
Algorithm Selection with Attention on Software
Verification

Cedric Richter and Heike Wehrheim[0000−0002−2385−7512]

Paderborn University, Germany

1 Introduction

There is no doubt that algorithm selection can boost the performance of software
verification tools [3, 8, 5, 4, 6]. An algorithm selector enables the usage of a diverse
portfolio of verification algorithms by having the selector match each individual
verification problem to a presumably best performing algorithm. As a result, a
wider range of programs can be verified by the same verification tool.

Virtually all existing techniques for algorithm selection in software verifica-
tion (AS4SV) strive for generality. To this end, the characteristics of verification
problems (basically, programs) are encoded in a (potentially huge) set of general
features. The actual selection procedure is then learned, typically via machine
learning, by providing the selector with training data in the form of such features
and the best performing algorithm (on programs with these features). Due to
the variety of features and the application of learning procedures, there is the
hope that the learned selection approach generalizes to arbitrary algorithm port-
folios. However, it is not clear whether all relevant characteristics of verification
problems are covered or some chosen features might be redundant. For example,
the author of [8, 4] showed that the performance of algorithm selection can be
increased by incorporating a plethora of general program patterns. In contrast,
Beyer et al. [3] demonstrated for a specific algorithm portfolio that simplistic
metrics like the existence of a loop or a floating point number are enough for an
effective algorithm selector.

To circumvent the issue of manual feature picking, we present a novel repre-
sentation learning technique [2] for AS4SV. More specifically, our method does
not map a program to a fixed set of features but learns a function from programs
to task-specific feature representations. The specialty of our proposed learner is
the integration of an attention mechanism [9, 1]. Attention allows our selector to
focus on different parts of a program, which does not only improve the selection
performance but also lets us identify and extract the focused elements.

2 Attention over verification contexts

The use of attention in AS4SV is motivated by the observation that a verification
tool which does not support specific parts in a program (e.g., floating-point
numbers) will likely also fail to verify the entire program. The starting point of
our novel algorithm selector is the construction of an abstract syntax tree (AST)
for a program. For discovering the occurrence of important language constructs
(e.g., a floating point number), it is enough to collect the labels of AST elements

2 C. Richter et al.

1 int test(void)
2 {
3 int count = 0;
4 for(int i = 0; i < 2; i++){
5 if (i % 2 == 0){
6 count = count + 1;
7 }
8 }
9 }

tester.c

Program context

int test()

Function context Statement context

DECL

INT TYPE

ZERO

ID

FOR

SMALLER

INCREMENT

...

...

...

...

...

int count = 0;

...
for(...)

...

Fig. 1. Verification context hierachy for the C program on the left. Bold edges point
to elements with maximal attention. In this example, the selection is made due to the
program containing a function which contains a INT TYP variable and a FOR loop.

(not e.g. their ordering). However, we argue that the importance of an element is
highly dependent on its context. The occurrence of a large integer within a FOR
loop (a context) might be more important to know than within a declaration. In
general, we distinguish three types of contexts: program, function and statement
context. The program context contains all function contexts while a function
context is constructed from a set of statement contexts. A statement context is
the set of AST labels used to describe the statement itself while ignoring literals
and identifiers. In Figure 1, the three types of verification contexts types are
illustrated for a given input program.

Now, our aim is to learn a feature vector representation of a program. For
this purpose, we aggregate individual verification contexts into a single vector
representation. However, we aim for a parametrizable aggregation function with
learnable parameters. At the beginning, every AST label is mapped to a feature
vector. This initial mapping is part of the parametrization. By applying the
mapping function, a statement context can be transformed to a set of vectors
X. To aggregate X into a single vector, we apply the following function:

Agg(X;Θ) = fΘ

(∑
x∈X

αΘ(x) · x

)
,

where Θ is the parametrization and fΘ and αΘ are differentiable with respect
to Θ. Intuitively, αΘ(x) (which is optimized during learning) enables us to learn
the importance of a single AST label. An element with higher importance has
a stronger contribution to the overall sum operator. Because of this property,
αΘ(x) is commonly refered to as attention mechanism [9, 1]: it allows the repre-
sentation learner to attend to specific elements. Finally, every statement context
can be reduced to a single feature vector which results in a new set of vectors for
every function context. Hence, we can apply the same mechanism to every func-
tion context and afterwards to the overall program context. This leaves us with
a representation learner that maps a program to a single feature representation.

As the representation learner is composed of differentiable functions, it can
efficiently be optimized by any backpropagation optimizer [7]. In addition, the
learner acts as an input and can be optimized with any backpropagation based
machine learning technique.

Algorithm Selection with Attention on Software Verification 3

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to
align and translate. In: 3rd International Conference on Learning Representations,
ICLR 2015 (2015)

2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence 35(8),
1798–1828 (2013)

3. Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean
features. In: International Symposium on Leveraging Applications of Formal Meth-
ods. pp. 144–159. Springer (2018)

4. Czech, M., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Predicting rankings of
software verification tools. In: Proceedings of the 3rd ACM SIGSOFT International
Workshop on Software Analytics. pp. 23–26 (2017)

5. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. Formal Methods in System Design 50(2-3), 289–
316 (2017)

6. Healy, A., Monahan, R., Power, J.F.: Predicting SMT solver performance for soft-
ware verification. 3rd Workshop on FIDE pp. 20–37 (2017)

7. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
computation 1(4), 541–551 (1989)

8. Richter, C., Wehrheim, H.: Pesco: Predicting sequential combinations of verifiers.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 229–233. Springer (2019)

9. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

Robustness as a Refinement Type

Verifying Neural Networks in Liquid Haskell and F∗

Wen Kokke1,2, Ekaterina Komendantskaya2,
Daniel Kienitz2, and David Aspinall1?

1 School of Informatics, University of Edinburgh, Edinburgh, UK
{wen.kokke, david.aspinall}@ed.ac.uk

2 Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK
{dk50, e.komendantskaya}@hw.ac.uk

Abstract. We introduce StarChild and Lazuli, two proof-of-concept li-
braries which leverage the type system and theorem proving capabilities
of F∗ and Liquid Haskell, respectively, to verify properties of pre-trained
neural networks. We largely focus on StarChild, as the F∗ syntax is
slightly more concise, but Lazuli implements the same functionality. Cur-
rently, both libraries are capable of verifying small models. Performance
issues arise for larger models. Optimising the libraries is future work.
We make two novel contributions. We demonstrate that (a) it is possible
to leverage a sufficiently advanced type system to model properties of
neural networks such as robustness as types, and check them without
any proof burden; and in service of that, we demonstrate that (b) it is
possible to approximately translate neural network models to SMT logic.

Introduction Neural networks are widely used for classification and pattern-
recognition tasks in computer vision, signal processing, data mining, and many
other domains. They have always been valued for their ability to work with noisy
data, yet only recently [7], it was discovered that they are prone to adversar-
ial attacks—specially crafted inputs that lead to unexpected outputs. Verifying
properties of neural networks, such as, e.g., robustness against adversarial at-
tacks, is a recognised research challenge [4]. Several current approaches involve:
(a) encoding properties as satisfiability problems [2,3]; (b) proving properties via
abstract interpretation [5]; (c) or using an interactive theorem prover [1].

F∗ [6] and Liquid Haskell [8] are functional languages with refinement types,
i.e., types can be refined with SMT-checkable constraints. For instance, the type
of positive reals (x:R{x > 0}), or booleans which are true (b:bool{b ≡ true}), or
a type of neural networks which are robust against adversarial attacks. Unlike,
e.g., Python, F∗ and Liquid Haskell are referentially transparent, which means
the semantics of pure programs in these languages can be directly encoded in
the SMT logic. This tight integration allows users to specify neural network
models and their properties in the same language, while leveraging the powerful
automated verification offered by SMT solvers!

? The work was funded by the National Cyber Security Center, UK.

2 W Kokke et al.

StarChild: Verifying Neural Networks in F∗ StarChild leverages the type
system of F∗ to verify properties of pre-trained neural networks. Users can either
write their models directly in F∗, or export them from Python. To illustrate, we
train a model to mimic the AND gate, and export it:

val m : network (*n_inputs*) 2 (*n_outputs*) 1 (*n_layers*) 1
let m = NLast { weights = [[17561.5R]; [17561.5R]]

; biases = [−25993.1R]
; activation = Sigmoid }

We can verify properties of models using either refinement types or assertions.
For instance, we can check that the model m correctly implements the AND gate:

let _ = assert(run m [1.0R;1.0R] ≡ [1.0R]) // true AND true ≡ true
let _ = assert(run m [0.0R;1.0R] ≡ [0.0R]) // false AND true ≡ false
let _ = assert(run m [1.0R;0.0R] ≡ [0.0R]) // true AND false ≡ false
let _ = assert(run m [0.0R;0.0R] ≡ [0.0R]) // false AND false ≡ false

Assertions in F∗ have no significance at runtime. They are checked statically, as
part of type checking. You can think of assert as a function with type:

val assert : b:bool{b ≡ true} → ()

Its argument is a bool which must be true, which F∗ checks using an SMT solver.
We are not limited to assertions we can run, but can also check assertions using
quantifiers, which are infeasible or impossible to run. For instance, we can check
that the model m is robust for inputs within an ε-interval:

let epsilon = 0.2R
let truthy x = dist x 1.0R ≤ epsilon
let falsy x = dist x 0.0R ≤ epsilon
let _ = assert(∀(x1:R{truthy x1})(x2:R{truthy x2}).run m [x1;x2] ≡ [1.0R])
let _ = assert(∀(x1:R{falsy x1})(x2:R{truthy x2}).run m [x1;x2] ≡ [0.0R])
let _ = assert(∀(x1:R{truthy x1})(x2:R{falsy x2}).run m [x1;x2] ≡ [0.0R])
let _ = assert(∀(x1:R{falsy x1})(x2:R{falsy x2}).run m [x1;x2] ≡ [0.0R])

The assertions cover the entire ε-interval around 1.0 and 0.0, which we could not
have achieved by executing them. The program type checks, and hence we know
the model m is, in fact, robust for ε = 0.2.

All models specified using StarChild are usable in type refinements and as-
sertions. Better yet, F∗ takes care of the translation to the SMT logic for us! F∗

translates programs to the SMT logic by normalising it, translating constructs to
their SMT equivalents where possible, and translating the rest as uninterpreted
functions. For instance, the expression run m [x1;x2] normalises to

sigmoid(x1 × 17561.5R + x2 × 17561.5R − 25993.1R)

When translating this term, F∗ maps ×, +, and − to their equivalent in the SMT
logic, and maps maps sigmoid to an uninterpreted function. Its definition uses
the exponential function, which most SMT solvers do not support. However, the
SMT solver cannot reason about uninterpreted functions. To circumvent this,
we use linear approximations, e.g., lsigmoid, during verification:

let lsigmoid x = 0.0R `min` (0.25R × x + 0.5R) `max` 1.0R

The use of approximations introduces an error, which impacts the accuracy of
the verification. Investigating the bounds on these errors is future work.

Robustness as a Refinement Type 3

References

1. Bagnall, A., Stewart, G.: Certifying true error: Machine learning in Coq with verified
generalisation guarantees. AAAI (2019)

2. Katz, G., et al.: The Marabou framework for verification and analysis of deep neural
networks. In: CAV 2019, Part I. LNCS, vol. 11561, pp. 443–452. Springer (2019)

3. Kwiatkowska, M.Z.: Safety verification for deep neural networks with provable guar-
antees (invited paper). In: Fokkink, W., van Glabbeek, R. (eds.) CONCUR 2019,.
LIPIcs, vol. 140, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019)

4. Pertigkiozoglou, S., Maragos, P.: Detecting adversarial examples in convolutional
neural networks. CoRR abs/1812.03303 (2018), http://arxiv.org/abs/1812.
03303

5. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1–41:30 (2019), https://doi.org/10.1145/
3290354

6. Swamy, N., Kohlweiss, M., Zinzindohoue, J.K., Zanella-Béguelin, S., Hriţcu,
C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhargavan,
K., Fournet, C., Strub, P.Y.: Dependent types and multi-monadic effects
in F∗. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages - POPL 2016. ACM
Press (2016). https://doi.org/10.1145/2837614.2837655, https://doi.org/10.1145/
2837614.2837655

7. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2014),
https://arxiv.org/abs/1312.6199

8. Vazou, N.: Liquid Haskell: Haskell as a Theorem Prover. Ph.D. thesis, Univer-
sity of California, San Diego, USA (2016), http://www.escholarship.org/uc/item/
8dm057ws

http://arxiv.org/abs/1812.03303
http://arxiv.org/abs/1812.03303
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://arxiv.org/abs/1312.6199
http://www.escholarship.org/uc/item/8dm057ws
http://www.escholarship.org/uc/item/8dm057ws

A Data Driven Approach for Skolem Function
Synthesis?

Priyanka Golia1,2, Kuldeep S. Meel1, and Subhajit Roy2

1 School of Computing, National University of Singapore, Singapore
2 Computer Science and Engineering, Indian Institute of Technology Kanpur, India

Abstract. Synthesizing Skolem functions is one of the challenging prob-
lems in Computer Science. It has seen multiple proposals, including
incremental determination, decomposition techniques from knowledge
compilation, and counterexample guided refinement techniques via self-
substitutions. In this work, we propose a novel data-driven approach to
synthesis that employs constrained sampling techniques for generation of
data, machine learning for candidate Skolem functions, and automated
reasoning to verify and refine to generate Skolem functions. Our ap-
proach achieves significant performance improvements by solving 63/609
benchmarks that could not be solved by any of the existing synthesis
tools.

Given a propositional formula ∃Y F (X,Y), Skolem functiona synthesis is to syn-
thesis a function Ψ such that ∃Y F (X,Y) is equivalent to F (X,Ψ(X)). It has
many applications in different areas like certified QBF solving, automated pro-
gram repair and synthesis, and cryptography. In this work, we propose a syner-
gistic interaction of learning and formal methods based techniques to synthesize
Skolem functions. We design a data-driven approach, Manthan, to synthesize
Skolem function that utilizes a novel sampling algorithm to gather data, ap-
ply a machine learning algorithm to learn the candidate Skolem functions, and
successively refines it via a proof-guided refinement algorithm.

– Data Generation: The data here represents the relationship between uni-
versally and existentially quantified variables. We use a subset of satisfying
assignment of F (X,Y) as data. We view the problem of synthesizing Skolem
function as the classification of valuation of the existentially quantified vari-
able over a data. We want to tailor our sampling subroutines to allow the
discovery of Skolem functions with small description. To this end, we design
a novel biased sampling technique that samples the existentially quantified
variables at the cost of the universally quantified variables.

– Learning Candidate Skolem Function: Manthan learns candidate Skolem
functions as decision trees with data projected on universally quantified vari-
ables as features, and existentially quantified variables as labels. Candidate

? This is an extended abstract of our paper: Manthan: A Data Driven Approach for
Skolem Function Synthesis, CAV-20

2 Golia, Meel, and Roy

Skolem functions can be represented as the disjunction of all the paths from
the root to the leaves in the learnt decision tree. We call this the LearnSkF
phase of Manthan.

– Proof Based Refinement: Manthan uses a MaxSAT solver to identify
the erring candidates Skolem functions that may need to be repaired. It
utilizes UNSAT core from the infeasibility proofs of the candidate function
meeting its specifications to generate a repair formula. Manthan updates the
candidate Skolem function with its repair formula. The candidate Skolem
functions converges to the actual function through a sequence of such minor
repair. We call this the Refine phase of Manthan.

We compared Manthan performance with the state of the art tools, viz. BFSS [3],
C2syn [2], and CADET [4] on a set of benchmarks drawn from the datasets
QBFEval-17-18 [1], Disjunctive, Factorization and Arithmetic data set [3]. Fig-
ure 1 shows that Manthan significantly improves upon state of the art, and solves
356 benchmarks. To put the runtime performance statistics in a broader con-
text, the number of benchmarks solved by techniques developed over the past
five years range from 206 to 280, i.e., a difference of 74, which is same as an
increase of 76 (i.e., from 280 to 356) due to Manthan; in particular, Manthan
solves 60 more benchmarks that could not be solved by any of the tools.

0 50 100 150 200 250 300 350 400
instances

0

1000

2000

3000

4000

5000

6000

7000

C
PU

tim
e

(s
)

MANTHAN
CADET
BFSS
C2Syn

Fig. 1: Manthan vis a vis camparision with state of the art tools

Our approach achieves significant performance improvements and opens up sev-
eral interesting directions for future work at the intersection of machine learning,
constrained sampling, and automated reasoning.

References

1. QBF solver evaluation portal 2018, http://www.qbflib.org/qbfeval18.php
2. Akshay, S., Arora, J., Chakraborty, S., Krishna, S., Raghunathan, D., Shah, S.:

Knowledge compilation for boolean functional synthesis. In: Proc. of FMCAD (2019)
3. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: Whats hard about boolean

functional synthesis? In: Proc. of CAV (2018)
4. Rabe, M.N., Tentrup, L., Rasmussen, C., Seshia, S.A.: Understanding and extending

incremental determinization for 2QBF. In: Proc. of CAV (2018)

http://www.qbflib.org/qbfeval18.php

Quantitative Verification of Neural Networks
and Its Security Applications?

