap F_{\xi} : X^*I(w) \models \chi.$

Proof. Since for every $n, w \models \mathbf{GF}\chi$ iff $I \models \mathbf{GFX}^n\chi$, and similarly $w \models \mathbf{FG}\chi$ iff $I \models \mathbf{FGX}^n\chi$, the lemma follows from the correctness of unfolding and $\mathcal{B}(\xi)$ having the initial state self-loop as the only cycle.

The first component of the state space takes care of all progress or failure in finite time.

Lemma 5 (Local (finitary) correctness of $\mathcal{A}(\varphi)$ **).** Let w be a word and $\mathcal{A}(\varphi)(w) = i(\chi_0, \alpha_0)(\chi_1, \alpha_1) \cdots$ the corresponding run. Then for all $n \in \mathbb{N}$, we have $w \models \varphi$ if and only if $w_n \models \chi_n$.

Proof. The one-step unfold produces a temporally equivalent (w.r.t. LTL satisfaction) formula. The unfold is a Boolean function over atomic propositions and elements of \mathbf{X} sf(φ). Therefore, this unfold is satisfied if and only if the next state satisfies $\mathbf{X}^{-1}(\psi)$ where ψ is the result of partial application of the Boolean function to the currently read letter of the word. We conclude by induction. \square

Further, each occurrence of satisfaction of \mathbf{F} must happen in finite time. As a consequence, a run with $\chi_i \not\equiv \mathbf{ff}$ is rejecting if and only if satisfaction of some $\mathbf{F}\psi$ is always postponed.

Proposition 6 (Completeness). If $w \models \varphi$ then $\text{Inf}(\mathcal{A}(\varphi)(w))$ is accepting $w.r.t. \ \mathcal{C}(\varphi)$.

Proof. Let us show that the pair $\mathcal{P}_{I(w)}$ is satisfied.

Firstly, we show avoid is visited only finitely often, i.e. the first component ψ is almost always (in states of $\operatorname{Inf}(\mathcal{A}(\varphi)(w))$) entailed by $X^*I(w)$ and the current states of $\mathcal{B}(\xi)$ for each $\mathbf{G}\xi \in I(w)$. Consider some sufficiently large i (for which I(w) holds) and the corresponding w_i and the current state $s_i = \langle \chi_i, (R_\xi)_{\xi \in \mathcal{R}ec}$. By Lemma 5 we have $w_i \models \chi_i$. Notice that χ_i is a Boolean combination of \mathbf{XF} -, \mathbf{XU} - and \mathbf{XG} -formulae and formulae produced by their unfolding. Whenever $\mathbf{F}\psi$ is satisfied whenever entering s_i , it is in I(w) and since in ψ_i we have a disjunction of $\mathbf{XF}\psi$ and the rest of the unfold, the entailment of this rest is irrelevant as the disjunction is entailed directly by $\mathbf{X}^*I(w)$. Similarly, if $\psi_1\mathbf{U}\psi_2$ holds, the unfold (again a disjunction) is entailed since eventually ψ_2 holds and we proceed by induction. Finally, if $\mathbf{G}\psi$ holds we need to show entailment of its unfolds. This is a conjunction of $\mathbf{XG}\psi$ and the unfolds of ψ and their successors. The former is entailed by $\mathbf{X}^*I(w)$, the latter are the elements of R_ξ (with \mathbf{F} 's and \mathbf{G} 's unfolded), which are thus entailed by R_ψ (and the unfolded \mathbf{F} 's and \mathbf{G} 's are entailed recursively by the same argumentation).

Secondly, $avoid_{\mathbf{G}\chi}$ is visited only finitely often for each $\mathbf{G}\chi \in I(w)$. Indeed, since $w \models \mathbf{F}\mathbf{G}\chi$ almost all $w_i \models \chi$. Thus almost all tokens generated in $\mathcal{B}(\xi)$ end up in a final state that holds in the current position. Since there are only finitely many of those and they are elements of $\mathsf{B}^+(\mathbf{G}_\varphi \cup \mathbf{F}_\varphi)$, they are entailed by $\mathbf{X}^*I(w)$ due to Lemma 4.

Thirdly, similarly $\operatorname{reach}_{\mathbf{F}\chi}$ is visited infinitely often for each $\mathbf{F}\chi \in I(w)$. Indeed, since $w \models \mathbf{GF}\chi$ infinitely many $w_i \models \chi$. Thus infinitely many tokens generated in $\mathcal{B}(\xi)$ end up in a final state that holds in the current position. Since there are only finitely many of those and they are elements of $\mathsf{B}^+(\mathbf{G}_\varphi \cup \mathbf{F}_\varphi)$, they are entailed by $\mathbf{X}^*I(w)$ due to Lemma 4.

