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1 Motivation of Integration

Safety-critical systems, e.g., aircraft and cars, may cause casualties and heavy fi-
nancial loss when errors occur. When such systems are real-time, safety depends
not only on functional correctness but also on timing. Model checking (MC), as
a classic technique of formal methods, is well-known for its capability of rigorous
analysis of complex applications, such as real-time and concurrent systems. De-
spite the wide usage of MC, it has some usability barriers for the industry, such
as scalability and difficulties in mastering various formalisms for different verifi-
cation tools. Machine learning (ML) has been proven to be useful and even better
than human intelligence in solving complex and single-domain problems, such
as AlphaGo beating the best human players in Go, and thus would offer great
help in overcoming the challenges of adopting MC in safety-critical systems.

2 Our Experience and Ongoing Work

Controller synthesis for autonomous systems. A classic problem of au-
tonomous systems is the construction of controllers that satisfy the so-called
reach-avoid property. Intuitively, the reach-avoid property means the system
must reach the destination within a time frame and avoid obstacles on the way.
We designed a tool called TAMAA (UPPAAL-based Mission Planning for Au-
tonomous Agents) [1] that uses MC to generate such controllers within a confined
environment that only has static obstacles. The experimental result shows that
when the agent number is greater than five, UPPAAL exhausts the memory
due to the large state space of the model. To overcome this issue, we proposed
MCRL (Model Checking + Reinforcement Learning) [2], which uses reinforce-
ment learning to generate controllers without a correctness guarantee. Next, we
check the learning result, i.e., a controller that restricts the state space, and
iterate learning and checking until we obtain a result that satisfies the reach-
avoid property. Further, we developed MoCReL (Model-checked Compressed
Reinforcement Learning) [3] that can not only check the learning result but also
compress it without losing the correctness guarantee, that is, the generated con-
troller takes much less memory space but still satisfies the reach-avoid property.

Along this line of research, we proposed a TRebeca-based (Timed Reactive
Objects Language) platform for controller synthesis that guarantees safety and
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security together [4]. We model the system as a Markov decision process (MDP)
by using TRebeca and explore the state space by using our Guess-and-then-
Check algorithm for controller generation. Briefly, the algorithm separates the
synthesis process into three phases. In phase I (i.e., guessing), we exhaustively
explore the transitions belonging to the system such that we do not miss valid
system actions that might be correct. However, we accumulate rewards for the
transitions belonging to the environment and selectively explore them based on
the rewards. Essentially, the higher the reward the faster the environment can
guide phase I to a state that terminates the state-space exploration, e.g., states
violating the safety property. In phase II, we check the guessed controller against
a safety property by exhaustively exploring the environment’s transitions. Since
the guessed controller greatly restricts the state space already, phase II does not
necessarily have the state-space-explosion problem even when the environment
has a great number of transitions. After phase II, we obtain a controller that
is guaranteed to be safe. However, it may not be secure in the sense that it
may reveal information to unauthorized intruders. Hence, phase III checks the
controller against a security property and prunes the transitions that are not
secure. Our algorithm splits the exhaustive state-space exploration into differ-
ent phases, so the state-space-explosion problem is alleviated. Additionally, we
adopt learning in the state-space exploration, which helps us to terminate the
exploration on the branches that are doomed to fail as soon as possible.
Timing analysis for real-time systems. Ambiguities and inconsistencies in
requirements are two kinds of errors that would have been avoided given the
right analytical method. Ambiguity refers to multiple interpretations of the same
piece of requirement. Consistency refers to the existence of models that satisfy
all the timing requirements. We proposed a conceptual framework that employs
LLM for detecting ambiguities in textual requirements and MC for finding coun-
terexamples that cause inconsistencies in timing requirements. As our textual
requirements are based on templates, given a proper amount of prompting, LLM
would be able to generate formal models from texts directly. Additionally, LLM
can also help interpret the counterexamples and generate improved texts for re-
quirements. As the framework is under development in collaboration with our
industrial partners, we have confidence that the framework would be state-of-
the-art and practically useful in real-life applications.
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Abstract. Reactive synthesis is the process of using temporal logic spec-
ifications in LTL to generate correct controllers, but its use has been re-
stricted to Boolean specifications. Recently, a Boolean abstraction tech-
nique allows to translate LTLT specifications that contain literals in
theories into equi-realizable LTL specifications. However, no synthesis
procedure exists yet. In synthesis modulo theories, the system to synthe-
size receives valuations of environment variables in a first-order theory
T and outputs valuations of system variables from T . In this extended
abstract of [5], we address how to syntheize a full controller using a com-
bination of the static Boolean controller obtained from the Booleanized
LTL specification together with on-the-fly queries to a solver that pro-
duces models of a satisfiable existential formulae from T . This is the first
method that realizes reactive synthesis modulo theories. Additionally, it
allows to produce adaptive responses which increases explainability and
can improve runtime properties like performance. Our approach is appli-
cable to both LTL modulo theories and LTLf modulo theories.