Teodora Baluta1, Shiqi Shen1, Shweta Shinde1,2, Kuldeep S. Meel1, and
Prateek Saxena1

{teobaluta,shiqi04,meel,prateeks}@comp.nus.edu.sg,
shwetas@eecs.berkeley.edu

1 National University of Singapore, Singapore
2 University of California, Berkeley, USA

1 Introduction

Neural networks are witnessing wide-scale adoption, including in domains with
the potential for a long-term impact on human society. Examples of these do-
mains are criminal sentencing [1], drug discovery [33], self-driving cars [5], air-
craft collision avoidance systems [16], robots [4], and drones [11]. While neural
networks achieve human-level accuracy in several challenging tasks such as im-
age recognition [18,30,13] and machine translation [29,3], studies show that these
systems may behave erratically in the wild [10,23,22,9,32,2,31,28,6].

Consequently, there has been a surge of interest in the design of method-
ological approaches to verification and testing of neural networks. Early efforts
focused on qualitative verification wherein, given a neural network N and prop-
erty P , one is concerned with determining whether there exists an input I to
N such that P is violated [24,25,8,21,17,14,7,27]. While such certifiability tech-
niques provide value, for instance in demonstrating the existence of adversarial
examples [12,23], it is worth recalling that the designers of neural network-based
systems often make a statistical claim of their behavior, i.e., a given system
is claimed to satisfy properties of interest with high probability but not al-
ways. Therefore, many analyses of neural networks require quantitative reason-
ing, which determines how many inputs satisfy P.

It is natural to encode properties as well as conditions on inputs or outputs
as logical formulae. We focus on the following formulation of quantitative veri-
fication: Given a set of neural networks N and a property of interest P defined
over the union of inputs and outputs of neural networks in N , we are interested
in estimating how often P is satisfied. In many critical domains, client analyses
often require guarantees that the computed estimates be reasonably close to the
ground truth. We are not aware of any prior approaches that provide such for-
mal guarantees, though the need for quantitative verification has recently been
recognized [34].

? Work published in ACM Conference on Computer and Communications Security
(CCS) 2019. Code and benchmarks are available at https://teobaluta.github.

io/npaq/.

https://teobaluta.github.io/npaq/
https://teobaluta.github.io/npaq/

2 Authors Suppressed Due to Excessive Length

Our Approach. The primary contribution of this paper is a new analysis frame-
work, which models the given set of neural networks N and P as set of logical
constraints, ϕ, such that the problem of quantifying how often N satisfies P re-
duces to model counting over ϕ. We then show that the quantitative verification
is #P -hard. Given the computational intractability of #P , we seek to compute
rigorous estimates and introduce the notion of approximate quantitative veri-
fication: given a prescribed tolerance factor ε and confidence parameter δ, we
estimate how often P is satisfied with PAC-style guarantees, i.e., the computed
result is within a multiplicative (1+ε) factor of the ground truth with confidence
at least 1− δ.

Our approach works by encoding the neural network into a logical formula
in conjunctive normal form (CNF). The key to achieving soundness guarantees
is our new notion of equicardinality, which defines a principled way of encod-
ing neural networks into a CNF formula F , such that quantitative verification
reduces to counting the satisfying assignments of F projected to a subset of
the support of F . We then use approximate model counting on F , which has
seen rapid advancement in practical tools that provide PAC-style guarantees on
counts for F . The end result is a quantitative verification procedure for neural
networks with soundness and precision guarantees.

While our framework is more general, we instantiate our analysis frame-
work with a sub-class of neural networks called binarized neural networks (or
BNNs) [15]. BNNs are multi-layered perceptrons with +/-1 weights and step ac-
tivation functions. They have been demonstrated to achieve high accuracy for a
wide variety of applications [26,20,19]. Due to their small memory footprint and
fast inference time, they have been deployed in constrained environments such as
embedded devices [20,19]. We observe that specific existing encodings for BNNs
adhere to our notion of equicardinality and implement these in a new tool called
NPAQ. We provide proofs of key correctness and composability properties of
our general approach, as well as of our specific encodings. Our encodings are
linear in the size of N and P .

Empirical Results. We show that NPAQ scales to BNNs with 1− 3 internal
layers and 20− 200 units per layer. We use 2 standard datasets namely MNIST
and UCI Adult Census Income dataset. We encode a total of 84 models with
4, 692− 53, 010 parameters, into 1, 056 formulae and quantitatively verify them.
NPAQ encodes properties in less than a minute and solves 97.1% formulae in
a 24-hour timeout. Encodings scale linearly in the size of the models, and its
running time is not dependent on the true counts. We showcase how NPAQ can
be used in diverse security applications with case studies. First, we quantify the
model robustness by measuring how many adversarially perturbed inputs are
misclassified, and then the effectiveness of 2 defenses for model hardening with
adversarial training. Next, we evaluate the effectiveness of trojan attacks outside
the chosen test set. Lastly, we measure the influence of 3 sensitive features on
the output and check if the model is biased towards a particular value of the
sensitive feature.

Quantitative Verification of Neural Networks and Its Security Applications 3

References

1. Correctional offender management profiling for alternative sanctions. http://www.
northpointeinc.com/files/downloads/FAQ_Document.pdf (2012)

2. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In: ICML’18 (2018)

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR’15 (2015)

4. Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., Engstrom, E.: Certification
considerations for adaptive systems. In: ICUAS’15 (2015)

5. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Others: End to end learning for
self-driving cars. arXiv (2016)

6. Carlini, N., Liu, C., Kos, J., Erlingsson, Ú., Song, D.: The secret sharer: Measuring
unintended neural network memorization & extracting secrets. arXiv (2018)

7. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A Dual Approach
to Scalable Verification of Deep Networks. In: UAI’18 (2018)

8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: ATVA’17 (2017)

9. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati,
A., Song, D.: Robust physical-world attacks on deep learning models. In: CVPR’18
(2018)

10. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: CCS’15 (2015)

11. Giusti, A., Guzzi, J., Ciresan, D.C., He, F.L., Rodriguez, J.P., Fontana, F., Faessler,
M., Forster, C., Schmidhuber, J., Caro, G.D., Scaramuzza, D., Gambardella, L.M.:
A Machine Learning Approach to Visual Perception of Forest Trails for Mobile
Robots. IEEE Robotics and Automation Letters (2016)

12. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial ex-
amples. In: ICLR’15 (2015)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR’16 (2016)

14. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: CAV’17 (2017)

15. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: NIPS’16 (2016)

16. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: DASC’16 (2016)

17. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: CAV’17 (2017)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS’12 (2012)

19. Kung, J., Zhang, D., van der Wal, G., Chai, S., Mukhopadhyay, S.: Efficient object
detection using embedded binarized neural networks. Journal of Signal Processing
Systems (2018)

20. McDanel, B., Teerapittayanon, S., Kung, H.T.: Embedded Binarized Neural Net-
works. In: EWSN’17 (2017)

21. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: AAAI’18 (2018)

http://www.northpointeinc.com/files/downloads/FAQ_Document.pdf
http://www.northpointeinc.com/files/downloads/FAQ_Document.pdf

4 Authors Suppressed Due to Excessive Length

22. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. arXiv (2016)

23. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: EuroS&P’16 (2016)

24. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: Automated whitebox testing of
deep learning systems. In: SOSP’17 (2017)

25. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: CAV’10 (2010)

26. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In: European Conference on
Computer Vision (2016)

27. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by angluin-
style learning. In: SAT’19 (2019)

28. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: SP’17 (2017)

29. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NIPS’14 (2014)

30. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR’15
(2015)

31. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.:
Ensemble adversarial training: Attacks and defenses. In: ICLR’18 (2018)

32. Uesato, J., O’Donoghue, B., Oord, A.v.d., Kohli, P.: Adversarial risk and the dan-
gers of evaluating against weak attacks. In: ICML’18 (2018)

33. Wallach, I., Dzamba, M., Heifets, A.: Atomnet: A deep convolutional neural net-
work for bioactivity prediction in structure-based drug discovery. arXiv (2015)

34. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to as-
sessing neural network robustness. In: ICLR’19 (2019)

Neural Predictive Monitoring and a Comparison
of Frequentist and Bayesian Approaches

Luca Bortolussi1,4, Francesca Cairoli1, Nicola Paoletti2, Scott A. Smolka3, and
Scott D. Stoller3

1 Department of Mathematics and Geosciences, Università di Trieste, Italy
2 Department of Computer Science, Royal Holloway, University of London, UK

3 Department of Computer Science, Stony Brook University, USA
4 Modelling and Simulation Group, Saarland University, Germany

In this work we address the online analysis of hybrid systems and, in particular,
the predictive monitoring (PM) problem [3]; i.e., the problem of predicting, at runtime,
whether or not an unsafe state can be reached from the current system state within
a given time bound. PM is at the core of architectures for runtime safety assurance
such as Simplex [8], where the system switches to a safe fallback mode whenever PM
indicates the potential for an imminent safety violation.

Neural State Classification (NSC) [7] is a recently proposed method for runtime
predictive monitoring of Hybrid Automata (HA) using deep neural networks (DNNs).
NSC trains a DNN as an approximate reachability predictor that labels an HA state
x as positive if an unsafe state is reachable from x within a given time bound, and
labels x as negative otherwise. NSC predictors have very high accuracy, yet are prone
to prediction errors that can negatively impact reliability.

To overcome this limitation, we present Neural Predictive Monitoring (NPM),
a technique that complements NSC predictions with estimates of the predictive
uncertainty. These measures yield principled criteria for the rejection of predictions
likely to be incorrect, without knowing the true reachability values. We also present an
active learning method, which is guided by the prediction uncertainty measures, that
significantly reduces the NSC predictor’s error rate and the percentage of rejected pre-
dictions. We develop two versions of NPM based respectively on the use of frequentist
and Bayesian techniques to learn the predictor and the rejection rule. The frequentist
approach uses Conformal Prediction (CP) [9], a method that provides statistical
guarantees on the predictions of machine-learning models. The Bayesian approach
leverages uncertainty quantification via Bayesian neural networks (BNNs) and two
Bayesian inference methods: Hamiltonian Monte Carlo [6] and Variational Inference [5].

Figure 1 provides an overview of the NPM approach. We sample from a distri-
bution of HA states to generate a training set Zt and a validation set Zv. An HA
reachability oracle (a model checker [4, 2] or, for deterministic systems, a simulator)
is used to label sampled states as positive or negative. A neural state classifier F
(i.e., a DNN-based binary classifier) is derived from Zt via supervised learning, and
is either a deterministic Neural Network (in the frequentist approach) or a Bayesian
Neural Network (in the Bayesian approach).

Our approach is highly efficient, with computation times on the order of millisec-
onds, and effective, managing in our experimental evaluation to successfully reject
almost all incorrect predictions. In our experiments on a benchmark suite of six

2 L. Bortolussi et al.

State distribution
+

Reachability oracle

Training set
𝑍"

Validation set
𝑍#

Neural State
Classifier 𝐹

Uncertainty
quantification

Error detection
criterion

Active
Learning

Fig. 1. Overview of the NPM framework. Double-bordered components denote extensions to
the method of [7]. Training of the neural state classifier F and retraining via active learning
are performed offline. The only components used at runtime are the classifier F and the
error-detection criterion.

hybrid systems, we found that the frequentist approach consistently outperforms the
Bayesian one. We also observed that the Bayesian approach is less practical, requiring
a careful and problem-specific choice of hyperparameters.

This work is currently under submission to the RV19 special issue and is an
extended version of [1], where we first introduced the NPM method but only in the
frequentist version. Here, we introduce a fully Bayesian variant of NPM, and compare
the two in a new experimental evaluation section.

References

1. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive moni-
toring. In: International Conference on Runtime Verification. pp. 129–147. Springer (2019)

2. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid
systems. In: International Conference on Computer Aided Verification. pp. 258–263.
Springer (2013)

3. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of linear systems.
In: Real-Time Systems Symposium (RTSS), 2017 IEEE. pp. 297–306. IEEE (2017)

4. Gao, S., Kong, S., Clarke, E.M.: dreal: An smt solver for nonlinear theories over the
reals. In: International conference on automated deduction. pp. 208–214. Springer (2013)

5. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational
methods for graphical models. Machine learning 37(2), 183–233 (1999)

6. Neal, R.M., et al.: MCMC using Hamiltonian dynamics. Handbook of markov chain
monte carlo 2(11), 2 (2011)

7. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural
state classification for hybrid systems. In: Automated Technology for Verification
and Analysis. Lecture Notes in Computer Science, vol. 11138, pp. 422–440 (2018).
https://doi.org/10.1007/978-3-030-01090-4 25

8. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001)
9. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic learning in a random world. Springer

Science & Business Media (2005)

Semantic Labelling and Learning for
Parity Game Solving in LTL Synthesis

Jan Křetínský[0000−0002−8122−2881], Alexander Manta[0000−0003−0591−6985], and
Tobias Meggendorfer[0000−0002−1712−2165]

Technical University of Munich

This work [KMM19] has been presented at ATVA 2019.

Reactive synthesis is a classical problem [Chu63,PR89,RW87] to find a strat-
egy that given a stream of inputs gradually produces a stream of outputs so
that a given specification over the inputs and outputs is satisfied. In LTL syn-
thesis [PR89] the specification is given as a formula of linear temporal logic
(LTL) [Pnu77]. A classical solution technique is the automata-theoretic approach
[Büc62,VW86] that transforms the specification into an automaton. The parti-
tioning of atomic propositions into inputs and outputs then yields a game over
this automaton. Subsequently, the game is solved and the winning strategy in the
game induces a winning strategy for the original problem. The standard type of
automaton to be used in this context is the deterministic parity automaton (DPA)
since (i) determinism ensures we obtain a well-defined game and (ii) the parity
condition yields a parity game, which can be solved reasonably cheaply in practice
[Zie98,Sch07,Fea17,CJK+17,FJS+17] with good tool support [FL09,vD18].

We propose semantic labelling as a novel ingredient for solving such games in
the context of LTL synthesis. It exploits recent advances [EK14,EKS18,KMSZ18]
in the automata-based approach, yielding more information for each state of
the generated parity game than the game graph captures. In particular, we
essentially obtain a description of each state in terms of a single formula to be
satisfied and a list of formulae describing progress of satisfying each sub-goal.
This clearer structure allows us to exploit the meaning of available successors
and to choose the most promising one in the sense of satisfying the goal of each
player. Moreover, since the degree how promising a vertex is can be quantified,
we can use this information as a reward in order to guide computation in spirit
of reinforcement learning [SB18]. This way we update only the most promising
parts of the state space.

This leads to the following improvements:

1. Compared to strategy improvement (SI) with random initial strategy, a more
informed initialization often yields a winning strategy directly without any
computation.

2. This initialization makes SI also yield smaller solutions.
3. While Q-learning on the game graph turns out not too efficient, Q-learning

based on semantic information becomes comparable to SI.

Since already the simplest heuristics achieve significant improvements the ex-
perimental results demonstrate the utility of semantic labelling. This extra
information opens the door to more advanced learning approaches both for
initialization and improvement of strategies.

References

Büc62. J.R. Büchi. On a decision method in restricted second-order arithmetic.
In E. Nagel, P. Suppes, and A. Tarski, editors, Proceedings of the First
International Congress on Logic, Methodology, and Philosophy of Science
1960, 1962.

Chu63. Alonzo Church. Application of recursive arithmetic to the problem of circuit
synthesis. Journal of Symbolic Logic, 1963.

CJK+17. Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. Deciding parity games in quasipolynomial time. In STOC, 2017.

EK14. Javier Esparza and Jan Kretínský. From LTL to deterministic automata: A
safraless compositional approach. In CAV, 2014.

EKS18. Javier Esparza, Jan Kretínský, and Salomon Sickert. One theorem to rule
them all: A unified translation of LTL into ω-automata. In LICS, 2018.

Fea17. John Fearnley. Efficient parallel strategy improvement for parity games. In
CAV, 2017.

FJS+17. John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik
Wojtczak. An ordered approach to solving parity games in quasi polynomial
time and quasi linear space. In SPIN, 2017.

FL09. Oliver Friedmann and Martin Lange. Solving parity games in practice. In
ATVA, 2009.

KMM19. Jan Kretínský, Alexander Manta, and Tobias Meggendorfer. Semantic
labelling and learning for parity game solving in LTL synthesis. In Yu-Fang
Chen, Chih-Hong Cheng, and Javier Esparza, editors, Automated Technology
for Verification and Analysis - 17th International Symposium, ATVA 2019,
Taipei, Taiwan, October 28-31, 2019, Proceedings, volume 11781 of Lecture
Notes in Computer Science, pages 404–422. Springer, 2019.

KMSZ18. Jan Kretínský, Tobias Meggendorfer, Salomon Sickert, and Christopher
Ziegler. Rabinizer 4: From LTL to your favourite deterministic automaton.
In CAV, 2018.

Pnu77. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, 1977.

PR89. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive
module. In ICALP, 1989.

RW87. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-
event processes. SIAM Journal of Control and Optimization, 1987.

SB18. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. 2018.

Sch07. Sven Schewe. Solving parity games in big steps. In FSTTCS, 2007.
vD18. Tom van Dijk. Oink: An implementation and evaluation of modern parity

game solvers. In TACAS, 2018.
VW86. Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to

automatic program verification (preliminary report). In LICS, 1986.
Zie98. Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications

to automata on infinite trees. Theor. Comput. Sci., 1998.