Proposition 7 (Soundness). If $\operatorname{Inf}(\mathcal{A}(\varphi)(w))$ is accepting w.r.t. $\mathcal{C}(\varphi)$ then $w \models \varphi$.

Proof. Let $M := \text{Inf}(\mathcal{A}(\varphi)(w))$ be a accepting for pair \mathcal{P}_I . There is $i \in \mathbb{N}$ such that after reading i letters we come to $\text{Inf}(\mathcal{A}(\varphi)(w))$ and stay there from now on and, moreover, $w_i \models \psi$ for all $\psi \in I$ by Lemma 4 and definition of \mathcal{C} . Denote the ith state by $\langle \psi, \mathcal{R} \rangle$. By the definition of avoid, we get $w_i \models \psi$. By Lemma 5, we thus get $w \models \varphi$.

5 Optimizations

We optimize the construction as follows. Instead of keeping track of states of each $\mathcal{B}(\xi)$, only the currently relevant ones. E.g. after reading \emptyset in $\mathbf{GF}a \vee (b \wedge \mathbf{GF}c)$, it is no more interesting to track if c occurs infinitely often. Formally, define $\mathcal{R}el\mathrm{Rec}(\psi)(\xi)$ to be true iff ξ occurs in the Boolean combination ψ . When the first component of a state is ψ , the second component is restricted to the vector with coordinates in $\mathcal{R}el\mathrm{Rec}(\psi)$. The same holds for the definition of avoid.

Further, since only the infinite behaviour of $\mathcal{B}(\xi)$ is important and it has acyclic structure (except for the initial states), instead of the initial state we can

start in any subset of states. Therefore, we start in a subset that is most likely to occur repetitively and we thus omit unnecessary initial transient parts of $\mathcal{A}(\varphi)$.

Pseudocode

A Notation:

For LTL formula φ , $\operatorname{sf}(\varphi)$ denotes the set of all subformulae (any Boolean combination is one formula). Further, we denote by $\mathbb{T}(\varphi)$ the set of all \mathbf{X} -, \mathbf{F} -, \mathbf{G} - and \mathbf{U} -subformulae of φ . For a set S, $\mathsf{B}^+(S)$ is the set of positive Boolean functions over S. The *closure* of φ is then $\mathbb{C}(\varphi) := \{\operatorname{tt}, \operatorname{ff}\} \cup Ap \cup \{\neg a \mid a \in Ap\} \cup \mathbb{T}(\varphi) \cup \mathbf{X}\mathbb{T}(\varphi)$ where $\mathbf{X}S = \{\mathbf{X}s \mid s \in S\}$ and further $\mathbf{X}^*S = \{\underbrace{\mathbf{X} \cdots \mathbf{X}}_n s \mid s \in S, n \in \mathbb{N}_0\}$.

B Main algorithm:

```
input: \varphi \in LTL
```

- 1. if φ not in LTL_{-GU} then return "not in the LTL fragment"
- 2. compute type 2 formulae:

```
\mathbf{G}_{\varphi} := \{ \mathbf{G}\psi \in \operatorname{sf}(\varphi) \}
\mathbf{F}_{\varphi} := \{ \mathbf{F}\psi \in \operatorname{sf}(\omega) \mid \text{for some } \omega \in \mathbf{G}_{\omega} \}
\mathcal{R}\operatorname{ec} := \{ \psi \mid \mathbf{G}\psi \in \mathbf{G}_{\varphi} \text{ or } \mathbf{F}\psi \in \mathbf{F}_{\varphi} \}
```

/*go down the tree and take every child of ${\bf G}$, and further every child of ${\bf F}$ if you already saw ${\bf G}$ on this branch*/

/* we can take progress formulae only */

- 3. foreach $\xi \in \mathcal{R}$ ec construct $\mathcal{B}(\xi)$
- 4. construct $\mathcal{A}(\varphi)$
- 5. construct GR acceptance condition \mathcal{C}
- 6. if C empty then return "unsat"
- 7. else
- 8. ouput $\mathcal{A}(\varphi), \mathcal{C}$
- 9. perform Andreas' degeneralization and ouput its result