1 Problem Statement

Reactive synthesis is the problem of automatically producing a system that
models a given temporal specification, where the Boolean variables (i.e., atomic
propositions) are split into variables controlled by the environment and variables
controlled by the system. Realizability is the related decision problem of decid-
ing whether such a system exists. These problems have been widely studied [3],
specially in the domain of Linear Temporal Logic (LTL) [2]. Realizability corre-
sponds to an infinite game where players alternatively choose the valuations of
the Boolean variables they control. A specification is realizable if and only if the
system has a strategy such that the specification is satisfied in all plays played ac-
cording to the strategy. The synthesis process is produced from a winning system
strategy. Both reactive synthesis and realizability are decidable for LTL [3]. LTL
modulo theories (LTLT ) is the extension of LTL where Boolean atomic propo-
sitions can be literals from a (multi-sorted) first-order theory T . Realizability of
LTLT specifications is decidable under certain conditions over T , shown in [4]
using a Boolean abstraction or Booleanization method that translates specifica-
tions in LTLT into equi-realizable LTL formulae, which means that the original
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specification in LTLT is realizable if and only if the produced Boolean LTL spec-
ification is realizable, and vice versa. Note than an LTLT reactive specification
splits the theory variables into environment controlled and system controlled
variables that can appear in a single literal, while LTL Boolean atoms belong
fully to either player.

However, to perform LTLT reactive synthesis it is not enough to synthesize
a controller for the Booleanized specifications because the system will receive
and will have to produce values from theory variables. Some previous synthesis
methods try to create statically a controller that always produces the same
outputs for the same inputs (e.g. [1]) but are incomplete for many T , since they
need to compute Skolem functions. Thus, we propose a general method that uses
on-the-fly procedures to dynamically produce outputs as the results of computing
models of existential T formulae. Concretely, the method we propose statically
receives an LTLT specification φ, Booleanizes φ using [4] and synthesizes a
controller S using standard methods. Then, dynamically S is combined with
a tool that can produce models of satisfiable T formulae (e.g., an SMT solver)
which collaborate in tandem at each step of the execution. To guarantee that the
reaction is produced at every step, we require that T has an efficient procedure to
provide models of existential fragments of T . Our approach does not guarantee
termination using semi-decidable T , but still yields a partial solution for such
cases. We also use an additional component, called partitioner, which discretizes
the environment T -input providing a suitable input for the Boolean controller
(but this is an easy by-product of the Booleanization procedure and can be
computed statically). As far as we know, this is the first successful reactive
synthesis procedure for LTLT specifications. We refer the reader to [5] for full
details.
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While reinforcement learning (RL) has been applied to a wide range of chal-
lenging domains, from game playing [19] to real-world applications [18, 5, 17, 7,
21, 8, 24], more widespread deployment in the real world is hampered by the lack
of guarantees provided with the learned policies. Although there are RL algo-
rithms which have limit-convergence guarantees in the discrete setting [22] (and
even in some continuous settings with function approximation, e.g., [20]), these
are lost when applying more advanced techniques which make use of general
nonlinear function approximators [23] to deal with Markov decision processes
(MDPs) with general state and action spaces. Those methods are grouped to-
gether under the term deep RL [19]. In this work, we apply deep RL to unknown
MDPs with logical specification or discounted-reward objectives, and we con-
sider the challenge of simplifying and verifying RL policies. Our goal is to enable
model checking [4] by learning an accurate, tractable model of the environment.

Bisimulation Guarantees. To recover the formal guarantees, we thus seek a
verifiable discrete latent model that approximates the unknown environment.
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Fig. 1: Execution of π.

Given the original (continuous, possibly unknown)
environment model M, a latent space model is
another (smaller, explicit) MDP M with state-
action space linked to the original one via a state
embedding and an action lifting function, respec-
tively denoted as ϕ and ψ. Intuitively, an agent
may execute a latent policy π (defined over the
latent spaces) in M as follows: at each step of the
interaction, the current state s of M is embedded
to the latent space via ϕ(s) = s, then the agent
executes the latent action a prescribed by the pol-
icy π by lifting it back to the original model via ψ.
Then, M transitions to the next state s′ accord-
ing to its transition function P, the original state
s, and this resulting action. The guarantees rely on (i) the bisimulation pseudo-
metric d

∼
π [2, 12–14], and (ii) two local losses LP and LR [15]. The former can

be interpreted as the largest behavioral difference between M and M when π is
executed. In particular, a zero distance means that the agent behaves the same
way in both models. The latter intuitively quantify respectively the expected
distance between the original and latent reward functions, R and R, as well as
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their transition functions, P and P. We show that these two losses bound d
∼
π:

E
s∼ξπ

d
∼
π(s, ϕ(s)) ≤

LR +KLP

1− γ
; d

∼
π(s1, s2) ≤

LR +KLP

1− γ

(
1

ξπ(s1)
+

1

ξπ(s2)

)
where ξπ is a stationary measure of M under π, γ is a discount, K is a constant,
and s1, s2 share the same embedding ϕ(s1) = ϕ(s2). These inequalities guarantee
the quality of the abstraction and representation: when local losses are small,
(i) in average, states and their embedding, and (ii) all states sharing the same
discrete representation, are bisimilarly close. We give PAC estimation schemes to
compute both the losses and said bounds [11]. Next, we learn a distillation π of
the RL policy along with M, where the behaviors of the agent can be formally
verified. The bounds offer a confidence metric allowing to lift the guarantees
obtained this way back to M, when it operates under π.