Formally Verifying the Robustness of1

Multiple-Classifier Combinations2

Dennis Gross1, Nils Jansen1, and Guillermo A. Pérez23

1 Radboud University Nijmegen, The Netherlands4

2 University of Antwerp, Belgium5

Each year millions of people die through car accidents [10]. Studies indi-6

cate that self-driving cars make around 80 % fewer traffic mistakes than human7

drivers [9]. However, those self-driving car, or autonomous systems in general,8

largely rely on machine learning methods. Despite many groundbreaking devel-9

opments, a major open challenge in machine learning is verifiable safety, promi-10

nently raised by, amongst others, [13, 6, 12, 2].11

In the context of self-driving cars, for instance, certain camera data may12

contain noise. which can be introduced randomly or actively via so-called ad-13

versarial attacks. We focus on the particular problem of such attacks in image14

classification. A successful attack perturbs the original image in a way such that15

a human eye does not see any difference while the machine learning classifier16

misclassifies the image.17

One way to render image classification more robust is to use a set of classifiers,18

also referred to as classifier ensemble [1, 11]. The underlying idea is to obscure19

the current classifier from the attacker. For such ensembles, we consider so-called20

randomized attacks, that is, a set of attacks that are randomly chosen by means21

of fixed probability distributions [11]. Such an attack is called optimal if the22

expected loss is maximized regardless of the choice of classifier [11].23

Inspired by previous approaches for single classifiers [8, 5], we aim to develop24

a formal verification procedure that decides if a set of classifiers is robust against25

any randomized attack. In particular, the formal problem is the following. Given26

a set of classifiers and a labelled data set, we want to find a probability distribu-27

tion and a set of attacks that induces an optimal randomized attack. Akin to the28

setting in [11], we provide thresholds on potential perturbations of data points29

and the minimum shift in classification values. Thereby, it may happen that no30

optimal attack exists, in which case we call the classifier ensemble robust.31

We establish a number of theoretical results. First, we show that the under-32

lying formal problem is NP-hard. Towards computational tractability, we also33

show that for an optimal attack there exists an upper bound on the number34

of attacks that are needed. Using these results, we provide an SMT encoding35

that computes suitable randomized attacks for a set of convolutional neural net-36

works with ReLu activation functions and a labeled data set. In case there is37

no solution to that problem, the set of neural networks forms a robust classifier38

ensemble, see Fig. 1. Towards better scalability, we also provide an encoding39

based on mixed-integer linear programming (MILP).40

In our experiments, we show the applicability of our approach by means of a41

benchmark set of binary classifiers, which were trained with the MNIST dataset42

2 Dennis Gross, Nils Jansen, and Guillermo A. Pérez

(handwritten digits [4]). This data set is commonly used for benchmark testing in43

machine learning. We use the SMT solver Z3 [3] and the MILP solver Gurobi [7].44

Fig. 1. The verifier takes as input a set of classifiers, a set of labelled data points, the
number of attacks, and the attack properties. If the verifier does not find a solution,
we can be sure is robust against any attack with the specific properties. Otherwise, it
returns the optimal attack.

References45

1. Abbasi, M., Gagné, C.: Robustness to adversarial examples through an ensemble46

of specialists. In: ICLR (Workshop). OpenReview.net (2017)47

2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-48

crete problems in ai safety. CoRR abs/1606.06565 (2016)49

3. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference50

on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–51

340. Springer (2008)52

4. Deng, L.: The mnist database of handwritten digit images for machine learning53

research [best of the web]. IEEE Signal Processing Magazine 29(6), 141–142 (2012)54

5. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.55

In: ATVA. LNCS, vol. 10482, pp. 269–286. Springer (2017)56

6. Freedman, R.G., Zilberstein, S.: Safety in ai-hri: Challenges complementing user57

experience quality. In: AAAI Fall Symposium Series (2016)58

7. Gurobi Optimization, Inc.: Gurobi optimizer reference manual.59

http://www.gurobi.com (2013)60

8. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An61

efficient SMT solver for verifying deep neural networks. In: CAV. LNCS, vol. 10426,62

pp. 97–117. Springer (2017)63

9. Nyholm, S.: The ethics of crashes with self-driving cars: A roadmap, ii. Philosophy64

Compass 13(7) (2018)65

10. Organization, W.H., et al.: Global status report on road safety 2018: Summary.66

Tech. rep., World Health Organization (2018)67

11. Perdomo, J.C., Singer, Y.: Robust attacks against multiple classifiers. CoRR68

abs/1906.02816 (2019)69

12. Science, N., (NSTC), T.C.: Preparing for the Future of Artificial Intelligence (2016)70

Formally Verifying the Robustness of Multiple-Classifier Combinations 3

13. Stoica, I., Song, D., Popa, R.A., Patterson, D., Mahoney, M.W., Katz, R., Joseph,71

A.D., Jordan, M., Hellerstein, J.M., Gonzalez, J.E., et al.: A berkeley view of72

systems challenges for ai. CoRR abs/1712.05855 (2017)73

Global PAC Bounds for Learning Discrete Time
Markov Chains

anonym

anonym
anonym@anonym

Abstract Learning models from observations of a system is a powerful
tool with many applications. In this paper, we consider learning Discrete
Time Markov Chains (DTMC), with different methods such as frequency
estimation or Laplace smoothing. While models learnt with such meth-
ods converge asymptotically towards the exact system, a more practical
question in the realm of trusted machine learning is how accurate a
model learnt with a limited time budget is. Existing approaches provide
bounds on how close the model is to the original system, in terms of
bounds on local (transition) probabilities, which has unclear implication
on the global behavior.
In this work, we provide global bounds on the error made by such a learn-
ing process, in terms of global behaviors formalized using temporal logic.
More precisely, we propose a learning process ensuring a bound on the
error in the probabilities of these properties. While such learning process
cannot exist for the full LTL logic, we provide one ensuring a bound that
is uniform over all the formulas of CTL. Further, given one time-to-failure
property, we provide an improved learning algorithm. Interestingly, fre-
quency estimation is sufficient for the latter, while Laplace smoothing is
needed to ensure non-trivial uniform bounds for the full CTL logic.

1 Introduction

Discrete-Time Markov Chains (DTMC) are commonly used in model checking
to model the behavior of stochastic systems [3,4,7,25]. A DTMC is described
by a set of states and transition probabilities between these states. The main
issue with modeling stochastic systems using DTMCs is to obtain the trans-
ition probabilities. One appealing approach to overcome this issue is to observe
the system and to learn automatically these transition probabilities [8,29], e.g.,
using frequency estimation or Laplace (or additive) smoothing [12]. Frequency
estimation works by observing a long run of the system and estimating each in-
dividual transition by its empirical frequency. However, in this case, the unseen
transitions are estimated as zeros. Once the probability of a transition is set to
zero, the probability to reach a state could be tremendously changed, e.g., from
1 to 0 if the probability of this transition in the system is small but non-zero.
To overcome this problem, when the set of transitions with non-zero probabil-
ity is known (but not their probabilities), Laplace smoothing assigns a positive

probability to the unseen transitions, i.e., by adding a small quantity both to
the numerator and the denominator of the estimate used in frequency estima-
tion. Other smoothing methods exist, such as Good-Turing [15] and Kneser-Sey
estimations [7], notably used in natural language processing. Notwithstanding
smoothing generates estimation biases, all these methods converge asymptotic-
ally to the exact transition probabilities.

In practice, however, there is often limited budget in observing and learning
from the system, and the validity of the learned model is in question. In trusted
machine learning, it is thus crucial to measure how the learned model differs from
the original system and to provide practical guidelines (e.g., on the number of
observations) to guarantee some control of their divergence.

Comparing two Markov processes is a common problem that relies on a
notion of divergence. Most existing approaches focus on deviations between the
probabilities of local transitions (e.g., [10,26,5]). However, a single deviation in
a transition probability between the original system and the learned model may
lead to large differences in their global behaviors, even when no transitions are
overlooked, as shown in our example 1. For instance, the probability of reaching
certain state may be magnified by paths which go through the same deviated
transition many times. It is thus important to use a measure that quantifies
the differences over global behaviors, rather than simply checking whether the
differences between the individual transition probabilities are low enough.

Technically, the knowledge of a lower bound on the transition probabilities is
often assumed [14,1]. While it is a soft assumption in many cases, such as when
all transition probabilities are large enough, it is less clear how to obtain such a
lower bound in other cases, such as when a very unlikely transition exists (e.g.,
a very small error probability). We show how to handle this in several cases:
learning a Markov chain accurate w.r.t. this error rate, or learning a Markov
chain accurate over all its global behaviors, which is possible if we know the
underlying structure of the system (e.g., because we designed it, although we do
not know the precise transition probabilities which are governed by uncertain
forces). For the later, we define a new concept, namely conditioning of a DTMC.

In this work, we model global behaviors using temporal logics. We consider
Linear Temporal Logic (LTL) [23] and Computational Tree Logic (CTL) [11].
Agreeing on all formulas of LTL means that the first order behaviors of the
system and the model are the same, while agreeing on CTL means that the
system and the model are bisimilar [2]. Our goal is to provide stopping rules in
the learning process of DTMCs that provides Probably Approximately Correct
(PAC) bounds on the error in probabilities of every property in the logic between
the model and the system. In Section 2, we recall useful notions on DTMCs and
PAC-learning. We point out related works in Section 3. Our main contributions
are as follows:

– In Section 4, we show that it is impossible to learn a DTMC accurate for all
LTL formulas, by adapting a result from [13].

2

– We provide in Section 6 a learning process bounding the difference in probab-
ility uniformly over all CTL properties. To do so, we use Laplace smoothing,
and we provide rationale on choosing the smoothing parameter.

– For the particular case of a time-to-failure property, notably used to compute
the mean time between failures of critical systems (see e.g., [24]), we provide
tighter bounds in Section 5, based on frequency estimation.

In Section 4, we formally state the problem and the specification that the
learning process must fulfill. We also show our first contribution: the impossib-
ility of learning a DTMC, accurate for all LTL formulas. Nevertheless, we prove
in Section 5 our second contribution: the existence of a global bound for the
time-to-failure properties, notably used to compute the mean time between fail-
ures of critical systems (see e.g., [24]) and provide an improved learning process,
based on frequency estimation. In Section 6, we present our main contribution:
a global bound guaranteeing that the original system and a model learned by
Laplace smoothing have similar behaviors for all the formulas in CTL. We show
that the error bound that we provide on the probabilities of properties is close
to optimal. We evaluate our approach in Section 7 and conclude in Section 8.

2 Background

In this section, we introduce the notions and notations used throughout the
paper. A stochastic system S is interpreted as a set of interacting components
in which the state is determined randomly with respect to a global probability
measure described below.

Definition 1 (Discrete-Time Markov Chains). A Discrete-Time Markov
Chain is a triple M = (S, µ,A) where:

– S is a finite set of states;
– µ : S → [0, 1] is an initial probability distribution over S;
– A : S × S → [0, 1] is a transition probability matrix, such that for every
s ∈ S,

∑
s′∈S A(s, s′) = 1.

We denote m the cardinal of S and A = (aij)1≤i,j≤m = (A(i, j))1≤i,j≤m the
probability matrix. Figs. 1 and 2 show the graph of two DTMCs over 3 states
{s1, s2, s3} (with µ(s1) = 1). A run is an infinite sequence ω = s0s1 · · · and a
path is a finite sequence ω = s0 · · · sl such that µ(s0) > 0 and A(si, si+1) > 0
for all i, 0 ≤ i ≤ l. The length |ω| of a path ω is its number of transitions.

The cylinder set of ω, denoted C(ω), consists of all the runs starting by a
path ω. Markov chainM underlies a probability space (Ω,F ,P), where Ω is the
set of all runs from M; F is the sigma-algebra generated by all the cylinders
C(ω) and P is the unique probability measure [31] such that P(C(s0 · · · sl)) =

µ(s0)
∏l
i=1A(si−1, si). For simplicity, we assume a unique initial state s0 and

denote P(ω) = P (C(ω)). Finally, we sometimes use the notation PAi to emphasize
that the probability distribution is parameterized by the probability matrix A,
and the starting state is i.

3

2.1 PAC-learning for properties

To analyze the behavior of a system, properties are specified in temporal logic
(e.g., LTL or CTL, respectively introduced in [23] and [11]). Given a logic L and
ϕ a property of L, decidable in finite time, we denote ω |= ϕ if a path ω satisfies
ϕ. Let z : Ω×L → {0, 1} be the function that assigns 1 to a path ω if ω |= ϕ and
0 otherwise. In what follows, we assume that we have a procedure that draws
path ω with respect to PA and outputs z(ω, ϕ). Further, we denote γ(A,ϕ)
the probability that a path drawn with respect to PA satisfies ϕ. We omit the
property or the matrix in the notation when it is clear from the context. Finally,
note that the behavior of z(., ϕ) can be modeled as a Bernoulli random variable
Zϕ parameterized by the mean value γ(A,ϕ).

Probably Approximately Correct (PAC) learning [27] is a framework for
mathematical analysis of machine learning. Given ε > 0 and 0 < δ < 1, we
say that a property ϕ of L is PAC-learnable if there is an algorithm A such that,
given a sample of n paths drawn according to the procedure, with probability of
at least 1−δ, A outputs in polynomial time (in 1/ε and 1/δ) an approximation of
the average value for Zϕ close to its exact value, up to an error less than or equal
to ε. Formally, ϕ is PAC-learnable if and only if A outputs an approximation γ̂
such that:

P (|γ − γ̂| > ε) ≤ δ (1)

Moreover, if the above statement for algorithm A is true for every property in
L, we say that A is a PAC-learning algorithm for L.

2.2 Monte-Carlo estimation and algorithm of Chen

Given a sample W of n paths drawn according to PA until ϕ is satisfied or
violated (for ϕ such that with probability 1, ϕ is eventually satisfied or viol-
ated), the crude Monte-Carlo estimator, denoted γ̂W (A,ϕ), of the mean value
for the random variable Zϕ is given by the empirical frequency: γ̂W (A,ϕ) =
1
n

∑n
i=1 z(ωi) ≈ γ(A,ϕ).

The Okamoto inequality [22] (also called the Chernoff bound in the literature)
is often used to guarantee that the deviation between a Monte-Carlo estimator
γ̂W and the exact value γ by more than ε > 0 is bounded by a predefined con-
fidence parameter δ. However, several sequential algorithms have been recently

s1 s2 s3

1 0.1

0.9

1

Figure 1: An example of DTMC M1

s1 s2 s3

0.45 0.1

0.9

0.05

0.5 0.9 0.1

Figure 2: DTMC M2

4

proposed to guarantee the same confidence and accuracy with fewer samples1.
In what follows, we use the Massart bound [?], implemented in the algorithm of
Chen [6].

Theorem 1 (Chen bound). Let ε > 0, δ such that 0 < δ < 1 and γ̂W be the
crude Monte-Carlo estimator, based on n samples, of probability γ.

If n ≥ 2
ε2 log

(
2
δ

) [
1
4 − (| 12 − γ̂W | −

2
3ε)

2
]
,

P(|γ − γ̂W | > ε) ≤ δ.

To ease the readability, we write nsucc =
∑n
i=1 z(ωi) and H(n, nsucc, ε, δ) =

2
ε2 log

(
2
δ

) [
1
4 − (| 12 − γ̂W | −

2
3ε)

2
]
. When it is clear from the context, we only

write H(n). Then, the algorithm A that stops sampling as soon as n ≥ H(n) and
outputs a crude Monte-Carlo estimator for γ(A,ϕ) is a PAC-learning algorithm
for ϕ. The condition over n is called the stopping criteria of the algorithm. As
far as we know, this algorithm requires fewer samples than the other sequential
algorithms (see e.g., [18]). Note that the estimation of a probability close to 1/2
likely requires more samples since H(n) is maximized in γ̂W = 1/2.

3 Related work

Our work shares similar statistical results (see Section 2.3) with Statistical Model
Checking (SMC) [31]. However, the context and the outputs are different. SMC
is a simulation-based approach that aims to estimate one probability for a given
property [9,28], within acceptable margins of error and confidence [17,18,32]. A
challenge in SMC is posed by unbounded properties (e.g., fairness) since the
sampled executions are finite. Some algorithms have been proposed to handle
unbounded properties but they require the knowledge of the minimal probability
transition of the system [14,1], which we avoid. While this restriction is light in
many contexts, such as when every state and transition appears with a suffi-
ciently high probability, contexts where probabilities are unknown and some are
very small seems much harder to handle. In the following, we propose 2 solutions
not requiring this assumption. The first one is the closest to SMC: we learn a
Markov chain accurate for a given time-to-error property, and it does not require
knowledge on the Markov chain. The second one is much more ambitious than
SMC as it learns a Markov chains accurate for all its global behaviors, formal-
ized as all properties of a temporal logic; it needs the assumption that the set
of transitions is known, but not their probabilities nor a lower bound on them.
This assumption may seem heavy, but it is reasonable for designers of systems,
for which (a lower bound on) transition probabilities are not known (e.g. some
error rate of components, etc).

For comparison with SMC, our final output is the (approximated) transition
matrix of a DTMC rather than one (approximated) probability of a given prop-
erty. This learned DTMC can be used for different purposes, e.g. as a component

1 We recall the Okamoto-Chernoff bound in Appendix B (as well as the Massart
bound), but we do not use it in this work.

5

in a bigger model or as a simulation tool. In terms of performances, we will show
that we can learn a DTMC w.r.t. a given property with the same number of
samples as we need to estimate this property using SMC (see Section 5). That
is, there is no penalty to estimate a DTMC rather than estimate one probability,
and we can scale as well as SMC. In terms of expressivity, we can handle un-
bounded properties (e.g. fairness properties). Even better, we can learn a DTMC
accurate uniformly over a possibly infinite set of properties, e.g. all formulas of
CTL. This is something SMC is not designed to achieve.