C Auxiliary functions:

```
\mathfrak{U}\mathrm{nf}: \mathsf{B}^+(\mathbb{C}(\varphi)) \to \mathsf{B}^+(\mathbb{C}(\varphi)):
\mathfrak{U}\mathrm{nf}(a) = a
\mathfrak{U}\mathrm{nf}(\neg a) = \neg a
\mathfrak{U}\mathrm{nf}(\varphi \wedge \psi) = \mathfrak{U}\mathrm{nf}(\varphi) \wedge \mathfrak{U}\mathrm{nf}(\psi)
\mathfrak{U}\mathrm{nf}(\varphi \vee \psi) = \mathfrak{U}\mathrm{nf}(\varphi) \vee \mathfrak{U}\mathrm{nf}(\psi)
\mathfrak{U}\mathrm{nf}(\mathbf{X}\varphi) = \mathbf{X}\varphi
\mathfrak{U}\mathrm{nf}(\mathbf{F}\varphi) = \mathfrak{U}\mathrm{nf}(\varphi) \vee \mathbf{X}\mathbf{F}\varphi
\mathfrak{U}\mathrm{nf}(\mathbf{G}\varphi) = \mathfrak{U}\mathrm{nf}(\varphi) \wedge \mathbf{X}\mathbf{G}\varphi
\mathfrak{U}\mathrm{nf}(\varphi \mathbf{U}\psi) = \mathfrak{U}\mathrm{nf}(\psi) \vee (\mathfrak{U}\mathrm{nf}(\varphi) \wedge \mathbf{X}(\varphi \mathbf{U}\psi))
```

$$\mathbf{X}^{-1}: \mathsf{B}^{+}(\mathbb{C}(\varphi)) \to \mathsf{B}^{+}(\mathbb{C}(\varphi)):$$

$$\mathbf{X}^{-1}(\psi_{1} \wedge \psi_{2}) = \mathbf{X}^{-1}(\psi_{1}) \wedge \mathbf{X}^{-1}(\psi_{2})$$

$$\mathbf{X}^{-1}(\psi_{1} \vee \psi_{2}) = \mathbf{X}^{-1}(\psi_{1}) \vee \mathbf{X}^{-1}(\psi_{2})$$

$$\mathbf{X}^{-1}(\mathbf{X}\psi) = \psi$$

$$\mathbf{X}^{-1}(\psi) = \psi \text{ for all other types of formulae}$$

 $(\cdot)[\nu]: \mathsf{B}^+(\mathbb{C}(\varphi)) \to \mathsf{B}^+(\mathbb{C}(\varphi)) \text{ for } \nu \subseteq Ap$:

Consider a formula $\chi \in \mathsf{B}^+(\mathbb{C}(\varphi))$. For a set $S \subseteq \mathbb{C}(\varphi)$, let $\chi[S \mapsto \mathbf{tt}]$ denote the formula where \mathbf{tt} is substituted for elements of S. As elements of $\mathbb{C}(\varphi)$ are considered to be atomic expressions here, the substitution is only done on the propositional level and does not go through the modality, e.g. $(a \wedge \mathbf{XG}a)[\{a\} \to \mathbf{tt}] = \mathbf{tt} \wedge \mathbf{XG}a$, which is equivalent to $\mathbf{XG}a$ in the propositional semantics. For a valuation $\nu \subseteq Ap$, we set $\chi[\nu] := \chi[\nu \cup \{\neg a \mid a \in Ap \setminus \nu\} \mapsto \mathbf{tt}]$.

 \mathcal{R} elRec: $\mathsf{B}^+(\mathbb{C}(\varphi)) \to 2^{\mathcal{R}$ ec: \mathcal{R} elRec(ψ)(ξ) iff ξ occurs in the Boolean combination ψ .

D Automaton $\mathcal{B}(\xi)$ construction:

input: $\xi \in \mathcal{R}$ ec output: $\mathcal{B}(\xi) = (Q_{\xi}, i_{\xi}, \delta_{\xi}, F_{\xi})$ over 2^{Ap} 1. the initial state $i_{\xi} := \xi$ 2. $worklist := \{i_{\xi}\}$ 3. while $worklist \neq \emptyset$ (a) pop $q \in worklist$ (b) if $q \notin F_{\xi}$ then foreach $\nu \subseteq Ap$ $new := \mathbf{X}^{-1}(\chi[\nu])$ add (q, ν, new) to δ_{ξ} if $new \notin Q$ then add new to worklist and Q_{ξ} if (each atomic proposition has \mathbf{F} or \mathbf{G} as an ancestor in the syntactic tree of new) then add q to F_{ξ} /*i.e. no atomic propositions are guarded by only \mathbf{X}^* and Boolean operators*/