Generative models.We learn the latent space either by (i) maximizing a varia-
tional lower bound on the log-likelihood of the trajectories generated by the deep
RL policy in the original environment [11], or (ii) minimizing the Wasserstein
distance between those trajectories and those reconstructed in the latent model
[10]. The resulting objective functions incorporates respectively (i) variational
proxies to, or (ii) directly the local losses. This enables learning a discrete latent
model, state embedding and action lifting functions, as well as a distillation π
of the RL policy. Our algorithm enables efficient learning of the representation,
avoiding the posterior collapse problem that occurs in variational models [1].

Experiments. We trained deep RL policies [19, 16] for various benchmarks
[6], which we then distill via our approach. The results reveal that optimizing
our latent models allows minimizing the local losses (Fig 2a). Furthermore, this
enables the distillation of RL policies into π, for which the formal guarantees
apply: the original performance is eventually recovered (Fig 2b).
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Fig. 2b. Evaluation of the distilled policies

Beyond distillation, our abstraction and representation guarantees have also
proved beneficial for policy learning. Notably, we extended our guarantees in
the context of learning beliefs in POMDPs, removing the need of introducing
recurrent neural networks for deep RL policies [3], and synthesizing controllers
in hierarchical scenarios based on deep RL policies [9].
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10. Delgrange, F., Nowé, A., Pérez, G.A.: Wasserstein auto-encoded mdps: For-
mal verification of efficiently distilled RL policies with many-sided guar-
antees. In: The Eleventh International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net (2023),
https://openreview.net/pdf?id=JLLTtEdh1ZY
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JavaScript Object Notation (JSON) has overtaken XML as the de facto stan-
dard data-exchange format, in particular for web applications. JSON documents
are easier to read for programmers and end users since they only have arrays and
objects as structured types. Moreover, in contrast to XML, they do not include
named open and end tags for all values, but open and end tags (braces actually)
for arrays (ordered collections of values) and objects (unordered collections of
key-value pairs) only.

In order to be correctly processed by web services, for instance, a JSON
document has to satisfy some structural constraints. These constraints can be
encoded in a JSON schema [3]. Recently, a standard to formalize JSON schemas
has been proposed and (hand-coded) validation tools for such schemas can be
found online [3]. Pezoa et al, in [4], observe that the standard of JSON docu-
ments is still evolving and that the formal semantics of JSON schemas is also
still changing. Furthermore, validation tools seem to make different assumptions
about both documents and schemas. The authors of [4] carry out an initial for-
malization of JSON schemas into formal grammars from which they are able to
construct a batch validation tool from a given JSON schema.

In this joint work with Véronique Bruyère and Guillermo A. Pérez [1], we
present a streaming algorithm to validate JSON documents against a set of
constraints given as a JSON schema. The idea is to represent the set of valid
JSON documents via an automaton. As we have to take into account the nesting
of objects and arrays, a classical (deterministic) finite automaton is not sufficient.
Instead, we require a stack to remember that nesting. We show that there always
exists a visibly pushdown automaton (VPA) that accepts the same set of JSON
documents as a JSON schema.

We present a VPA active learning framework to automatically construct a
VPA from a JSON schema, that extends TTT [2] by leveraging side information
about the language of all JSON documents. In order to be able to learn this
VPA in a reasonable time, we fix an order on the keys appearing in objects.
That is, in the VPA, objects are now ordered collections of key-value pairs. As,
in general, a JSON document may not follow this order, we develop the concept
of key graph, which allows us to efficiently realize the validation no matter the
key-value order in the document. The validation algorithm we propose accepts
other permutations of keys, via the key graph.

⋆ Gaëtan Staquet is a Research Fellow of the Fonds de la Recherche Scientifique –
FNRS.
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We also present experimental results of our learning and validation algorithms
from JSON schemas used in industrial cases. Finally, we compare the efficiency
of validation against the classical validation algorithm, on a number of randomly
generated JSON documents.
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Abstract. This abstract summarizes our work towards logical consis-
tency checks of convolutional neural networks (CNNs) for computer vi-
sion against symbolic prior domain knowledge [14]. The two simple ideas
are (i) to treat the object detections as (fuzzy) logical predicates, e.g.,
Isperson, and (ii) to model additional predicates via concept extraction,
e.g., for Isbodypart. The approach poses an interesting direction towards
formal verification of CNNs against symbolic constraints.