Other related work can be cited: In [13], the authors investigate several dis-
tances for the estimation of the difference between DTMCs. But they do not pro-
pose algorithms for learning. In [16], the authors propose to analyze the learned
model a posteriori to test whether it has some good properties. If not, then they
tweak the model in order to enforce these properties. Also, several PAC-learning
algorithms have been proposed for the estimation of stochastic systems [5,10]
but these works focus on local transitions instead of global properties.

4 Problem statement

In this work, we are interested to learn a DTMC model from a stochastic system
S such that the behaviors of the system and the model are similar. We assume
that the original system is a DTMC parameterized by a matrix A of transition
probabilities. The transition probabilities are unknown, but the set of states of
the DTMC is assumed to be known.

Our goal is to provide a learning algorithm A that guarantees an accurate
estimation of S with respect to certain global properties. For that, a sampling
process is defined as follows. A path (i.e., a sequence of states from s0) of S
is observed, and at steps specified by the sampling process, a reset action is
performed, setting S back to its initial state s0. Then another path is generated.
This process generates a set W of paths, called traces, used to learn a matrix
ÂW . Formally, we want to provide a learning algorithm that guarantees the
following specification:

P(D(A, ÂW) > ε) ≤ δ (2)

where ε > 0 and δ > 0 are respectively accuracy and confidence parameters and
D(A, ÂW) is a measure of the divergence between A and ÂW .

There exist several ways to specify the divergence between two transition
matrices, e.g., the Kullback-Leibler divergence [19] or a distance based on a
matrix norm. However, the existing notions remain heuristic because they are
based on the difference between the individual probabilistic transitions of the
matrix. We argue that what matters in practice is often to quantify the similarity
between the global behaviors of the systems and the learned model.

In order to specify the behaviors of interest, we use a property ϕ or a set
of properties Ψ on the set of states visited. We are interested in the difference
between the probabilities of ϕ (i.e., the measure of the set of runs satisfying ϕ)

6

with respect to A and ÂW . We want to ensure that this difference is less than
some predefined ε with (high) probability 1− δ. Hence, we define:

Dϕ(A, ÂW) = |γ(A,ϕ)− γ(ÂW , ϕ)| (3)

DΨ (A, ÂW) = max
ϕ∈Ψ

(Dϕ(A, ÂW)) (4)

Our problem is to construct an algorithm which takes the following as inputs:

– confidence δ, 0 < δ < 1,
– absolute error ε > 0, and
– a property ϕ (or a set of properties Ψ),

and provides a learning procedure sampling a set W of paths, outputs ÂW ,
and terminates the sampling procedure while fulfilling Specification (2), with
D = Dϕ (= DΨ).

In what follows, we assume that the confidence level δ and absolute error ε
are fixed. We first start with a negative result: if Ψ is the set of LTL formulas
[2], such a learning process is impossible.

Theorem 2. Given ε > 0, 0 < δ < 1, and a finite set W of paths randomly
drawn with respect to a DTMC A, there is no learning strategy such that, for
every LTL formula ϕ,

P(|γ(A,ϕ)− γ(ÂW , ϕ)| > ε) ≤ δ (5)

Note that contrary to Theorem 1, the deviation in Theorem 2 is a difference
between two exact probabilities (of the original system and of a learned model).
The theorem holds as long as ÂW and A are not strictly equal, no matter how ÂW
is learned. To prove this theorem, we show that, for any number of observations,
we can always define a sequence of LTL properties that violates the specification
above. It only exploits a single deviation in one transition. The proof, inspired
by a result from [13], is given in Appendices B and C.

Example 1. We show in this example that in general, one needs to have some
knowledge on the system in order to perform PAC learning - either a positive
lower bound ` > 0 on the lowest probability transition, as in [14,1], or the support
of transitions (but no knowledge on their probabilities), as we use in Section 6.
Further, we show that the latter assumption does not imply the former, as even
if no transitions are overlooked, the error in some reachability property can
be arbitrarily close to 0.5 even with arbitrarily small error on the transition
probabilities.

Let us consider DTMCs A, Â, B̂ in Fig. 3, and formula F s2 stating that s2
is eventually reached. The probabilities to satisfy this formula in A, Â, B̂ are

respectively PA(F s2) = 1
2 , PÂ(F s2) = 2τ−η

4τ = 1
2 −

η
4τ and PB̂(F s2) = 0.

Assume that A is the real system and that Â and B̂ are DTMCs we learned
from A. Obviously, one wants to avoid learning B̂ from A, as the probability of

7

F s2 is very different in B̂ and in Â (0 instead of 0.5). If one knows that τ > `
for some lower bound ` > 0, then one can generate enough samples from s1 to
evaluate τ with an arbitrarily small error η

2 << ` on probability transitions with

an arbitrarily high confidence, and in particular learn a DTMC similar to Â.

On the other hand, if one knows there are transitions from s1 to s2 and to s3,
then immediately, one does not learn DTMC B̂, but a DTMC similar to DTMC
Â (using e.g. Laplace smoothing [12]). While this part is straightforward with
this assumption, evaluating τ is much harder when one does not know a priori
a lower bound ` > 0 such that τ > `. That is very important: while one can
make sure that the error η

2 on probability transitions is arbitrarily small, if τ is
unknown, then it could be the case that τ is as small as η

2(1−ε) >
η
2 , for a small

ε > 0. This gives us PÂ(F s2) = 1
2 −

1−ε
2 = ε

2 , which is arbitrarily small, whereas

PA(F s2) = 0.5, leading to a huge error in the probability to reach s2. We work
around that problem in Section 6 by defining and computing the conditioning
of DTMC Â. In some particular cases, as the one discussed in the next section,
one can avoid that altogether (actually, the conditioning in these cases is perfect
(=1), and it needs not be computed explicitly).

5 Learning for a time-to-failure property

In this section, we focus on property ϕ of reaching a failure state sF from an
initial state s0 without re-passing by the initial state, which is often used for
assessing the failure rate of a system and the mean time between failures (see
e.g., [24]). We assume that with probability 1, the runs eventually re-pass by s0
or reach sF . Also, without loss of generality, we assume that there is a unique
failure state sF in A. We denote γ(A,ϕ) the probability, given DTMC A, of
satisfying property ϕ, i.e., the probability of a failure between two visits of s0.

Assume that the stochastic system S is observed from state s0. Between two
visits of s0, property ϕ can be monitored. If sF is observed between two instances
of s0, we say that the path ω = s0 ·ρ ·sF satisfies ϕ, with s0, sF /∈ ρ. Otherwise, if
s0 is visited again from s0, then we say that the path ω = s0 ·ρ·s0 violates ϕ, with
s0, sF /∈ ρ. We call traces paths of the form ω = s0 · ρ · (s0 ∨ sF) with s0, sF /∈ ρ.
In the following, we show that it is sufficient to use a frequency estimator to
learn a DTMC which provides a good approximate for such a property.

s1 s2s3
ττ

1− 2τ

s1 s2s3

τ − 1
2
ητ + 1

2
η

1− 2τ

s1

1

Figure 3: Three DTMCs A, Â, B̂ (from left to right), with 0 < η < 2τ < 1

8

5.1 Frequency estimation of a DTMC

Given a set W of n traces, we denote nWij the number of times transition from

state i to state j occurred and nWi the number of times a transition has been
taken from state i.

The frequency estimator of A is the DTMC ÂW = (âij)1≤i,j≤m given by

âij =
nWij
nWi

for all i, j, with
∑m
i=1 n

W
i =

∑m
i=1

∑m
j=1 n

W
ij = |W |. In other words,

to learn ÂW , it suffices to count the number of times a transition from i to j
occurred, and divide by the number of times state i has been observed. The
matrix ÂW is trivially a DTMC, except for states i which have not been visited.
In this case, one can set âij = 1

m for all state j and obtain a DTMC. This has

no impact on the behavior of ÂW as i is not reachable from s0 in ÂW .
Let ÂW be the matrix learned using the frequency estimator from the set

W of traces, and let A be the real probabilistic matrix of the original system S.
We show that, in the case of time-to-failure properties, γ(ÂW , ϕ) is equal to the
crude Monte Carlo estimator γ̂W (A,ϕ) induced by W .

5.2 PAC bounds for a time-to-failure property

We start by stating the main result of this section, bounding the error between
γ(A,ϕ) and γ(ÂW , ϕ):

Theorem 3. Given a set W of n traces such that n = dH(n)e, we have:

P
(
|γ(A,ϕ)− γ(ÂW , ϕ)| > ε

)
≤ δ (6)

where ÂW is the frequency estimator of A.

To prove Theorem (3), we first invoke Theorem 1 to establish:

P (|γ(A,ϕ)− γ̂W (A,ϕ)| > ε) ≤ δ (7)

It remains to show that γ̂W (A,ϕ) = γ(ÂW , ϕ):

Proposition 1. Given a set W of traces, γ(ÂW , ϕ) = γ̂W (A,ϕ).

It might be appealing to think that this result can be proved by induction on
the size of the traces, mimicking the proof of computation of reachability prob-
abilities by linear programming [2]. This is actually not the case. The remaining
of this section is devoted to proving Proposition (1).

We first define qW (u) the number of occurrences of sequence u in the traces
of W . Note that u can be a state, an individual transition or even a path. We
also use the following definitions in the proof.

Definition 2 (Equivalence). Two sets of traces W and W ′ are equivalent if

for all s, t ∈ S, qW (s·t)
qW (s) = qW ′ (s·t)

qW ′ (s)
.

9

We define a set of traces W ′ equivalent with W , implying that ÂW = ÂW ′ .
This set W ′ of traces satisfies the following:

Lemma 1. For any set of traces W , there exists a set of traces W ′ such that:
(i) W and W ′ are equivalent,

(ii) for all r, s, t ∈ S, qW ′(r · s · t) =
qW ′(r · s)× qW ′(s · t)

qW ′(s)
.

The proof of Lemma 1 is provided in Appendix D. In Lemma 1, (i) ensures
that ÂW ′ = ÂW and (ii) ensures the equality between the proportion of runs of
W ′ passing by s and satisfying γ, denoted γ̂sW ′ , and the probability of reaching

sF before s0 starting from s with respect to ÂW ′ . Formally,

Lemma 2. For all s ∈ S, PÂW ′s (reach sf before s0) = γ̂sW ′ .

Proof. Let S0 be the set of states s with no path in ÂW ′ from s to sf without
passing through s0. For all s ∈ S0, let ps = 0. Also, let psf = 1. Let S1 = S\(S0∪
{sf}). Consider the system of equations (8) with variables (ps)s∈S1

∈ [0, 1]|S1|:

∀ s ∈ S1, ps =

m∑
t=1

ÂW ′(s, t)pt (8)

The system of equations (8) admits a unique solution according to [2] (Theorem

10.19. page 766). Then, (PÂW ′s (reach sf before s0))s∈S1
is trivially a solution

of (8). But, since W ′ satisfies the conditions of Lemma 1, we also have that
(γ̂sW ′)s∈S1

is a solution of (8), and thus we have the desired equality. ut

Notice that Lemma 2 does not hold in general with the set W . We have:

γ̂W (A,ϕ) = γ̂s0W (by definition)

= γ̂s0W ′ (by Lemma 1)

= PÂW ′s0 (reach sf before s0) (by Lemma 2)

= PÂWs0 (reach sf before s0) (by Lemma 1)

= γ(ÂW , ϕ) (by definition).

That concludes the proof of Proposition 1. It shows that learning can be as
efficient as statistical model-checking on comparable properties.

10

6 Learning for the full CTL logic

In this section, we learn a DTMC ÂW such that ÂW and A have similar be-
haviors over all CTL formulas. This provides a much stronger result than on
time-to-failure property, e.g., properties can involve liveness and fairness, and
more importantly they are not known before the learning. Notice that PCTL [2]
cannot be used, since an infinitesimal error on one > 0 probability can change
the probability of a PCTL formula from 0 to 1. (State)-CTL is defined as follows:

Definition 3. Let Prop be the set of state names. (State)-CTL is defined by
the following grammar ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ |
AXϕ | EXϕ | AFϕ | EFϕ | AFϕ | EGϕ | AGϕ | E(ϕUϕ) | A(ϕUϕ), with
p ∈ Prop. E(xists) and A(ll) are quantifiers on paths, neXt, Globally, Finally
and Until are path-specific quantifiers. Notice that some operators are redundant.
A minimal set of operators is {>,∨,¬,EG,EU,EX}.

As we want to compute the probability of paths satisfying a CTL formula,
we consider the set Ψ of path-CTL properties, that is formulas ϕ of the form
ϕ = Xϕ1, ϕ = ϕ1Uϕ2, ϕ = Fϕ1 or ϕ = Gϕ1, with ϕ1, ϕ2 (state)-CTL formulas.
For instance, the property considered in the previous section is (¬s0)UsF .

In this section, for the sake of simplicity, the finite set W of traces is obtained
by observing paths till a state is seen twice on the path. Then, the reset action
is used and another trace is obtained from another path. That is, a trace ω from
W is of the form ω = ρ · s · ρ′ · s, with ρ · s · ρ′ a loop-free path.

As explained in example 1, some additional knowledge on the system is ne-
cessary. In this section, we assume that the support of transition probabilities is
known, i.e., for any state i, we know the set of states j such that aij 6= 0. This
assumption is needed both for Theorem 5 and to apply Laplace smoothing.

6.1 Learning DTMCs with Laplace smoothing

Let α > 0. For any state s, let ks be the number of successors of s, that we know
by hypothesis, and T =

∑
s∈S ks be the number of non-zero transitions. Let W

be a set of traces, nWij the number of transitions from state i to state j, and

nWi =
∑
j n

W
ij . The estimator for W with Laplace smoothing α is the DTMC

ÂαW = (âij)1≤i,j≤m given for all i, j by:

âij =
nWij + α

nWi + kiα
if aij 6= 0 and âij = 0 otherwise

In comparison with the frequency estimator, the Laplace smoothing adds for
each state s a term α to the numerator and ks times α to the denominator. This
preserves the fact that ÂαW is a Markov chain, and it ensures that âij 6= 0 iff
aij 6= 0. In particular, compared with the frequency estimator, it avoids creating
zeros in the probability tables.

11

6.2 Conditioning and Probability Bounds

Using Laplace smoothing slightly changes the probability of each transition by
an additive offset η. We now explain how this small error η impacts the error on
the probability of a CTL property.

Let A be a DTMC, and Aη be a DTMC such that Aη(i, j) 6= 0 iff A(i, j) 6= 0
for all states i, j, and such that

∑
j |Aη(i, j)−A(i, j)| ≤ η for all state i. For all

state s ∈ S, let R(s) be the set of states i such that there exists a path from i to
s. Let R∗(s) = R(s) \ {s}. Since both DTMCs have the same support, R (and
also R∗) is equal for A and Aη. Given m the number of states, the conditioning
of A for s ∈ S and ` ≤ m is:

Cond`s(A) = min
i∈R∗(s)

PAi (F≤`¬R∗(s))

i.e., the minimal probability from state i ∈ R∗(s) to move away from R∗(s) in at
most ` steps. Let `s minimal such that Cond`ss (A) > 0. This minimal `s exists
as Condms (A) > 0 since, for all s ∈ S and i ∈ R∗(s), there is at least one path
reaching s from i (this path leaves R∗(s)), and taking a cycle-free path, we obtain
a path of length at most m. Thus, the probability PAi (F≤m¬R∗(s)) is at least
the positive probability of the cylinder defined by this finite path. Formally,

Theorem 4. Denoting ϕ the property of reaching state s in DTMC A, we have:

|γ(A,ϕ)− γ(Aη, ϕ)| < `s · η
Cond`ss (A)

Proof. Let vs be the stochastic vector with vs(s) = 1. We denote v0 = vs0 . Let
s ∈ S. We assume that s0 ∈ R∗(s) (else γ(A,ϕ) = γ(Aη, ϕ) and the result is
trivial). Without loss of generality, we can also assume that A(s, s) = Aη(s, s) =
1 (as we are interested in reaching s at any step). With this assumption:

|γ(A,ϕ)− γ(Aη, ϕ)| = lim
t→∞

v0 · (At −Atη) · vs

We bound this error, through bounding by induction on t:

E(t) = max
i∈R∗(s)

vi · (At −Atη) · vs

We then have trivially:

|γ(A,ϕ)− γ(Aη, ϕ)| ≤ lim
t→∞

E(t)

Note that for i = s, limt→∞ vi · (At) · vs = 1 = limt→∞ vi · Atη · vs, and thus
their difference is null.

Let t ∈ N. We let j ∈ R∗(s) such that E(t) = vj · (At −Atη) · vs.

12

By the triangular inequality, introducing the term vj · A`sAt−kη · vs − vj ·
A`sAt−kη · vs = 0, we have:

E(t) ≤ |vj · (Atη −A`sAt−`sη) · vs|+ |(vj ·A`s) · (At−`sη −At−`s) · vs|

We separate vector (vj ·A`s) = w1 +w2 +w3 in three sub-stochastic vectors
w1, w2, w3: vector w1 is over {s}, and thus we have w1 ·At−`sη = w1 = w1 ·At−`s ,
and the term cancels out. Vector w2 is over states of R∗(s), with

∑
i∈R∗ w2[i] ≤

(1−Cond`ss (A)), and we obtain an inductive term ≤ (1−Cond`ss (A))E(t− `s).
Last, vector w3 is over states not in R(s), and we have w3 · At−`sη · vs = 0 =

w3 ·At−`s · vs, and the term cancels out.
We also obtain that |vj · (Atη − A`sAt−`sη) · vs| ≤ `s · η. Thus, we have the

inductive formula E(t) ≤ (1−Cond`ss (A))E(t− `s)+ `s ·η. It yields for all t ∈ N:

E(t) ≤ (`s · η)

∞∑
i=1

(1− Cond`ss (A))i

E(t) ≤ `s · η
Cond`ss (A)

ut

We can extend this result from reachability to formulas of the form S0USF ,
where S0, SF are subsets of states. This formula means that we reach the set of
states SF through only states in S0 on the way.