4. for each $\nu \subseteq Ap$ add (i, ν, i) to δ_{ξ}

E Automaton $\mathcal{A}(\varphi)$ construction:

output: $\mathcal{A}(\varphi) = (Q, i, \delta)$ over $\Sigma = 2^{Ap}$

- 1. for each $\mathbf{G}\xi \in \mathbf{G}_{\varphi}$,
 - pick f_{ξ} to be (1) **tt** if **tt** $\in F_{\xi}$ else (2) any $\psi \neq$ **ff** if $\psi \in F_{\xi}$ else (3) **ff**
- 2. for each $\mathbf{F}\xi \in \mathbf{F}_{\varphi}$,

pick f_{ξ} to be (1) **ff** if **ff** $\in F_{\xi}$ else (2) any $\psi \neq \mathbf{tt}$ if $\psi \in F_{\xi}$ else (3) \mathbf{tt}

3. for each $\xi \in \mathcal{R}ec$,

 $S_{\xi} := \text{states on an arbitrary path from } i_{\xi} \text{ to } f_{\xi} \text{ including both}$

- 4. the initial state $i := \langle \mathfrak{U}nf(\varphi), (S_{\xi})_{\xi \in \mathcal{R}ec} \rangle$
- 5. $worklist := \{i\}$
- 6. while $worklist \neq \emptyset$
 - (a) pop $q := \langle \psi, (R_{\xi})_{\xi \in \mathcal{R}elRec(\psi)} \rangle \in worklist$
 - (b) for each $\nu \subseteq Ap$
 - i. $new\psi := \mathfrak{U}nf(\mathbf{X}^{-1}(\psi[\nu]))$ /*and search for the label */
 - ii. for
each $\xi \in \mathcal{R}\mathrm{elRec}(\psi)$ do $new_{\xi} := \bigcup_{q \in R_{\xi}} \delta_{\xi}(q,\nu)$
 - iii. $new := \langle new\psi, (new_{\xi})_{\xi \in \mathcal{R}elRec(new\psi)} \rangle$ /*new vector can be smaller*/
 - iv. add (q, ν, new) to δ
 - v. if $new \notin Q$ then add new to worklist and Q

F GR acceptance condition \mathcal{C} construction:

- 1. foreach $I \subseteq \mathbf{G}_{\varphi} \cup \mathbf{F}_{\varphi}$
 - (a) $avoid := \{ \langle \psi, (R_{\xi})_{\xi \in \mathcal{R}elRec(\psi)} \rangle \in Q \mid \mathbf{X}^*I \cup \bigcup_{\substack{\xi \in I: \\ \mathbf{G}\xi \in sf(\varphi)}} R_{\xi} \not\models \psi \} \}$
 - (b) for each $\mathbf{G}\chi \in I$

$$avoid_{\mathbf{G}\chi} := \{ \langle \psi, (R_\xi)_{\xi \in \mathcal{R}\mathrm{elRec}(\psi)} \rangle \in Q \mid \exists q \in R_\chi \cap F_\chi : \mathbf{X}^*I \not\models q \} \}$$

/* e.g. states where the segment automaton for χ is in ff */

(c) for each $\mathbf{F}\chi \in I$

$$reach_{\mathbf{F}\chi} := \{ \langle \psi, (R_\xi)_{\xi \in \mathcal{R}elRec(\psi)} \rangle \in Q \mid \exists q \in R_\chi \cap F_\chi : \mathbf{X}^*I \models q \} \}$$

/* e.g. states where the segment automaton for χ is in ${\bf tt}$ or in some element of I */

- (d) add $\left(avoid \cup \bigcup_{\mathbf{G}\chi \in I} avoid_{\mathbf{G}\chi}, \{reach_{\mathbf{F}\chi} \mid \mathbf{F}\chi \in I\}\right)$ to \mathcal{C}
- 2. perform redundancy removals on $\mathcal C$ described on the webpage of Rabinizer (version 1) and return the result

/* such as
$$(\{1,2\},\{\{2\},\{3\}\})$$
 is redundant w.r.t. $(\{1\},\{\{2,3\}\})$ */

References

- [CGK13] Krishnendu Chatterjee, Andreas Gaiser, and Jan Křetínský. Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. In CAV, 2013. To appear, accessible at http://arxiv.org/abs/1304.5281.
- [GKE12] Andreas Gaiser, Jan Křetínský, and Javier Esparza. Rabinizer: Small deterministic automata for LTL(F,G). In ATVA, pages 72–76, 2012.
- [KB06] Joachim Klein and Christel Baier. Experiments with deterministic omegaautomata for formulas of linear temporal logic. Theor. Comput. Sci., 363(2):182–195, 2006.
- [KE12] Jan Křetínský and Javier Esparza. Deterministic automata for the (F,G)-fragment of LTL. In CAV, pages 7–22, 2012.