Keywords: Concept Activation Vectors, Fuzzy Logic, Calibration, Verification
Testing

1 Motivation

In safety critical tasks like perception for autonomous driving, it is necessary to
verify that a model complies with given prior domain knowledge [13]. Examples
in object detection are (fuzzy) logical relations between symbolic concepts, e.g.,
anatomical structures like body part regions are mostly part of person regions.
While DNNs are known to extract a rich set of symbolic features—even if oper-
ating on non-symbolic inputs like images [3,1,16]—black-box CNNs only disclose
information on symoblic concepts in their final outputs (e.g., where is a person).
These are typically insufficient for verifying complex symbolic relations; and re-
specting rich semantics during design [5,8] proves impossible if new constraints
may frequently emerge during operation.

2 Idea

The goal is to allow verification testing (and potentially subsequently formal ver-
ification) of CNNs against symbolic constraints with symbols not known during
training. The three ingredients we use to solve this are:
(1) If interpreting visual symbols (here callled visual semantic concepts) as logi-

cal 1-ary predicates operating on image regions like Isperson, Isbodypart, one can
formulate the symbolic prior knowledge as logical relations, e.g.,

∀x : Isbodypart(x) → Isperson(x).
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Fig. 1: Our approach to score per-pixel consistency with symbolic rules.

(2) Extending a suggestion by Diligenti et al. [2] to object detection, CNNs can
be interpreted as a family of (fuzzy) logical 1-ary predicates operating on
image regions (here: pixels), such as Isperson. Thus, if all symbols of interest
can be allocated to outputs of the CNN, we can verify in how far the formulas
evaluate to true when using the CNN predicates—how logically consistent
the CNN behaves with respect to the rule.

(3) To add missing symbols to the output of a trained CNN, we utilize concept
embedding analysis [12,11], a method from the field of explainable AI; and
to ensure that these additional outputs can properly be interpreted as fuzzy
truth values, we adopt techniques from uncertainty calibration for DNNs [6].

Altogether, we provide a simple and scalable framework to compute a logical
consistency score of a CNN with regards to a given logical rule and input, see
Fig. 1. This is shown to uncover a substantial proportion of detection errors for
two state-of-the-art object detectors, and benefits from the additional uncer-
tainty calibration and the fuzziness. This could be used, e.g., as self-supervised
error indicator at operation-time, for identification of corner cases at test-time,
or even for automated corrections of predictions.

Comparison to Related Work In contrast to related work by Diligenti et al. [2],
our approach is applied to object detection instead of mere classification, and
works in a post-hoc manner, i.e., on any CNN-based object detector without
changes to training or architecture, other than, e.g., [5,2].

3 Formalization: Fuzzy Logic Rules for Object Detection

Consider an image x, the domain of pixel positions P , and an instance or seman-
tic segmentation mask, e.g., for an object class cls. Our modeling approach is to
interpret such a mask as per-pixel truth values (Iscls(p, x))p∈P that are obtained
from grounding the predicate Iscls to x and pixels p ∈ P , as shown in Fig. 1.

http://flickr.com/photo.gne?id=2372745068
http://flickr.com/photo.gne?id=8239498722
http://flickr.com/photo.gne?id=8026451116
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1-ary logical predicates (concepts): Fuzzy segmentation masks can origin
from the CNN object or concept presence prediction by a post-hoc attached
concept model [11]. Note that we here use the fact that CNN outputs are inher-
ently fuzzy, i.e., are no binary truth values but confidences in [0, 1].
Object predictions: A CNN bounding box prediction i of class cls is turned into

an instance segmentation mask (Iscls,i(p, x))p by setting all pixels inside the
detection box to the objectness score. Therefore, we can define per-pixel pred-
icates for object and other concept classes, given a fixed DNN.

Additional concept presence predictions: This is obtained using concept embed-
ding analysis [3,12], and allows to classify pixels by concepts. This is done
by post-hoc attaching per concept a small linear concept model (CM) to the
intermediate output of a CNN layer. The CM is trained to accurately pre-
dict presence of the concept at each activation map pixel (=values of neurons
associated with a common pixel position).

Other logical predicates: We also define a predicate CloseBy for fuzzy prox-
imity between pixels in terms of a squared exponential distance function. For
smoothing predicate outputs, we apply a neighborhood condition predicate de-
fined via average pooling.
Logical connectives: User supplied rules that use CNN-based predicates can
then be grounded to CNN inputs x. That way one obtains the truth values
of these predicates and a fuzzy fulfillment score of the rule (cf. Fig. 1a). We
apply continuous t-norm fuzzy logics [10], like Product (P) and Łukasiewicz (Ł)
logic, for realizing the rules as mathematical functions. This allows generalization
to fuzzy truth values in [0,1] of quantifiers ALL (∀), EXISTS (∃); and of logical
connectives NOT (¬), AND (∧), OR (∨), and implication (→).
Calibration: To ensure good calibration of the CMs, i.e., ensure that the pre-
dicted confidences coincide with certainties about correctness, we suggest to use
the standard measures of a Laplace approximation of a Bayesian neural network
[6] and a binary cross-entropy loss.
Example rules for person detection: We formalized “body parts indicate
persons” (meaning no false negatives due to occlusion) as:

F (p, x) :=
∨

b∈BodyPartsIsb(p, x)︸ ︷︷ ︸
IsBodyPart(p,x)

→
(
∃q ∈ P :

(∨
i Isperson,i(q, x)

)
∧ CloseBy(p, q)

)︸ ︷︷ ︸
IsPartOfAPerson(p,x)

. (1)

4 Experiments and Results

For experimental validation we considered the object detectors Mask R-CNN [4],
and EfficientDet D1 [15] (EffDet) trained on MS COCO 2017 [7], with pixel
accuracies for Isperson of 0.960 (MR) and 0.930 (EffDet). MS COCO was also
used to define the ground truth for the considered body parts eye, arm, wrist, leg,
ankle as in [11]. Our main findings for the example rule Eq. 1 were (cf. Tab. 1):
Calibrated CMs: Our calibrated CMs showed good performance comparable to

the vanilla Dice loss approach from [11], but were on average much better
calibrated (Tab. 1b).



Table 1: Results for identifying detector false negatives with the rule from Eq. 1
(a) ROC AUC, and F1 at best and 0.5
threshold

Pixel-level Image-level
Logic AUC AUC F10.5 F1

M
R

Bool 0.829 0.619 0.146 0.455
Ł 0.833 0.632 0.282 0.462
Ł cal 0.833 0.632 0.295 0.461
P 0.833 0.632 0.244 0.466
P cal 0.834 0.632 0.243 0.465

E
ffD

et

Bool 0.840 0.671 0.421 0.749
Ł 0.843 0.690 0.557 0.752
Ł cal 0.847 0.695 0.592 0.755
P 0.843 0.689 0.500 0.751
P cal 0.847 0.696 0.523 0.753

(b) CM avg. expected calibration error (ECE) [9] and
set intersection over union (sIoU) [3] at best and 0.5
threshold for MR model.

ECE sIoU sIoU0.5

BCE, cal 0.001 ± 0.001 0.297 ± 0.102 0.218 ± 0.126

Dice loss 0.010 ± 0.008 0.265 ± 0.079 0.263 ± 0.081
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(c) PR curves (upper left) for different logics

Error retrieval: Given the operation-time setting, formula truth values and an
alarm threshold are used to identify CNN errors (false negatives in case of
Eq. 1), both per-pixel and per-image (Tab. 1a). A substantial amount of re-
spective detection errors could be retrieved that way. On image level, decent
precision-recall balances could be found, e.g., for EffDet 10% of erroneous im-
ages identified at precision ≥ 0.95 (cf. Fig. 1c).

Advantages of fuzziness and calibration: Both calibration (cal) and fuzziness slightly
but consistently outperform uncalibrated and Boolean (Bool) rules, i.e., stan-
dard intersection and union operations on binary masks (Fig. 1c, Tab. 1a). In
case the alarm threshold cannot be tuned, fuzziness substantially outperformed
Bool, as F10.5 scores in Tab. 1a show.

Other use-cases Manual qualitative inspection showed that corner cases selected
by logical consistency scores prove useful for identification of interesting failure
types (cf. Fig. 1b).

5 Outlook

Our suggested framework setup proved to be promising. Hence, we would like
to see it evaluated on more models, datasets, rules, as well as in an end-to-end
fashion for error removal and robustification against outliers, and in user-studies
for other use-cases. We hope our work serves as a starting point for rich post-hoc
verification of symbolic rules on perception CNNs.
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Learning Event-recording Automata Passively
(extended abstract)
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Inferring finite-state automata for regular languages has been an active area of
research for decades. The main goal is, given a regular language L, to learn a
finite-state automaton representing L. There are primarily two approaches to
solve this problem: (i) active learning : where the learner is aided by a teacher,
who knows L; the learner builds an automaton by querying the teacher, and (ii)
passive learning : where the learner is provided with a labelled set of words, i.e.
a set of words that are positive and another set of words that are negative; the
learner tries to infer a finite-state automaton that accepts every positive word
and rejects every negative word.

Event-recording automata is a subclass of Timed Automata. The latter is a
popular choice for modelling real-time systems, and has been studied extensively
over the past couple of decades. Timed Automata is more expressive than event-
recording automata, however, with the expressive power comes the difficulty of
solving some important decision problems. For example, timed automata are
not determinizable in general, and further, checking inclusion between two non-
deterministic timed automata is undecidable. To recover determinizability, the
class of event-recording automata was introduced by Alur et al. in [1]. This class
of automata has since been of interest because it is sufficiently expressive while
keeping several important decision problems decidable.