We define R(S0, SF) to be the set of states which can reach SF using only
states of S0, and R∗(S0, SF) = R(S0, SF) \ SF . For ` ∈ N, we let:

Cond`S0,SF (A) = min
i∈R∗(S0,SF)

PAi (F≤`¬R∗(S0, SF) ∨ ¬S0).

Now, one can remark that CondS0,SF (A) ≥ CondS,SF (A) > 0. Let Cond`SF (A) =

Cond`S,SF (A). We have Cond`S0,SF (A) ≥ Cond`SF (A). As before, we let `SF ≤ m
be the minimal ` such that Cond`SF (A) > 0, and obtain:

Theorem 5. Denoting ϕ the property S0USF , we have, given DTMC A:

|γ(A,ϕ)− γ(Aη, ϕ)| < `SF · η
Cond

`SF
SF

(A)

We can actually improve this conditioning: we defined it as the probability to
reach SF or S \R(S, SF). At the price of a more technical proof, we can obtain a
better bound by replacing SF by the set of states R1(SF) that have probability
1 to reach SF . We let R∗(SF) = R(S, SF) \ R1(SF) the set of states that can
reach SF with < 1 probability, and define the refined conditioning as follows:

Cond
`

SF (A) = min
i∈R∗(SF)

PAi (F≤`¬R∗(SF))

13

6.3 Optimality of the conditioning

We show now that the bound we provide in Theorem 4 is close to optimal.
Consider again DTMCs A, Â in Fig. 3 from example 1, and formula F s2

stating that s2 is eventually reached. The probabilities to satisfy this formula in

A, Â are respectively PA(F s2) = 1
2 and PÂ(F s2) = 1

2 −
η
4τ . Assume that A is

the real system and that Â is the DTMC we learned from A.
As we do not know precisely the transition probabilities in A, we can only

compute the conditioning on Â and not on A (it suffices to swap A and Aη in

Theorem 4 and 5 to have the same formula using Cond(Aη) = Cond(Â)). We
have R(s2) = {s1, s2} and R∗(s2) = R∗(s2) = {s1}. The probability to stay in

R∗(s2) after `s2 = 1 step is (1 − 2τ), and thus Cond1
{s2}(Â) = Cond

1

{s2}(Â) =

1−(1−2τ) = 2τ . Taking Aη = Â, Theorem 5 tells us that |PA(F s2)−PÂ(F s2)| ≤
η
2τ . Notice that on that example, using `s2 = m = 3, we obtain Cond3

{s2}(Â) =

1− (1− 2τ)3 ≈ 6τ , and we find a similar bound ≈ 3η
6τ = η

2τ .

Compare our bound with the exact difference |PA(F s2) − PÂ(F s2)| = 1
2 −

(1
2 −

η
4τ) = η

4τ . Our upper bound only has an overhead factor of 2, even while
the conditioning is particularly bad (small) in this example.

6.4 PAC bounds for
∑

j |ÂW (i, j)−A(i, j)| ≤ η
We use Theorem 1 in order to obtain PAC bounds. We use it to estimate indi-
vidual transition probabilities, rather than the probability of a property.

Let W be a set of traces drawn with respect to A such that every ω ∈ W is
of the form ω = ρ · s · ρ′ · s. Recall for each state i, j of S, nWi is the number of
transitions originating from i in W and nWij is the number of transition ss′ in

W . Let δ′ = δ
mstoch

, where mstoch is the number of stochastic states, i.e., with at
least two outgoing transitions.

We want to sample traces until the empirical transition probabilities
nWij
nWi

are

relatively close to the exact transition probabilities aij , for all i, j ∈ S. For that,
we need to determine a stopping criteria over the number of state occurrences
(ni)1≤i≤m such that:

P

∃i ∈ S,∑
j

∣∣∣∣∣aij − nWij
nWi

∣∣∣∣∣ > ε

 ≤ δ
First, note that for any observed state i ∈ S, if aij = 0 (or aij = 1), then with

probability 1,
nWij
nWi

= 0 (respectively
nWij
nWi

= 1). Thus, for all ε > 0, |aij −
nWij
nWi
| <

ε with probability 1. Second, for two distinct states i and i′, the transition

probabilities
nWij
nWi

and
nW
i′j′

nW
i′

are independent for all j, j′.

Let i ∈ S be a stochastic state. If we observe nWi transitions from i such that

nWi ≥ 2
ε2 log

(
2
δ′

) [
1
4 −

(
maxj | 12 −

nWij
nWi
| − 2

3ε

)2
]

, then, according to Theorem 1,

14

P
(∨m

j=1 |aij −
nWij
nWi
| > ε

)
≤ δ′. In particular, P

(
maxj∈S |aij −

nWij
nWi
| > ε

)
≤ δ′.

Moreover, we have:

P

 m∨
j=1

max
j∈S
|aij −

nWij
nWi
| > ε

 ≤ m∑
j=1

P

(
max
j∈S
|aij −

nWij
nWi
| > ε

)
≤ mstochδ

′

≤ δ

In other words, the probability that “there exists a state i ∈ S such that the
deviation between the exact and empirical outgoing transitions from i exceeds
ε” is bounded by δ as soon as for each state i ∈ S, nWi satisfies the stopping
rule of the algorithm of Chen using ε and the corresponding δ′. This gives the
hypothesis

∑
j |Aη(i, j)−A(i, j)| ≤ ε for all state i of Section 6.2.

6.5 A Matrix ÂW accurate for all CTL properties

We now use Laplace smoothing in order to ensure the other hypothesis Aη(i, j) 6=
0 iff A(i, j) 6= 0 for all states i, j. For all i ∈ S, we define the Laplace offset de-

pending on the state i as αi =
(nWi)2ε

10·k2i maxj nWij
, where ki is the number of transitions

from state i. This ensures that the error from Laplace smoothing is at most one
tenth of the statistical error. Let α = (αi)1≤i≤m. From the sample set W , we

output the matrix ÂαW = (âij)1≤i,j≤m with Laplace smoothing αi for state i,
i.e.:

âij =
nWij + αi

nWi + kiαi
if aij 6= 0 and âij = 0 otherwise

It is easy to check that we have for all i, j ∈ S:

∣∣∣∣âij − nWij
nWi

∣∣∣∣ ≤ ε
10·ki

That is, for all state i,
∑
j

∣∣∣∣âij − nWij
nWi

∣∣∣∣ ≤ ε
10 . Using the triangular inequality:

P

∃i ∈ S,∑
j

|aij − âij | >
11

10
ε

 ≤ δ
For all i ∈ S, let H∗(nWi , ε, δ

′) = maxj∈S H(nWi , n
W
ij , ε, δ

′) be the maximal

Chen bound over all the transitions from state i. LetB(ÂαW) = maxSF
`SF

Cond
`SF
SF

(ÂαW)
.

Since in Theorem 5, the original model and the learned one have symmetric roles,
by applying this theorem on ÂαW , we obtain that:

Theorem 6. Given a set W of traces, for 0 < ε < 1 and 0 < δ < 1, if for all

i ∈ S, nWi ≥
(

11
10B(ÂαW)

)2
H∗(nWi , ε, δ

′), we have for any CTL property ϕ:

P(|γ(A,ϕ)− γ(ÂαW , ϕ)|) > ε) ≤ δ (9)

15

Proof. First, âij 6= 0 iff aij 6= 0, by definition of ÂαW . Second, P(∃i,
∑
j |aij −

âij | > 11
10ε) ≤ δ. We can thus apply Theorem 5 on ÂαW , A and obtain (9) for ϕ

any formula of the form S1US2. It remains to show that for any formula ϕ ∈ Ψ ,
we can define S1, S2 ⊆ S such that ϕ can be expressed as S1US2.

Consider the different cases: If ϕ is of the form ϕ = ϕ1Uϕ2 (it subsumes
the case ϕ = Fϕ1 = >Uϕ1) with ϕ1, ϕ2 CTL formulas, we define S1, S2 as the
sets of states satisfying ϕ1 and ϕ2, and we have the equivalence (see [2] for more
details). If ϕ = Xϕ2, define S1 = ∅ and S2 as the set of states satisfying ϕ2.

The last case is ϕ = Gϕ1, with ϕ1 a CTL formula. Again, we define S1 the
set of states satisfying ϕ1, and S2 the set of states satisfying the CTL formula
AGϕ1. The probability of the set of paths satisfying ϕ = Gϕ1 is exactly the
same as the probability of the set of paths satisfying S1US2. ut

6.6 Algorithm

We give more details about the learning process of a Markov Chain, accurate for
every CTL formula. For completeness, we also provide in Appendix F a similar
algorithm for a time-to-failure property.

A path ω is observed from s0 till a state is observed twice. Then ω is added to
W and the reset operation is performed. We use Laplace smoothing to compute
the corresponding matrix ÂαW . The error bound is computed on W , and a new
path ω′ is then being generated if the error bound is not as small as desired.

This algorithm is guaranteed to terminate since, as traces are generated,
with probability 1, nWs tends towards ∞, ÂαW tends towards A, and B(ÂαW)
tends towards B(A).

Algorithm 1: Learning a matrix accurate for CTL

Data:
S, s0, δ, ε

1 W := ∅
2 m = |S|
3 for all s ∈ S, nWs := 0

4 Compute Â := ÂαW
5 Compute B := B(Â)

6 while ∃s ∈ S, nWs <
(

11
10
B(Â)

)2

H∗(nWs , ε,
δ
m

) do

7 Generate a new trace ω := s0 ρ s1 ρ
′ s1, and reset S

8 for all s ∈ S, nWs := nWs + n
{ω}
s

9 add ω to W

10 Compute Â := ÂαW
11 Compute B := B(Â)

Output: ÂαW

16

7 Evaluation and Discussion

In this section, we first evaluate Algorithm 1 on 5 systems which are crafted to
evaluate the algorithm under different conditions (e.g., rare states). The objective
of the evaluation is to provide some idea on how many samples would be sufficient
for learning accurate DTMC estimations, and compare learning for all properties
of CTL and learning for one time-to-failure property.

Then, we evaluate our algorithm on very large PRISM systems (millions or
billions of states). Because of the number of states, we cannot learn a DTMC
accurate for all properties of CTL there: it would ask to visit every single state a
number of times. However, we can learn a DTMC for one specific (unbounded)
property. We compare with an hypothesis testing algorithm from [30] which can
handle the same unbounded property through a reachability analysis using the
topology of the system.

7.1 Evaluation on crafted models

We first describe the 5 systems: Systems 1 and 2 are three-state models described
in Fig. 1 and Fig. 2. Systems 3 (resp. 5) is a 30-state (resp. 200-states) clique in
which every individual transition probability is 1/30 (resp. 1/200). System 4 is a
64-state system modeling failure and repair of 3 types of components (3 compon-
ents each, 9 components in total), see Appendix G for a full description of the
system, including a PRISM [20] model for the readers interested to investigate
this system in details.

We tested time-to-failure properties by choosing as failure states s3 for Sys-
tems 1, 2, 3, 5, and the state where all 9 components fail for System 4. We also
tested Algorithm 1 (for full CTL logic) using the refined conditioning Cond. We
performed our algorithms 100 times for each model, except for full CTL on Sys-
tem 4, for which we only tested once since it is very time-consuming. We report
our results in Table 1 for ε = 0.1 and δ = 0.05. In particular, we output for

System 1 System 2 System 3 System 4 System 5

states 3 3 30 64 200

transitions 4 7 900 204 40,000

events for

time-to-failure

191 (16%) 991 (10%) 2,753 (7.4%) 1,386 (17.9%) 18,335 (7.2%)

events

for full CTL

1,463 (12.9%) 4,159 (11.7%) 8,404 (3.8%) 1,872,863 79,823 (1.7%)

Table 1: Average number of observed events N (and relative standard deviation
in parenthesis) given ε = 0.1 and δ = 0.05 for a time-to-failure property and for
the full CTL logic using the refined conditioning Cond.

17

each model its number of states and transitions. For each (set of) property, we
provide the average number of observations (i.e. the number of samples times
their average length) and the relative standard deviation (in parenthesis, that is
the standard deviation divided by the average number of observed events).

The results show that we can learn a DTMC with more than 40000 stochastic
transitions, such that the DTMC is accurate for all CTL formulas. Notice that
for some particular systems such as System 4, it can take a lot of events to
be observed before Algorithm 1 terminates. The reason is the presence of rare
states, such as the state where all 9 components fail, which are observed with an
extremely small probability. In order to evaluate the probabilities of CTL prop-
erties of the form: “if all 9 components fail, then CTL property ϕ is satisfied”,
this state needs to be explored many times, explaining the high number of events
observed before the algorithm terminates. On the other hand, for properties that
do not involve the 9 components failing as prior, such as time-to-failure, one does
not need to observe this state even once to conclude that it has an extremely
small probability to happen. This suggests that efficient algorithms could be
developed for subsets of CTL formulas, e.g., in defining a subset of important
events to consider. We believe that Theorem 4 and 5 could be extended to handle
such cases. Over different runs, the results stay similar (notice the rather small
relative standard deviation).

Comparing results for time-to-failure (or equivalently SMC) and for the full
CTL logic is interesting. Excluding System 4 which involves rare states, the
number of events that needs to be observed for the full CTL logic is 4.3 to 7 times
more. Surprisingly, the highest difference is obtained on the smallest System 1.
It is because every run of System 1 generated for time-to-failure is short (s1s2s1
and s1s2s3). However, in Systems 2,3 and 5, samples for time-to-failure can be
much longer, and the performances for time-to-failure (or equivalently SMC) is
not so much better than for learning a DTMC accurate for all CTL properties.

For the systems we tested, the unoptimized Cond was particularly large (more
than 20) because for many states s, there was probability 0 to leave R(s), and
hence `(s) was quite large. These are the cases where Cond is much more efficient,
as then we can choose `s = 1 as the probability to reach s from states in R(s) is
1 (R1(s) = R(s) and R∗(s) = ∅). We used Cond in our algorithm.

Finally, we evaluate experimental confidence by comparing the time-to-failure
probabilities in the learned DTMC and the original system. We repeat our al-
gorithms 1000 times on System 1 and 2 (with ε = 0.1 and δ = 0.05). These
probabilities differ by less than ε, respectively 999 and 995 times out of 1000.
Specification (2) is thus largely fulfilled (the specification should be ensured 950
out of 1000 times), that empirically endorses our approach. Hence, while our
PAC bound over-approximates the confidence in the learned system (which is
unavoidable), it is not that far from experimental values.

7.2 Evaluation on large models

We also evaluated our algorithm on large PRISM models, ranging from hundreds
of thousands to billions of states. With these numbers of states, we cannot use

18

the more ambitious learning over all the properties of CTL, which would need
to visit every states a number of times. However, we can use our algorithm for
learning a DTMC which is accurate given a particular (unbounded) property: it
will visit only a fraction of the states, which is enough to give a model accurate
for that property, with a well-learned kernel of states and some other states
representatives for the remaining of the runs. We consider three test-cases from
PRISM, satisfying the property that the sample stops with a conclusion (yes or
no) with probability 1. Namely, herman, leader and egl.

Our prototype tool used in the previous subsection is implemented in Scilab:
it cannot simulate very large systems of PRISM. Instead, we use PRISM to gen-
erate the samples needed for the learning. Hence, we report the usual Okamoto-
Chernoff bound on the number of samples, which is what is implemented in
PRISM. We also compare with the Massart bound used by the Chen algorithm
(see Section 2.2), which is implemented in our tool and is more efficient as it
takes into account the probability of the property.

For each model, we report its parameters, its size, i.e. its number of states, the
number of samples needed using the Massart bound (the conservative Okamoto-
Chernoff bound is in parenthesis), and the average path length. For comparison,
we consider an hypothesis testing algorithm from [30] which can also handle
unbounded properties. It uses the knowledge of the topology to do reachabil-

our learning method sampling with reachability analysis [30]

Model name size samples path length samples path length

herman(17) 129M 506 (38K) 27 219 30

herman(19) 1162M 506 (38K) 40 219 38

herman(21) 10G 506 (38K) 43 219 48

leader(6,6) 280K 506 (38K) 7.4 219 7

leader(6,8) > 280K 506 (38K) 7.4 (MO) (MO)

leader(6,11) > 280K 506 (38K) 7.3 (MO) (MO)

egl(15,10) 616G 38K (38K) 470 1100 201

egl(20,15) 1279T 38K (38K) 930 999 347

egl(20,20) 1719T 38K (38K) 1200 (TO) (TO)

Table 2: Results for ε = 0.01 and δ = 0.001 of our algorithm compared with
sampling with reachability analysis [30], as reported in [14], page 20. Numbers
of samples needed by our method are given by the Massart bound (resp. by the
Okamoto-Chernoff bound in parenthesis). TO and MO means time out (> 15
minutes on an Opteron 6134) and memory out (> 5GB) respectively.

19

ity analysis to stop the sampling if the property cannot be reached anymore.
Hypothesis testing is used to decide with high confidence whether a probabil-
ity exceeds a threshold or not. This requires less samples than SMC algorithms
which estimate probabilities, but it is also less precise. We chose to compare
with this algorithm because as in our work, it does not require knowledge on
the probabilities, such as a lower bound on the transition probabilities needed
by e.g. [14]. We do not report runtime as they cannot be compared (different
platforms, different nature of result, etc.).

There are several conclusions we can draw from the experimental results
(shown in Table 2). First, the number of samples from our algorithm (Chen al-
gorithm implementing the Massart bound) are larger than in the algorithm from
[30]. This is because they do hypothesis testing, which requires less samples than
even estimating the probability of a property, while we learn a DTMC accurate
for this property. For herman and leader, the different is small (2.5x), because
it is a case where the Massart bound is very efficient (80 times better than
Okamoto-Chernoff implemented in PRISM). The egl system is the worst-case
for the Massart bound (the probability of the property is 1

2), and it coincides
with Okamoto-Chernoff. The difference with [30] is 40x in that case. Also, as
shown in egl, paths in our algorithm can be a bit larger than in the algorithm
from [30], where they can be stopped early by the reachability analysis. How-
ever, the differences are never larger than 3x. On the other hand, we learn a
model representative of the original system for a given property, while [30] only
provide a yes/no answer to hypothesis testing (performing SMC evaluating the
probability of a property with the Massart bound would give exactly the same
number of samples as we report for our learning algorithm). Last, the reachab-
ility analysis from [30] does time out or memory out on some complex systems,
which is not the case with our algorithm.

8 Conclusion

In this paper, we provided theoretical grounds for obtaining global PAC bounds
when learning a DTMC: we bound the error made between the behaviors of
the model and of the system, formalized using temporal logics. While it is not
possible to obtain a learning framework for LTL properties, we provide it for the
whole CTL logic. For subsets of CTL, e.g. for a fixed timed-to-failure property,
we obtain better bounds, as efficient as Statistical MC. Overall, this work should
help in the recent trends of establishing trusted machine learning [16].

Our techniques are useful for designers of systems for which probabilities are
governed by uncertain forces (e.g. error rates): in this case, it is not easy to have
a lower bound on the minimal transition probability, but we can assume that
the set of transitions is known. Technically, our techniques provides rationale to
set the constant in Laplace smoothing, otherwise left to an expert to set.

Some cases remain problematic, such as systems where states are visited very
rarely. Nevertheless, we foresee potential solutions involving rare event simula-
tion [21]. This goes beyond the scope of this work and it is left to future work.

20

References

1. Pranav Ashok, Jan Kret́ınský, and Maximilian Weininger. PAC statistical model
checking for markov decision processes and stochastic games. In Computer Aided
Verification - 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in Computer
Science, pages 497–519. Springer, 2019.

2. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

3. Luca Bortolussi and Guido Sanguinetti. Learning and Designing Stochastic Pro-
cesses from Logical Constraints. In Quantitative Evaluation of Systems - 10th
International Conference, QEST, Buenos Aires, Argentina, pages 89–105, 2013.

4. Manuele Brambilla, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo. Property-
driven design for swarm robotics. In International Conference on Autonomous
Agents and Multiagent Systems, AAMAS, Valencia, Spain, pages 139–146, 2012.

5. Jorge Castro and Ricard Gavaldà. Towards Feasible PAC-Learning of Probabil-
istic Deterministic Finite Automata. In Grammatical Inference: Algorithms and
Applications, 9th International Colloquium, ICGI, Saint-Malo, France, pages 163–
174, 2008.

6. Jianhua Chen. Properties of a New Adaptive Sampling Method with Applications
to Scalable Learning. In Web Intelligence, Atlanta, pages 9–15, 2013.

7. Stanley F. Chen and Joshua Goodman. An Empirical Study of Smoothing Tech-
niques for Language Modeling. Computer Speech and Language, 13(4):359–394,
1999.

8. Yingke Chen, Hua Mao, Manfred Jaeger, Thomas Dyhre Nielsen, Kim Guldstrand
Larsen, and Brian Nielsen. Learning Markov Models for Stationary System Beha-
viors. In NASA Formal Methods - 4th International Symposium, NFM, Norfolk,
VA, USA, pages 216–230, 2012.

9. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Statist., 23(4):493–507, 1952.

10. Alexander Clark and Franck Thollard. PAC-learnability of Probabilistic Determ-
inistic Finite State Automata. Journal of Machine Learning Research, 5:473–497,
2004.

11. Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchroniz-
ation Skeletons Using Branching-Time Temporal Logic. In Logics of Programs,
Workshop, Yorktown Heights, New York, USA, May 1981, pages 52–71, 1981.

12. William G. Cochran. Contributions to Survey Sampling and Applied Statistics,
chapter Laplace’s ratio estimator, pages 3–10. Academic Press, New York, 1978.

13. Przemyslaw Daca, Thomas A. Henzinger, Jan Kret́ınský, and Tatjana Petrov. Lin-
ear Distances between Markov Chains. In 27th International Conference on Con-
currency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, pages
20:1–20:15, 2016.

14. Przemyslaw Daca, Thomas A. Henzinger, Jan Kret́ınský, and Tatjana Petrov.
Faster Statistical Model Checking for Unbounded Temporal Properties. ACM
Trans. Comput. Log., 18(2):12:1–12:25, 2017.

15. William A. Gale and Geoffrey Sampson. Good-Turing Frequency Estimation
Without Tears. Journal of Quantitative Linguistics, pages 217–37, 1995.

16. Shalini Ghosh, Patrick Lincoln, Ashish Tiwari, and Xiaojin Zhu. Trusted Machine
Learning: Model Repair and Data Repair for Probabilistic Models. In AAAI-17
Workshop on Symbolic Inference and Optimization, 2017.

21

17. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Probab-
ilistic Model Checking. In VMCAI, volume 2937 of LNCS, pages 307–329, 2004.

18. Cyrille Jégourel, Jun Sun, and Jin Song Dong. Sequential Schemes for Frequentist
Estimation of Properties in Statistical Model Checking. In Quantitative Evaluation
of Systems - 14th International Conference, QEST, Berlin, Germany, pages 333–
350, 2017.

19. Solomon Kullback and Richard A. Leibler. On Information and Sufficiency. Annals
of Mathematical Statistics, 22(1):79–86, 1951.

20. M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In CAV, pages 585–591, 2011.

21. Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Rare Events for Statist-
ical Model Checking an Overview. In Reachability Problems - 10th International
Workshop, RP, Aalborg, Denmark, pages 23–35, 2016.

22. Masashi Okamoto. Some Inequalities Relating to the Partial Sum of Binomial
Probabilities. Annals of the Institute of Statistical Mathematics, 10:29–35, 1958.

23. Amir Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, pages 46–57,
1977.

24. Ad Ridder. Importance Sampling Simulations of Markovian Reliability Systems
Using Cross-Entropy. Annals OR, 134(1):119–136, 2005.

25. Dorsa Sadigh, K. Driggs-Campbell, A. Puggelli, W. Li, V. Shia, R. Bajcsy,
A. Sangiovanni-Vincentelli, S. Sastry, and S. Seshia. Data-driven probabilistic
modeling and verification of human driver behavior. In In Formal Verification and
Modeling in Human-Machine Systems - AAAI Spring Symposium, 2014.

26. Chris Sherlaw-Johnson, Steve Gallivan, and Jim Burridge. Estimating a Markov
Transition Matrix from Observational Data. The Journal of the Operational Re-
search Society, 46(3):405–410, 1995.

27. Leslie G. Valiant. A Theory of the Learnable. Commun. ACM, 27(11):1134–1142,
1984.

28. Abraham Wald. Sequential tests of statistical hypotheses. The Annals of Math-
ematical Statistics, 16(2):117–186, 1945.

29. Jingyi Wang, Jun Sun, Qixia Yuan, and Jun Pang. Should We Learn Probabil-
istic Models for Model Checking? A New Approach and An Empirical Study. In
Fundamental Approaches to Software Engineering - 20th International Conference,
FASE, Uppsala, Sweden, pages 3–21, 2017.

30. H̊akan L. S. Younes, Edmund M. Clarke, and Paolo Zuliani. Statistical verification
of probabilistic properties with unbounded until. In SBMF’10, pages 144–160,
2010.

31. H̊akan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete
event systems using acceptance sampling. In Computer Aided Verification, 14th
International Conference, CAV ,Copenhagen, Denmark, pages 223–235, 2002.

32. P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian Statistical Model Checking with
Application to Stateflow/Simulink Verification. FMSD, 43(2):338–367, 2013.

22

Appendix A Content of the Appendices

In this supplement, to ease the readability, we recall the Okamoto bound and
a LTL definition in Appendix B. We provide the proof of Theorem 2 in Ap-
pendix C, the proof of Lemma 1 in Appendix D and the proof of Theorem 4 for
Cond in Appendix E. For sake of completeness, we also provide the algorithm
for the fixed time-to-failure property in Appendix F. Finally, we provide a more
detailed description of System 4 in Appendix G.

Appendix B Some useful recalls

We recall for the readers the Okamoto inequality [22] (also called the Chernoff
bound), the Massart bound and a definition of Linear Temporal Logic (LTL).
Note however that the Okamoto inequality is not used in the paper and that our
work focuses on CTL more than LTL.

Theorem 7 (Okamoto bound). Let ε > 0, δ such that 0 < δ < 1 and γ̂W be
the crude Monte-Carlo estimator of probability γ. If n ≥ 1

2ε2 log
(
2
δ

)
,

P(|γ − γ̂W | > ε) ≤ δ.

Theorem 8 (Massart bound). For all γ such that 0 < γ < 1 and any ε such
that 0 < ε < min(γ, 1− γ), we have the following inequality:

Pr(|γ̂n − γ| > ε) ≤ 2 exp
(
−nε2ha(γ, ε)

)
(10)

where ha(γ, ε) =

9/2 ((3γ + ε)(3(1− γ)− ε))−1 if 0 < γ < 1/2

9/2 ((3(1− γ) + ε)(3γ + ε))
−1

if 1/2 ≤ γ < 1

Definition 4 (LTL). Let Prop be the set of atomic propositions. LTL is defined
by the following grammar ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Fϕ | Gϕ |
Xϕ | ϕUϕ, with p ∈ Prop and NeXt, Globally, Finally and Until the standard
modal temporal operators.

We refer to [2] for more details about the semantics and the grammar of this
logic.

Appendix C Negative result for LTL

Theorem 2. Given ε > 0, 0 < δ < 1, and a finite set W of paths, there is no
learning strategy such that, for all LTL formula ϕ,

P(|γ(A,ϕ)− γ(ÂW , ϕ)| > ε) ≤ δ (11)

23

Proof. We prove it by defining a sequence of LTL properties that violates the
specification above. As we show, it only relies on a single deviation in one trans-
ition. This is thus independent of the learning strategy.

Let su ∈ S be a state that can be visited arbitrarily often from s0 and let
sv ∈ S be a non-unique successor of su. Assume that ÂW = (âij)1≤i,j≤m is an
estimate of A = (aij)1≤i,j≤m and note τ > 0 the deviation between âuv and auv.
For simplicity, we assume âuv = auv + τ but a similar proof can be done with
âuv = auv − τ .

Let ϕn be the property “Transition susv occurs at most (auv + τ/2)n times
during the n first visits of si”. This property is a LTL property since it can be
written as a finite composition of X, ∧ and ∨ (for more details, see the sim-
ilar property in Section 7.2 of [13]). Let (Xk)1≤k≤n be n independent Bernoulli
random variables from the set of transitions possible in su to {0, 1} assigning 1
when susv is taken after the k-th visit of su and 0 if another transition is taken
after the k-th visit of su. Then, we can rewrite:

P (ϕn) = P

(
1

n

n∑
k=1

Xk ≤ auv + τ/2

)
(12)

By the law of large numbers, 1
n

∑n
k=1Xk tends to auv with respect to A when

n tends to the infinity. Then,

γ(A,ϕn) = PA

(
1

n

n∑
k=1

Xk ≤ auv + τ/2

)
−→
n→∞

1.

But, with respect to ÂW , 1
n

∑n
k=1Xk tends to auv + τ . So,

γ(ÂW , ϕn) = PÂW

(
1

n

n∑
k=1

Xk ≤ auv + τ/2

)
−→
n→∞

0

Thus, γ(A,ϕn) − γ(ÂW , ϕn) −→
n→∞

1 almost surely. More precisely, given ε > 0,

δ, 0 < δ < 1 and a finite run W , there exists a rank N such that specification 11
can not be fulfilled for properties ϕn, n ≥ N .

Appendix D Proof of Lemma 1 in Proposition 1

For recall, we defined qW (u) the number of occurrences of sequence u in the
traces of W . Note that u can be a state, an individual transition or even a path.

Lemma 1. For all set of traces W , there exists a set of traces W ′ such that:

∀s, t, qW
′(s · t)

qW ′(s)
=
qW (s · t)
qW (s)

∧

∀r, s, t ∈ V, qW ′(r · s · t) =
qW ′(r · s)× qW ′(s · t)

qW ′(s)

24

We use the following definitions in the proof.

Definition 2 (Equivalence). Two sets of traces W and W ′ are equivalent if

for all s, t, qW (s,t)
qW (s) = qW ′ (s,t)

qW ′ (s)
.

Definition 3 (s-factor). Given a trace r and a state s, F is an s-factor of r
if F is a factor of r and F starts by s. Moreover, F is elementary if it does not
contain any other s.

A trace can then be seen as a set of factors BF1 . . . FkE where B is the special
factor beginning, Fi are some s-factors for all i and E is the special ending s-
factor. We can notice that for all trace r and r′ obtained by permutation of
the Fi, {r} and {r′} are equivalent. Without loss of generality, we suppose that
states sj such that there exists a transition (sj , s) are states s1, . . . , sQ. In W ,
we denote ni the number of transitions (s, si), mj the number of transitions

(sj , s) and qi,j =
qW (sj ·s)×qW (s·si)

qW (s) . qi,j represents then the number of times a

transition (sj , s) should be followed by a transition (s, si). By definition, we have
that

∑
i ni =

∑
jmj = qW (s) and ∀i, j, qi,j > 0. We denote k = qW (s). Finally,

for a factor F , we denote by qF,i,j the number of apparitions of (sj , s, si) in F .

Proof. (of Lemma 1) Let us suppose that W is made of only one trace r =
BF1 . . . FfE.

We prove the lemma by induction on s ∈ V , then induction on the number
of predecessors of s.

Let suppose that every factor in {B,F1, . . . , Ff} ends with s1, that f = m1−1
and that the sequence s1s never appears neither in B nor in Fl for all l nor in
E. We also suppose that ∀i,∀j > 1, qB,i,j +

∑f
l=1 qFl,i,j + qE,i,j = qi,j . It means

that for all j > 1 for all i, we have qW ′(sj · s · si) =
qW ′ (sj ·s)×qW ′ (s·si)

qW ′ (s)
and we

just have to consider s1.
Let r′ be BF1 . . . FfE. r′ is equivalent to r. We also obtain that for all

i, qr,i,1 = qi,1 since there are exactly qi,1 factors starting by si. Furthermore,

∀i, ∀j > 1, qr,i,j = qB,i,j +
∑f
l=1 qFl,i,j + qE,i,j = qi,j . Indeed, none was added

and we did not break those already existing. Then, ∀i,∀j, qW ′(sj · s · si) =
qW ′ (sj ·s)×qW ′ (s·si)

qW ′ (s)
.

Now, let us consider when there are J states to deal with, J > 1, and the
factors {B,F1 · · ·Ff , E} such that f =

∑J
j=1mj − 1. Besides, for all j ≤ J ,

exactly mj factors in {B,F1 · · ·Ff} end with sj and for all i, exactly
∑J
j=1 qi,j

factors in {F1 · · ·Ff , E} start with ssi. Furthermore, for all j ≤ J , the sequence
sjs never appears neither in B nor in Fl for all l and for all i, for all j > J ,

qB,i,j +
∑f
l=1 qFl,i,j + qE,i,j = qi,j .

We create new factors in order to deal with sJ by merging the existing one.
We apply the following algorithm:

Since
∑
i qi,j = mj , there is always one factor ending by SJ that can be

chosen. Let us suppose that there is no candidate for F2. It means that no factor
other than F1 starts by ssi, and then

∑J
j=1 qi,j ≤ qi,J (number available at start

25

Merge(Factors, J)
for i from 1 to Q do

for l from 1 to qi,J do
Choose F1 ending by sJ , a factor F2 6= F1 beginning by si, we denote
F ′ = F1F2

Factors = Factors \ {F1, F2} ∪ {F ′}

Output: Factors

smaller than number used). We deduce that for all j < J , qi,j = 0 and that is
absurd.

We obtain the set of factors{B′, F ′1, · · · , F ′f ′ , E′}. We have mergedmJ factors,

then f ′ = f −mJ =
∑j−1
j=1mj − 1. For all j < J , the number of factors ending

with sj has not changed. For all i, there are
∑J
j=1 qi,j − qi,J =

∑J−1
j=1 qi,j factors

in {F ′1 · · ·F ′f ′ , E′} starting with ssi. Furthermore, for all j < J , the sequence sjs
still never appears neither in B nor in Fl for all l and for all i, for all j ≥ J ,
qB,i,j +

∑f
l=1 qFl,i,j + qE,i,j = qi,j .

At start, when considering all elementary factors {B,F1, · · · , Ff , E}, we have

f = k− 1 =
∑Q
j=1mj − 1 and for all j, exactly mj factors in {B,F1 · · ·Ff} ends

with sj and for all i, exactly
∑Q
j=1 qi,j = ni factors in {F1 · · ·Ff , E} start with

ssi. Besides, since all factors are elementary, no sequence sjs appears in any of

them and trivially, for all j > Q, qB,i,j +
∑f
l=1 qFl,i,j + qE,i,j = 0. Thus, the

requirements are met.