Learning models of timed systems. Timed Automata extends finite state au-
tomata with non-negative real-valued variables, called clocks. The transitions of
timed automata have two additional attributes over finite-state automata: (i)
guards – these are expressions over clocks that specify for which values of the
clocks the transition is enabled, and (ii) resets – these specify which clocks’ val-
ues will be set back to 0 once the transition is taken. These attributes contribute
to the challenges in learning a timed automaton:

1. there is no bound on the number of clocks in a timed automaton. It is difficult
to infer how many clocks are necessary to represent a language,

2. an arbitrary number of clocks can be reset on a transition,
3. the learning algorithms need to infer the guards present on the transitions.

To circumvent some of these challenges, several works have tried to learn
subclasses of Timed Automata that restrict the number of clocks, for example,
[2] studies learning of one-clock deterministic timed automata. In a more recent
work, [6] studies the problem for deterministic Timed Automata, however, they
reset a new clock on every transition.
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In an event-recording automaton, every clock is associated with an event,
and in every transition the clock that is associated to the event present in
the transition, is reset. Therefore, the first two challenges mentioned above do
not arise when learning event-recording automata. This makes learning event-
recording automata feasible. The works [4,3,5] propose algorithms for learning
event-recording automata in an active learning framework.

In this work we propose an algorithm ‘LEAP’, that learns an event-recording
automaton from a given sample of positive and negative examples using a passive
learning approach. A well known passive learning algorithm for inferring finite-
state automata for regular languages is RPNI. LEAP adapts RPNI to infer event-
recording automata. As input, we consider finite words over pairs of events and
guards, such words are called guarded words. A guarded word represents a set
of timed words; we call those timed words concretizations of the guarded word.
Given a set of positive guarded words and a set of negative guarded words,
LEAP returns an ERA that accepts every concretization of the positive words
and rejects every concretization of the negative ones.

Similar to RPNI, LEAP first constructs a tree-like ERA based on the positive
set of guarded words. It then tries to merge states of the tree, based on a total
order defined over guarded words. After every merge, LEAP checks if the new
automaton accepts a concretization of any of the negative words; if it does, the
latest merge is undone and LEAP tries to merge another pair of states. When
no two states remain that can be merged, LEAP terminates.

To check if a merge is allowed, LEAP checks if a concretization of a negative
guarded word is accepted by the computed automaton. We show that checking
if a guarded word has a concretization that is accepted by a given ERA, is an
NP-complete problem. We prove this by showing a reduction from 3SAT. We
then propose an SMT-based algorithm for checking this inclusion.

We have a prototype implementation of LEAP. We are yet to implement a
total order over guarded words for choosing states to merge. Currently, we use
a partial order over guarded words, similar to the regular case, that is known to
be sufficient for RPNI to terminate.

Lastly, we prove a completeness result for LEAP – when provided with a
‘good’ input, the algorithm should return a ‘good’ automaton. To get such a
guarantee, we restrict ourselves to guarded words of a special kind – where every
guard present in a word is a ‘simple constraint’. Given a language L recognizable
by an ERA A, we can associate a positive set and a negative set of ‘simple’
guarded words, that, when provided as an input, LEAP returns an ERA A∗
such that the timed languages of both A and A∗ are the same.

This is still a work in progress.
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1 Introduction

Learning algorithms derive models of the behavior of black-box systems through
observation of their output. We study automata learning algorithms that generate
FSAs and Moore machines which are human-readable and amenable to automated
model checking. Active learning algorithms such as L* [1] interact with a system
and eventually produce a perfect model. Passive learning only processes samples
of a system’s output and only produces imperfect models. However, passive
learning can operate offline and in scenarios not tractable by active learning.

We focus on passive learning algorithms that produce Moore machines that
classify observed behavior. The identification of minimal automata matching a
given set of inputs is NP-complete [3]. Classic algorithms extend the approach
used by k-Tails [2]: a prefix tree of the observed traces is constructed and then
minimized by merging states according to an equivalence rule. Recently, model-
based learning approaches have gained traction. These approaches define correct
classification of the given samples as constraints and then invoke a solver to
produce a valid model. Various works have employed SAT solving [8, 9], SMT
solving [6], and MILP solving [5]. Since MILP solving creates minimized models
in a single solver call (e.g., minimal states or minimal fan-out), it is of particular
interest in creating small, readable and efficiently analyzable models.

However, the authors of [5] do not propose a single MILP formulation, but solve
for multiple objective functions and select the best solution on their validation
data set. We seek to address this gap by finding a formulation that a) is fast to
solve and b) yields automata with good prediction power on unknown samples.

2 MILP Formulations

We base our approach on Shvo et al.’s [5]. The learning problem is encoded by
fixing a maximum automaton size and solving i) a mapping from prefix tree to
automaton state, ii) a matching transition function, and iii) the automaton’s
output function. The solver then attempts to minimize the number of live states.
Based on this, we investigate potential optimizations and changes to the model:

1. fixing the output function to certain states (q0 outputs o0 etc.),
2. optimizing for minimal fan-out after minimizing states,
3. instead of using constraints, optimizing for minimal errors first, and
4. use of symmetry-braking constraints such as BFS-based ones [7].
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Fig. 1. Prediction power of each intermediate solution for two formulations.