Appendix E Proof of Theorem 4 for Cond

Theorem 4. Denoting ϕ the property of reaching state s in DTMC A, we have:

|γ(A,ϕ)− γ(Aη, ϕ)| < `s · η
Cond

`s
s (A)

Proof. When using Cond`ss defined with R∗(s) instead of Cond`ss defined with
R∗(s), we need to consider w1 over R1(s), the set of states that can reach s with
probability 1, instead of just {s}. This set R1(s) is the same in A and Aη. We do
not have w1·At−`sη = w1·At−`s anymore. However, as t tends to infinity, with very

high probability w1 will be sent to s in both At−`sη and At−`s , and the difference

will be arbitrarily small. We actually have w1 ·(At−`sη −At−`s) ≤ (1−r)t, for r > 0
the probability to reach s in `s steps (we take the minimal value of r between
A`sη and A`s). We obtain the inductive formula E(t) ≤ (1 − Cond`ss (A))E(t −
`s) + `s · η + (1− r)t. It yields for all t ∈ N:

E(t) ≤ (`s · η)

∞∑
i=1

(1− Cond`ss (A))i +

i·`s≤t∑
i=1

(1− Cond`ss (A))i(1− r)b
t
`s
c−i

26

Let us denote εt =
∑i·`s≤t
i=1 (1−Cond`ss (A))i(1− r)b

t
`s
c−i, which is the only part

differing with the previous case. We then have

E(t) ≤ `s · η
Cond`ss (A)

+ εt

We prove now that εt tends towards 0 as t tends to infinity, and thus we obtain
the same result as previously by taking this limit. Let us denote t′ = b t`s c.

Now, either (1 − Cond`ss (A)) < (1 − r) or (1 − Cond`ss (A)) > (1 − r) or
(1 − Cond`ss (A)) = (1 − r). The last case is trivial as it give εt = t′(1 −
Cond`ss (A))t

′
, which indeed tends towards 0 as t tends to ∞. The two other

cases are symmetric. Let us consider (1 − Cond`ss (A)) < (1 − r). We have

εt =
∑t′

i=1(1 − Cond`ss (A))i(1 − r)t′−i = (1 − r)t′
∑t′

i=1(
1−Cond`ss (A)

(1−r))i. As the

fraction is smaller than 1, the infinite sum converges, and the term (1−r)t′ makes
εt tends towards 0 as t tends towards infinity. For (1−Cond`ss (A)) > (1− r), we

extract (1− Cond`ss (A))t
′

and sum over ((1−r)
1−Cond`ss (A)

)i, with ((1−r)
1−Cond`ss (A)

) < 1.

ut

Appendix F Algorithm for the fixed time-to-failure
property

A run W is observed from s0 and every time s0 or sF are observed, the reset
operation is performed, and a new path ω is being generated. W is the set of all
those paths. In the work, we assume that the probability of reaching s0 or sF is
1 in order to guarantee the termination of the algorithm. since sF is immediately
followed by s0.

Algorithm 2: Learning a matrix accurate for time-to-failure property

Learning(A, s0, sF , δ, ε)
nsucc = 0
n = 1 (number of times s0 has been visited)
s = s0 (current state)
while n < H(n, nsucc,ε,δ) do

ωn = s0 and W = ω1 · · ·ωn
while s 6= s0 or s 6= sF do

Observe the next state s′ (sampled with respect to A)
Update ωn and ÂW
if s′ = s0 or s′ = sF then

Output z(ωn, ϕ), nsucc ← nsucc + z(ωn, ϕ) and n← n+ 1

Output: ÂW

27

Appendix G System 4

System 4 can be modeled with probabilistic model checker Prism2 as a continu-
ous time Markov chain (CTMC) that comprises three types (1, 2, 3) of three
components each that may fail independently. Note however that we do not sim-
ulate the times between two changes of states but only the transitions between
states, that lead to learn the induced DTMC instead. The components fail with
rate λ = 0.2 and are repaired with rate µ = 1. In addition, components are
repaired with priority according to their type (type i has highest priority than
type j if i < j). Components of type 1 and 2 are repaired simultaneously if at
least two of their own type have failed. Type 3 components are repaired one by
one as soon as one has failed. The probability transitions from state i to state j
is given by the rate of the transition from the CTMC between state i and state
j divided by the sum of all the rates of the enabled transitions from state i. The
initial state is the state in which all the components are operational and the fail-
ure state is the state in which all the components are broken. We provide below
the Prism code of the model for the readers who are interested to investigate
this model in details:

ctmc

const int n=3;

const double lambda = 0.2;

const double mu = 1.0;

module type1

state1 : [0..n] init 0;

[] state1 < n -> (n-state1)*lambda : (state1’=state1+1);

[] state1 >=2 -> mu : (state1’=0);

endmodule

module type2

state2 : [0..n] init 0;

[] state2 < n -> (n-state2)*lambda : (state2’=state2+1);

[] state2 >=2 & state1 < 2 -> mu : (state2’=0);

endmodule

module type3

state3 : [0..n] init 0;

[] state3 < n -> (n-state3)*lambda : (state3’=state3+1);

[] state3 > 0 & state2 < 2 & state1 < 2 -> mu : (state3’=state3-1);

endmodule

label "failure" = state1 = n & state2 = n & state3 = n;

2 http://www.prismmodelchecker.org/

28

Verification of Neural Networks:
Specifying Global Robustness using Generative Models

Nathanaël Fijalkow Mohit Kumar Gupta
CNRS, LaBRI, Université de Bordeaux, and

The Alan Turing Institute, London
Indian Institute of Technology Bombay

Abstract

The success of neural networks across most
machine learning tasks and the persistence of
adversarial examples have made the verifica-
tion of such models an important quest. Sev-
eral techniques have been successfully devel-
oped to verify robustness, and are now able to
evaluate neural networks with thousands of
nodes. The main weakness of this approach
is in the specification: robustness is asserted
on a validation set consisting of a finite set of
examples, i.e. locally.

We propose a notion of global robustness
based on generative models, which asserts the
robustness on a very large and representative
set of examples. We show how this can be
used for verifying neural networks. In this
paper we experimentally explore the merits
of this approach, and show how it can be used
to construct realistic adversarial examples.

1 Introduction

We consider the task of certifying the correctness of
an image classifier, i.e. a system taking as input an
image and categorising it. As a main example we will
consider the MNIST classification task, which consists
in categorising hand-written digits. Our experimen-
tal results are later reproduced for the drop-in dataset
Fashion MNIST (Xiao et al. (2017)).

The usual evaluation procedure consists in setting
aside from the dataset a validation set, and to report
on the success percentage of the image classifier on
the validation set. With this procedure, it is com-
monly accepted that the MNIST classification task

Technical report.

is solved, with some convolutional networks achieving
above 99.7% accuracy (see e.g. Ciregan et al. (2012);
Wan et al. (2013)). Further results suggest that even
the best convolutional networks cannot be considered
to be robust, given the persistence of adversarial ex-
amples: a small perturbation – invisible to the human
eye – in images from the dataset is enough to induce
misclassification (Szegedy et al. (2014)).

This is a key motivation for the verification of neural
networks: can we assert the robustness of a neural net-
work, i.e. the absence of adversarial examples? This
question has generated a growing interest in the past
years at the crossing of different research communities
(see e.g. Huang et al. (2017); Katz et al. (2017); Weng
et al. (2018); Gehr et al. (2018); Mirman et al. (2018);
Gopinath et al. (2018); Katz et al. (2019)), with a
range of prototype tools achieving impressive results.
The robustness question is formulated as follows: given
an image x and ε > 0, are all ε-perturbations of x cor-
rectly classified?

We point to a weakness of the formalisation: it is local,
meaning it is asserted for a given image x (and then
typically checked against a finite set of images). In this
paper, we investigate a global approach for specifying
the robustness of an image classifier. Let us start from
the ultimate robustness objective, which reads:

For every category, for every real-life image
of this category and for every perturbation of
this image, the perturbed image is correctly
classified.

Formalising this raises three questions:

1. How do we quantify over all real-life images?

2. What are perturbed images?

3. How do we effectively check robustness?

In this work we propose a formalisation based on gen-
erative models. A generative model is a system taking

Technical report

as input a random noise and generating images, in
other words it represents a probabilistic distribution
over images.

Our specification depends on two parameters (ε, δ).
Informally, it reads:

An image classifier is (ε, δ)-robust with re-
spect to a generative model if the probabil-
ity that for a noise x, all ε-perturbations of x
generate correctly classified images is at least
1− δ.

The remainder of the paper presents experiments sup-
porting the claims that the global robustness specifi-
cation has the following important properties.

Global. The first question stated above is about
quantifying over all images. The global robustness we
propose addresses this point by (implicitly) quantify-
ing over a very large and representative set of images.

Robust. The second question is about the notion of
perturbed images. The essence of generative models
is to produce images reminiscent of real images (from
the dataset); hence testing against images given by
a generative model includes the very important per-
turbation aspect present in the intuitive definition of
correctness.

Effective. The third question is about effectivity. We
will explain that global robustness can be effectively
evaluated for image classifiers built using neural net-
works.

Related work

Xiao et al. (2018) train generative models for finding
adversarial examples, and more specifically introduce
a different training procedure (based on a new objec-
tive function) whose goal is to produce adversarial ex-
amples. Our approach is different in that we use gen-
erative models with the usual training procedure and
objective, which is to produce a wide range of realistic
images.

2 Global Correctness

This section serves as a technical warm-up for the next
one: we introduce the notion of global correctness, a
step towards our main definition of global robustness.

We use Rd for representing images with ||·|| the infinity
norm over Rd, and let C be the set of categories, so an
image classifier represents a function C : Rd → C.

A generative model represents a distribution over im-
ages, and in effect is a neural network which takes as
input a random noise in the form of a p-dimensional
vector x and produces an image G(x). Hence it rep-
resents a function G : Rp → Rd. We typically use
a Gaussian distribution for the random noise, written
x ∼ N (0, 1).

Our first definition is of global correctness, it relies on a
first key but simple idea, which is to compose a genera-
tive model G with an image classifier C: we construct
a new neural network C ◦ G by simply rewiring the
output of G to the input of C, so C ◦G represents a
distribution over categories. Indeed, it takes as input
a random noise and outputs a category.

Figure 1: Composition of a generative model with an
image classifier

Definition 1 (Global Correctness). Given for each
c ∈ C a generative model Gc for images of category c,
we say that the image classifier C is δ-correct with
respect to the generative models (Gc)c∈C if for each
c ∈ C,

Px∼N (0,1)(C ◦Gc(x) = c) ≥ 1− δ.

In words, the probability that for a noise x the image
generated (using Gc) is correctly classified (by C) is
at least 1− δ.

Assumptions

Our definition of global correctness hinges on two
properties of generative models:

1. generative models produce a wide variety of im-
ages,

2. generative models produce (almost only) realistic
images.

Technical report

The first assumption is the reason for the success
of generative adversarial networks (GAN) (Good-
fellow et al. (2014)). We refer for instance
to Karras et al. (2018) and to the attached web-
site thispersondoesnotexist.com for a demo.

In our experiments the generative models we used are
out of the shelf generative adversarial networks (GAN)
(Goodfellow et al. (2014)), with 4 hidden layers of re-
spectively 256, 512, 1024, and 784 nodes, producing
images of single digits.

To test the second assumption we performed a first
experiment called the manual score experiment. We
picked 100 digit images using a generative model and
asked 5 individuals to tell for each of them whether
they are “near-perfect”, “perturbed but clearly iden-
tifiable”, “hard to identify”, or “rubbish”, and which
digit they represent. The results are that 96 images
were correctly identified; among them 63 images were
declared “near-perfect” by all individuals, with an-
other 26 including “perturbed but clearly identifiable”,
and 8 were considered “hard to identify” by at least
one individual yet correctly identified. The remaining
4 were “rubbish” or incorrectly identified. It follows
that against this generative model, we should require
an image classifier to be at least .89-correct, and even
.96-correct to match human perception.

Algorithm

To check whether a classifier is δ-correct, the Monte
Carlo integration method is a natural approach: we
sample n random noises x1, . . . , xn, and count for how
many xi’s we have that C ◦ Gc(x) = c. The central
limit theorem states that the ratio of positives over
n converges to Px∼N (0,1)(C ◦ Gc(x) = c) as 1√

n
. It

follows that n = 104 samples gives a 10−2 precision on
this number.

In practice, rather than sampling the random noises
independently, we form (large) batches and leverage
the tensor-based computation, enabling efficient GPU
computation.

3 Global Robustness

We introduce the notion of global robustness, which
gives stronger guarantees than global correctness. In-
deed, it includes the notion of perturbations for im-
ages.

The usual notion of robustness, which we call here local
robustness, can be defined as follows.

Definition 2 (Local Robustness). We say that the
image classifier C is ε-robust around the image y ∈ Rd

of category c if

∀y′, ||y − y′|| ≤ ε =⇒ C(y′) = c.

In words, all ε-perturbations of y are correctly classi-
fied (by C).

One important aspect in this definition is the choice
of the norm for the perturbations (here we use the
infinity norm). We ignore this as it will not play a role
in our definition of robustness. A wealth of techniques
have been developed for checking local robustness of
neural networks, with state of the art tools being able
to handle nets with thousands of neurons.

Assumptions

Our definition of global robustness is supported by the
two properties of generative models discussed above in
the context of global correctness, plus a third one:

3. generative models produce perturbations of real-
istic images.

To illustrate this we designed a second experiment
called the random walk experiment : we perform a ran-
dom walk on the space of random noises while observ-
ing the ensued sequence of images produced by the
generative model. More specifically, we pick a ran-
dom noise x0, and define a sequence (xi)i≥0 of ran-
dom noises with xi+1 obtained from xi by adding a
small random noise to xi; this induces the sequence of
images (G(xi))i≥0. The result is best visualised in an
animated GIF (see the Github repository), see also the
first 16 images in Figure 2. This supports the claim
that images produced with similar random noises are
(often) close to each other; in other words the genera-
tive model is (almost everywhere) continuous.

Our definition of global robustness is reminiscent of the
provably approximately correct learning framework de-
veloped by Valiant (1984). It features two parameters.
The first parameter, δ, quantifies the probability that
a generative model produces a realistic image. The
second parameter, ε, measures the perturbations on
the noise, which by the continuity property discussed
above transfers to perturbations of the produced im-
ages.

Definition 3 (Global Robustness). Given for each
c ∈ C a generative model Gc for images of category c,
we say that the image classifier C is (ε, δ)-robust with
respect to the generative models (Gc)c∈C if for each
c ∈ C,

Px∼N (0,1)(∀x′, ||x−x′|| ≤ ε =⇒ C◦Gc(x
′) = c) ≥ 1−δ.

In words, the probability that for a noise x, all ε-
perturbations of x generate (using G) images correctly
classified (by C) is at least 1− δ.

thispersondoesnotexist.com

Technical report

Figure 2: The random walk experiment

Algorithm

To check whether a classifier is (ε, δ)-robust, we extend
the previous ideas using the Monte Carlo integration:
we sample n random noises x1, . . . , xn, and count for
how many xi’s the following property holds:

∀x, ||xi − x|| ≤ ε =⇒ C ◦Gc(x) = c.

The central limit theorem states that the ratio of pos-
itives over n converges to

Px∼N (0,1)(∀x′, ||x− x′|| ≤ ε =⇒ C ◦Gc(x
′) = c)

as 1√
n

. As before, it follows that n = 104 samples gives

a 10−2 precision on this number.

In other words, checking global robustness reduces to
combining Monte Carlo integration with checking local
robustness.

4 Experiments

The code for all experiments can be found on the
Github repository

https://github.com/mohitiitb/

NeuralNetworkVerification_GlobalRobustness.

All experiments are presented in Jupyter notebook for-
mat with pre-trained models to be easily reproduced.
Our experiments are all reproduced on the drop-in
Fashion-MNIST dataset (Xiao et al. (2017)), obtaining
similar results.

We report on experiments designed to assess the ben-
efit of these two notions, whose common denominator
is to go from a local property to a global one by com-
posing with a generative model.

We first evaluate the global correctness of several im-
age classifiers, showing that it provides a finer way
of evaluating them than the usual test set. We then
turn to global robustness and show how the negation
of robustness can be witnessed by realistic adversarial
examples.

The second set of experiments addresses the fact that
both global correctness and robustness notions depend
on the choice of a generative model. We show that
this dependence can be made small, but that it can
also be used for refining the correctness and robustness
notions.

Choice of networks

In all the experiments, our base case for image
classifiers have 3 hidden layers of increasing capaci-
ties: the first one, referred to as “small”, has layers
with (32, 64, 200) (number of nodes), “medium” corre-
sponds to (64, 128, 256), and “large” to (64, 128, 512).
The generative model are as described above, with 4
hidden layers of respectively 256, 512, 1024, and 784
nodes.

For each of these three architectures we either use the
standard MNIST training set (6,000 images of each
digit), or an augmented training set (24,000 images),
obtained by rotations, shear, and shifts. The same
distinction applies to GANs: the “simple GAN” uses
the standard training set, and the “augmented GAN”
the augmented training set.

Finally, we work with two networks obtained through
robust training procedures. The first one was proposed
by Ma̧dry et al. (2018) for the MNIST Adversarial
Example Challenge (the goal of the challenge was to
find adversarial examples, see below), and the second
one was defined by Papernot et al. (2016) through the
process of defense distillation.