3 Preliminary Results

Preliminary results on are varied. As illustrated in Fig. 1, formulation choice
can impact solving time by factor of ca. 104. However, there appears to be no
clear “silver bullet” formulation for prediction power according to preliminary
experiments.

Next steps are the selection of some formulations with an acceptable trade-off
between prediction power and solving time and a comprehensive comparison to
SAT-based learning with DFA-Inductor [9], Shvo et al.’s DISC [5], and the classic
RPNI [4] algorithm on a wide selection of data.
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Fig. 1: Schematic depiction of the symbiotic approach

A formidable synthesis challenge is to find a decision-making policy that
satisfies temporal constraints even in the presence of stochastic noise. Markov
decision processes (MDPs) [10] are a prominent model to reason about such
policies under stochastic uncertainty. A major shortcoming of MDPs is the
assumption that the policy can always depend on the precise state of a system.

Partially observable MDPs (POMDPs) overcome this by requiring policies to
only depend on observable state information, but policy synthesis for POMDPs
under specifications such as the probability to reach the exit is larger than 50% is
an undecidable problem [8]. Nevertheless, in recent years, a variety of approaches
have been successfully applied to tackle a range of challenging benchmarks for
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POMDP policy synthesis. From a user perspective, however, it is hard to pick
the right approach without detailed knowledge of the underlying methods.

We present Saynt [2], a symbiotic anytime algorithm tightly integrating two
modern, orthogonal methods for synthesising finite-state controllers (FSCs) for
policies, represented as deterministic Mealy machines [1]. Saynt integrates the
belief exploration approach as implemented in the Storm model checker [6] with
the inductive policy search implemented in Paynt [4].

In essence, Saynt relies on the fact that a policy found via one approach can
boost the other approach. The key observation is that such a policy is beneficial
even when it is sub-optimal in terms of the objective at hand. Fig. 1 sketches the
symbiotic approach.

The key idea of belief exploration is that each sequence of observations and
actions induces a belief—a distribution over POMDP states that reflects the
probability to be in a state conditioned on the observations. POMDP policies
can decide optimally solely based on the belief [11]. The evolution of beliefs can
be captured by a fully observable, yet possibly infinite belief MDP. The practical
approach that is part of Saynt is to unfold a finite fragment of this belief MDP
and make its frontier absorbing. The resulting MDP approximates the actual
belief MDP and can be analysed with Storm’s MDP model checkers [5]. The
accuracy of the approximation is improved by policies provided by the policy
search part of the integrated approach. These policies improve the values used to
approximate the frontier of the belief exploration (see lower part of Fig. 1).

Orthogonally, policy search approaches search a (finite) space of policies [7,9]
and evaluate these policies by verifying the induced Markov chain. Saynt uses the
policy-search method implemented in Paynt that explores spaces of finite-state
controllers [3]. Paynt uses a combination of abstraction-refinement, counterex-
amples (to prune sets of policies), and increasing a controller’s memory to search
large policy spaces, see the upper part of Fig. 1.

In an experimental evaluation [2], we have shown that the symbiosis offers a
powerful push-button, anytime synthesis algorithm producing, in the given time,
superior and/or more succinct FSCs compared to other state-of-the-art methods.

In addition to already published work, we present recent advancements in the
symbiotic policy synthesis approach.
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Abstract. Safety-critical controllers of complex systems are hard to
construct manually. Automatic approaches such as synthesis or learning
provide a tempting alternative. However, one of the fundamental hurdles
on the way to adoption is the lack of explainability of the constructed
controllers. Fortunately, explainable representation of the controllers can
often be mined from them. To this end, decision-tree (DT) learning has
been prevalently used, due to a number of advantages over other pop-
ular representation structures such as binary decision diagrams (BDD).
In this work, we introduce predicate decision diagrams (PDD), an ex-
tension of BDD with predicates as variables. By embracing some of the
DT concepts, PDD eliminates BDD’s disadvantages on explainability.
As a result, we provide an algorithm for efficient construction of PDD
as an explainable representation of controllers. This brings BDD-based
methods, otherwise popular in verification, back in game.

Keywords: Binary decision diagram · Decision tree · Learning · Ex-
plainability · Decision making and control · Strategy synthesis.

Controllers of dynamic systems are hard to construct for a number of reasons:
(i) the systems—be it software or cyber-physical systems—are complex due to
phenomena such as concurrency, hybrid dynamics, uncertainty, and their sizes
grow steadily; (ii) they are often safety-critical, with a number of complex spec-
ifications to adhere to. Consequently, manually crafting the controllers is very
error-prone. Automated controller synthesis or learning provide a tempting alter-
native, where controllers are constructed algorithmically and their correctness is
ensured with human participation limited only to the specification process. Since
the problem of constructing a controller can be transformed into constructing
a winning strategy (a.k.a. policy) in a game played by the controller and its
environment, there are numerous approaches solving the problem.

Explainability of the automatically constructed controllers (or rather its lack)
poses, however, a fundamental obstacle to practical use of automated construc-
tion of controllers. Indeed, an unintelligible controller can hardly be accepted by
an engineer, who is supposed to maintain the system, adapt its implementation,



provide arguments in the certification process, not to speak of legally binding ex-
plainability of learnt controllers [1–3]. Unfortunately, most of the synthesis and
learning approaches compute controllers in the shape of huge tables of state-
action pairs, describing which actions can be played in each state, or of cryptic
black boxes. Such representations are typically so huge that they are utterly in-
comprehensible. An explainable representation should be (i) small enough to be
contained in the human working memory, and (ii) in a simple enough formalism
so that the decisions can be read off in a way that relates them to the real states
of the system.

Decision trees (DT), e.g. [14], have a very specific, even unique position among
machine-learning models due to their interpretabilty. As a result, they have
become the predominant formalism for explainable representations of controllers
[8, 9, 4, 7, 12, 5, 6, 13] over the past decade. Figure 1 shows an example of policy
representation using DTs.

battery ≤ 0.15

temp ≤ 21

temp ≤ 19

Off

AC

Heating Off

True False

True False

True False

(a) deterministic

battery ≤ 0.15

temp ≤ 20

temp ≤ 19 temp ≤ 21

{Off}

{Heating} {Off, Heating} {Off, AC} {AC}

True False

True False

True False True False

(b) permissive

Fig. 1: An example of how a decision tree can represent a policy. (a) shows a
deterministic policy, (b) a permissive one with multiple actions at some states.

In contrast, binary decision diagrams (BDD) [10] are very popular to repre-
sent large objects compactly, exploiting bit-wise representation with automatic
reduction mechanisms. However, they have not been used much for policy rep-
resentation on the output. The reasons are due to several advantages of DT:xh1 DT can use more general predicates when arriving at a decision, while BDD

only use a 0/1 values on each bit of the encoding. Since deciding one predicate
may depend on a number of bits, DT may be smaller. Since richer predicates
may encode domain knowledge easier, DT can be more explainable.xh2 DT can vary the order of predicates examined on each branch. This gives
more flexibility and could lead to substantial space savings in DT (but prac-
tically disables BDD’s merging isomorphic subgraphs as they rarely occur).
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xh3 DT learning allows “don’t care” values to be set in any way so that the learnt
DT is the smallest. In contrast, BDD natively represent only fully specified
sets, with no heuristic how to resolve the “don’t cares” resulting typically in
large representation.

We show that despite all these disadvantages BDDs can be a competitive
alternative to DT. To this end, we introduce predicate decision diagrams
(PDD), which on the one hand, can be seen as regular BDD over a certain
special bitstring representation, and thus inherit all the BDD advantages; on
the other hand, they emulate DT, profiting from their explainability and smaller
size. In particular:zh1 We collect the predicates mined by the DT representation of a given con-

troller and use them as “variables” in the PDD. This eliminates the issue 1 .zh2 We apply sifting (variable reordering techniques for BDD) and merging iso-
morphic subgraphs to improve the size of the PDD, alleviating the issue 2 .zh3 We use Coudert and Madre’s method [11] to restrict the support of BDD on
care sets, compressing BDDs further and fixing issue 3 .

Notably, due to 1 and 2 , branches can arise in the PDD that are contradictory,
e.g. temp ≤ 19∧¬temp ≤ 20. Detecting and eliminating them further reduces the
size. Interestingly and fortunately, finding good variable ordering and eliminating
contradictory branches commutes, which eases the search significantly.

Our contribution can be summarized as follows:

– We introduce PDD, a BDD structure allowing for both explainable and small
representation of controllers.

– We design an algorithm effectively synthesizing PDD representations and
prove its optimality properties, in particular the reasoning modulo DT theory
for branch consistency.

– We experimentally demonstrate that we almost close the gap between BDD
and DT, in half of the cases matching the size of DT or even outrunning
it, while retaining the same level of explainability as DT. In particular, we
reduce the gap between BDD and DT sizes on average by 98%; the median
being match between the two; and due to several extreme savings, PDD are
on average 15% percent smaller than DT!

– In conclusion, we present a viable alternative to DT, breaking their decade-
long hegemony for explainable representation and bringing the traditional
BDD-based tools back in the game.
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13. Jüngermann, F., Kret́ınský, J., Weininger, M.: Algebraically explainable con-
trollers: decision trees and support vector machines join forces. Int. J. Softw. Tools
Technol. Transf. 25(3), 249–266 (2023)

14. Mitchell, T.M.: Machine learning. McGraw Hill series in computer science,
McGraw-Hill (1997)

4


	Validating Streaming JSON Documents with Learned VPAs (Long Abstract)
	 Enabling Verification of Deep Neural Networks in Perception Tasks Using Fuzzy Logic and Concept Embeddings
	Learning Event-recording Automata Passively  (extended abstract)
	MILP Formulations for Passive Learning
	Advances in SAYNT:Symbiotic Policy Synthesis in POMDPs 