Evaluating Global Correctness

We evaluated the global correctness of all the image
classifiers mentioned above against simple and aug-
mented GANs, and reported the results in the table
below. The last column is the usual validation pro-
cedure, meaning the number of correct classification
on the MNIST test set of 10,000 images. They all
perform very well, and close to perfectly (above 99%),
against this metric, hence cannot be distinguished. Yet
the composition with a generative model reveals that
their performance outside of the test set are actually
different. It is instructive to study the outliers for each
image classifier, i.e. the generated images which are
incorrectly classified. We refer to the Github reposi-
tory for more experimental results along these lines.

Finding Realistic Adversarial Examples

Checking the global robustness of an image classifier
is out of reach for state of the art verification tools.
Indeed, a single robustness check on a medium size
net takes somewhere between dozens of seconds to a

https://github.com/mohitiitb/NeuralNetworkVerification_GlobalRobustness
https://github.com/mohitiitb/NeuralNetworkVerification_GlobalRobustness

Technical report

Classifier simple GAN augmented GAN test set
Standard training set

small 98.89 92.82 99.79
medium 99.15 93.16 99.76

large 99.38 93.80 99.80
Augmented training set

small 97.84 95.2 99.90
medium 99.11 96.53 99.86

large 99.25 97.66 99.84
Robust training procedures

Ma̧dry et al. (2018) 98.87 93.17 99.6
Papernot et al. (2016) 99.64 94.78 99.17

few minutes, and to get a decent approximation we
need to perform tens of thousands local robustness
checks. Hence with considerable computational efforts
we could analyse one image classifier, but could not
perform a wider comparison of different training pro-
cedures and influence on different aspects. Thus our
experiments focus on the negation of robustness, which
is finding realistic adversarial examples, that we define
now.

Definition 4 (Realistic Adversarial Example). An ε-
realistic adversarial example for an image classifier C
with respect to a generative model G is an image G(x)
such that there exists another image G(x′) with

||x− x′|| ≤ ε and C ◦G(x) 6= C ◦G(x′)

In words, x and x′ are two ε-close random noises which
generate images G(x) and G(x′) that are classified dif-
ferently by C.

Note that a realistic adversarial example is not nec-
essarily an adversarial example: the images G(x) and
G(x′) may differ by more than ε. However, this is
the assumption 3. discussed when defining global ro-
bustness, if x and x′ are close, then typically G(x)
and G(x′) are two very resemblant images, so the two
notions are indeed close.

We introduce two algorithms for finding realistic ad-
versarial examples, which are directly inspired by al-
gorithms developed for finding adversarial examples.
The key difference is that realistic adversarial exam-
ples are searched by analysing the composed network
C ◦G.

Let us consider two digits, for the sake of explanation,
3 and 8. We have a generative model G8 generating
images of 8 and an image classifier C.

The first algorithm is a black-box attack, meaning that
it does not have access to the inner structure of the
networks and it can only simulate them. It consists in
sampling random noises, and performing a local search
for a few steps. From a random noise x, we inspect the

random noise x + δ for a few small random noises δ,
and choose the random noise x′ maximising the score
of 3 by the net C ◦G8, written C ◦G8(xi)[3] in the
pseudocode given in Algorithm 1. The algorithm is
repeatedly run until a realistic adversarial example is
found.

Algorithm 1: The black-box attack for the digits
3 and 8.
Data: A generative model G8 and an image

classifier C. A parameter ε > 0.
Nstep ← 16 (number of steps)
Ndir ← 10 (number of directions)
x0 ∼ N (0, 1)
for i = 0 to Nstep − 1 do

smax ← C ◦G8(xi)[3] (score of 3)
xi+1 ← xi
for j = 0 to Ndir − 1 do

δj ∼ N (0, ε
Nstep

)

s← C ◦G8(xi + δj)[3]
if s > smax then

smax ← s
xi+1 ← xi + δj

if C ◦G8(x0) 6= C ◦G8(xi+1) then
return x0 (ε-realistic adversarial example)

The second algorithm is a white-box attack, meaning
that it uses the inner structure of the networks. It
is similar to the previous one, except that the local
search is replaced by a gradient ascent to maximise
the score of 3 by the net C ◦ G8. In other words,
instead of choosing a direction at random, it follows
the gradient to maximise the score. It is reminiscent
of the projected gradient descent (PGD) attack, but
performed on the composed network. The pseudocode
is given in Algorithm 2.

Both attacks successfully find realistic adversarial ex-
amples within less than a minute. The adjective “real-
istic”, which is subjective, is justified as follows: most
attacks constructing adversarial examples create un-

Technical report

Algorithm 2: The white-box attack for the digits
3 and 8.
Data: A generative model G8 and an image

classifier C. A parameter ε > 0.
Nstep ← 16 (number of steps)
α← ε

Nstep
(step)

x0 ∼ N (0, 1)
for i = 0 to Nstep − 1 do

xi+1 ← xi − α ·GradC◦G8
(xi)[3]

if C ◦G8(x0) 6= C ◦G8(xi+1) then
return x0 (ε-realistic adversarial example)

realistic images by adding noise or modifying pixels,
while with our definition the realistic adversarial ex-
amples are images produced by the generative model,
hence potentially more realistic. See Figure 3 for some
examples.

On the Dependence on the Generative Model

Both global correctness and robustness notions are de-
fined with respect to a generative model. This raises
a question: how much does it depend on the choice of
the generative model?

To answer this question we trained two GANs using
the exact same training procedure but with two dis-
joint training sets, and used the two GANs to evaluate
several image classifiers. The outcome is that the two
GANs yield sensibly the same results against all image
classifiers. This suggests that the global correctness in-
deed does not depend dramatically on the choice of the
generative model, provided that it is reasonably good
and well-trained. We refer to the Github repository
for a complete exposition of the results.

Since the training set of the MNIST dataset contains
6,000 images of each digit, splitting it in two would
not yield two large enough training sets. Hence we
used the extended MNIST (EMNIST) dataset Cohen
et al. (2017), which provided us with (roughly) 34,000
images of each digit, hence two disjoint datasets of
about 17,000 images.

On the Influence of Data Augmentation

Data augmentation is a classical technique for increas-
ing the size of a training set, it consists in creating new
training data by applying a set of mild transformations
to the existing training set. In the case of digit images,
common transformations include rotations, shear, and
shifts.

Unsurprisingly, crossing the two training sets, e.g. us-
ing the standard training set for the image classifier

and an augmented one for the generative model yields
worse results than when using the same training set.
More interestingly, the robust networks Ma̧dry et al.
(2018); Papernot et al. (2016), which are trained us-
ing an improved procedure but based on the standard
training set, perform well against generative models
trained on the augmented training set. In other words,
one outcome of the improved training procedure is
to better capture the natural image transformations,
even if they were never used in training.

5 Conclusions

We defined two notions: global correctness and global
robustness, based on generative models, aiming at
quantifying the usability of an image classifier. We
performed some experiments on the MNIST dataset
to understand the merits and limits of our definitions.
An important challenge lies ahead: to make the ver-
ification of global robustness doable in a reasonable
amount of time and computational effort.

Bibliography

Dan Ciregan, Ueli Meier, and Juergen Schmidhu-
ber. Multi-column deep neural networks for im-
age classification. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CCVPR),
pages 3642–3649, June 2012. doi: 10.1109/CVPR.
2012.6248110. URL https://ieeexplore.ieee.

org/document/6248110.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and
André van Schaik. EMNIST: an extension of MNIST
to handwritten letters. CoRR, abs/1702.05373,
2017. URL http://arxiv.org/abs/1702.05373.

Timon Gehr, Matthew Mirman, Dana Drachsler-
Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin T. Vechev. AI2: safety and robustness certifica-
tion of neural networks with abstract interpretation.
In IEEE Symposium on Security and Privacy (SP),
pages 3–18, 2018. doi: 10.1109/SP.2018.00058. URL
https://doi.org/10.1109/SP.2018.00058.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Genera-
tive adversarial nets. In Conference on Neural In-
formation Processing Systems (NIPS), pages 2672–
2680, 2014. URL http://papers.nips.cc/paper/

5423-generative-adversarial-nets.

Divya Gopinath, Guy Katz, Corina S. Pasareanu,
and Clark Barrett. Deepsafe: A data-driven ap-
proach for assessing robustness of neural networks.
In Symposium on Automated Technology for Ver-
ification and Analysis (ATVA), pages 3–19, 2018.

https://ieeexplore.ieee.org/document/6248110
https://ieeexplore.ieee.org/document/6248110
http://arxiv.org/abs/1702.05373
https://doi.org/10.1109/SP.2018.00058
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets

Technical report

Figure 3: Examples of realistic adversarial examples. On the left hand side, against the smallest net, and on the
right hand side, against Ma̧dry et al. (2018)

doi: 10.1007/978-3-030-01090-4\ 1. URL https:

//doi.org/10.1007/978-3-030-01090-4_1.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang,
and Min Wu. Safety verification of deep
neural networks. In Computer-Aided Verifica-
tion (CAV), pages 3–29, 2017. doi: 10.1007/
978-3-319-63387-9\ 1. URL https://doi.org/10.

1007/978-3-319-63387-9_1.

Tero Karras, Samuli Laine, and Timo Aila. A style-
based generator architecture for generative adver-
sarial networks. CoRR, abs/1812.04948, 2018. URL
http://arxiv.org/abs/1812.04948.

Guy Katz, Clark W. Barrett, David L. Dill, Kyle
Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neu-
ral networks. In Computer-Aided Verification
(CAV), pages 97–117, 2017. doi: 10.1007/
978-3-319-63387-9\ 5. URL https://doi.org/10.

1007/978-3-319-63387-9_5.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Ju-
lian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic,
David L. Dill, Mykel J. Kochenderfer, and Clark W.
Barrett. The marabou framework for verification
and analysis of deep neural networks. In Computer-
Aided Verification (CAV), pages 443–452, 2019.
doi: 10.1007/978-3-030-25540-4\ 26. URL https:

//doi.org/10.1007/978-3-030-25540-4_26.

Aleksander Ma̧dry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversar-
ial attacks. In International Conference on Learn-
ing Representations (ICLR), 2018. URL https:

//openreview.net/forum?id=rJzIBfZAb.

Matthew Mirman, Timon Gehr, and Martin T.
Vechev. Differentiable abstract interpretation for
provably robust neural networks. In International
Conference on Machine Learning (ICML), pages
3575–3583, 2018. URL http://proceedings.mlr.

press/v80/mirman18b.html.

Nicolas Papernot, Patrick D. McDaniel, Xi Wu,

Somesh Jha, and Ananthram Swami. Distillation
as a defense to adversarial perturbations against
deep neural networks. In IEEE Symposium on Se-
curity and Privacy (SP), pages 582–597, 2016. doi:
10.1109/SP.2016.41. URL https://doi.org/10.

1109/SP.2016.41.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural
networks. In International Conference on Learn-
ing Representations (ICLR), 2014. URL http:

//arxiv.org/abs/1312.6199.

Leslie G. Valiant. A theory of the learnable. Com-
munications of the ACM, 27(11):1134–1142, 1984.
doi: 10.1145/1968.1972. URL https://doi.org/

10.1145/1968.1972.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun,
and Rob Fergus. Regularization of neural networks
using dropconnect. In International Conference
on Machine Learning (ICML), volume 28, pages
1058–1066, 2013. URL http://proceedings.mlr.

press/v28/wan13.html.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao
Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning,
and Inderjit S. Dhillon. Towards fast computation
of certified robustness for relu networks. In Inter-
national Conference on Machine Learning (ICML),
pages 5273–5282, 2018. URL http://proceedings.

mlr.press/v80/weng18a.html.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He,
Mingyan Liu, and Dawn Song. Generating ad-
versarial examples with adversarial networks. In
Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence (IJCAI),
pages 3905–3911, 2018. doi: 10.24963/ijcai.2018/
543. URL https://doi.org/10.24963/ijcai.

2018/543.

Han Xiao, Kashif Rasul, and Roland Vollgraf.
Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. CoRR,

https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1812.04948
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
http://proceedings.mlr.press/v28/wan13.html
http://proceedings.mlr.press/v28/wan13.html
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
https://doi.org/10.24963/ijcai.2018/543
https://doi.org/10.24963/ijcai.2018/543

Technical report

abs/1708.07747, 2017. URL http://arxiv.org/

abs/1708.07747.

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

ML+FV=♥?
A Survey on the Application of Machine

Learning to Formal Verification

Moussa Amrani1,2, Adrien Bibal1,2, and Pierre-Yves Schobbens1,2

1 Faculty of Computer Science, University of Namur,
2 Namur Digital Institute (NaDI) {Moussa.Amrani — Adrien.Bibal}@unamur.be

Abstract. Formal Verification (Fv) and Machine Learning (Ml) can
seem incompatible due to their opposite mathematical foundations and
their use in real-life problems: Fv mostly relies on discrete mathematics
and aims at ensuring correctness; Ml often relies on probabilistic models
and consists of learning patterns from training data. In this paper, we
show that they are complementary in practice, and explore how Ml helps
Fv in its classical approaches: model-checking, theorem-proving, static
analysis and Sat solving. We draw a landscape of the current practice
and catalog some of the most prominent uses of Ml inside Fv tools, thus
offering a new perspective on Fv techniques that can help researchers and
practitioners to better locate the possible synergies. We discuss lessons
learned, and point to possible improvements

Formal Verification (Fv) aims at guaranteeing correctness properties of soft-
ware and hardware systems. In that sense, a system is safe with respect to the
checked properties. Machine Learning (Ml) aims at learning patterns from train-
ing data for various purposes; the derived model generalizes from the data it was
trained on. Both Fv and Ml are grounded on solid mathematical foundations:
the former uses mostly discrete mathematics, fixpoints and abstractions to spec-
ify (concrete/abstract) semantics, properties of interest and the checking process
itself; the latter uses in general continuous mathematics and/or probability the-
ory to infer models.

We would like to present an ongoing effort to provide a comprehensive in-
troduction of the various ways Ml contributes to enhance Fv tools’ efficiency.
Since many verification problems have high complexity, improving the speed,
efficiency, or accuracy of Fv tools is crucial for answering real-life Fv problems.
In this context, Ml may offer an efficient help in navigating the many open
possibility a tool needs to explore to provide an answer.

To achieve this goal, we propose to catalog the challenges Fv faces that
may be handled through Ml techniques, called themes, and characterise each
theme with a corresponding Ml task, i.e. an Ml problem category (such as
classification, regression, clustering, reinforcement, etc.). We illustrate by listing
many literature contributions, and exploring all classical approaches available in
Fv: SAT solvers (Sat), Theorem Provers (Tp), Model-Checking (Mc), Abstract
Interpretation (Ia) and more generally Static Analysis (Sa).

2 Amrani, M. and Bibal, A. and Schobbens, P.-Y.

To the best of our knowledge, many surveys, systematic literature reviews
and general introductions exist in specific Fv approaches, but none spans over
all the spectrum of the main Fv approaches. By covering them, we aim at
extracting valuable Fv approach-specific, but also transversal, lessons, as well
as common trends for the usage of Ml within Fv. We therefore provide a high-
level snapshot of the current practice in each Fv approach. This study does
obviously not replace specialised, focused reviews and overviews intended for
practitioners of each domain, but rather serves the purpose of providing a general
introduction to the themes researchers are currently focusing on, and detailing
how they originally tackled these challenges.

This work started during Fall 2017, after attending the Nfm’17 (Nasa Formal
Method): during the Conference, several papers demonstrated the importance
of enhancing Fv tools with Ml techniques, as well as applying Fv techniques to
ensure safety properties of Ml models applied in safety-critical systems. A first
version appeared as a non-reviewed paper on arXiv [1]: it built upon around 80
contributions, collected between Sept. and Nov. 2017. However, many research
teams and projects started to work on those topics, producing numerous new
results. Therefore, a year later, we extended our work with new contributions
(collected between February and April 2019), culminating in a study with 200+
literature contributions distributed over all approaches. Our study provides the
following scientific contributions:

– We provide a catalog of themes for each Fv approach, presented in a sys-
tematic way: each theme details the corresponding Ml task, and provides a
commented list of relevant contributions, summarising for each theme which
Ml models we encountered in the literature.

– We analyze the literature to extract general observations on the use of Ml
inside Fv tools, and to identify some trends and lessons, with an insight on
what the future may be.

We plan to submit our work as a Journal Paper during Spring 2020, accompanied
with a comprehensive, searchable repository listing all collected contributions.

Depending on (obviously, the acceptance, then) the time allocated for the
presentation, and the background of the audience we could built upon, we would:

– Present (some of) the themes, illustrated with important contributions, oc-
curing in two approaches, namely Sat and Sa, as they crystallise many
patterns and common issues found in other approaches;

– Discuss general lessons and current challenges for Fv.

During the Workshop, we hope to foster discussions with the specialised audi-
ence, but also to get feedback on the angles we chose for our study.

References

1. Amrani, M., Lúcio, L., Bibal, A.: ML + FV = ♥? A Survey on the Application
of Machine Learning to Formal Verification. arXiv e-prints arXiv:1806.03600 (Jun
2018)

	LiVe_2020_paper_2.pdf
	Robustness as a Refinement Type

	LiVe_2020_paper_3.pdf
	A Data Driven Approach for Skolem Function Synthesis

	LiVe_2020_paper_6.pdf
	Quantitative Verification of Neural Networks and Its Security Applications

	LiVe_2020_paper_4.pdf
	Semantic Labelling and Learning for Parity Game Solving in LTL Synthesis

	LiVe_2020_paper_11.pdf
	Introduction
	Global Correctness
	Global Robustness
	Experiments
	Conclusions

	LiVe_2020_paper_7.pdf
	ML+FV=<3? A Survey on the Application of Machine Learning to Formal Verification

